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Definitions

Let M be a C° manifold. A Finsler metric on M is a function
F: TM — Rt that is C*™ outside the zero section such that:

@ F is positively homogeneous, i.e.
Vv € TMYA € RT F(Av) = AF(v) ;

@ F is positive on TM — {0} ;
© F is convex.

The Finsler metric F is said to be reversible if, for all v € TM,
F(—v) = F(v).
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Examples

@ Calculus of variations. A typical problem considers a
functional F on the space of curves on M

b
c:lab] — M, f(c):/ F(e(t)) dt -

@ if one insists that the problem be invariant under
reparametrization of the curve, then F must be positively
homogeneous. This leads to a degeneracy in the
Euler-Lagrange equations for extremal curves, but the
convexity of F ensures that it is the only one.

@ Riemannian Geometry. A Riemannian metric g gives rise to
an associated (reversible) Finsler metric F, defined, for
ve TM, by Fg(v) = +/g(v,v).
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Examples (continued)

@ Randers metrics. Let g be a Riemannian metric and § be a
differential 1-form; the associated Randers metric is Fg + (3
(typical of the problem of navigation in a flow).

@ Hilbert metrics. Let C be a bounded convex domain in R”.
For p, g € C, we set

1
dr(p, q) = 7 log(crossratiola, p, g, 2])

where a and z are the intersections of the line pg with the
boundary of C.

This comes from the Finsler metric F¢ on C defined, for
ve T,C, by

Fe(v) = Fa(v) (d ! ! > .

(p,p") - de(p,p™)
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A Brief Historic Perspective

1788 Joseph-Louis de LAGRANGE, Méchanique Analytique
1854 Bernhard RIEMANN's oral defense and essay

1869 Edwin Bruno CHRISTOFFEL's equivalence problem
1894 David HILBERT

1900 Hilbert's Problems 4 and 23 at the Paris International
Congress of Mathematicians

1922 Paul FINSLER's habilitation in Cologne
1926-1929 Paul FUNK, Ludwig BERWALD
1931 A seminar at Chekiang University

1934 Elie CARTAN
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A Brief Historic Perspective (continued)

@ 1934 Elie CARTAN's book “Les espaces de Finsler”

Les Espaces de Finsler. By E. Cartan. (Actualités Scientifiques et Industrielles,
No. 79.) Paris, Hermann, 1934. 40 pp.

In this pamphlet the author presents the recent developments in the
geometry of Finsler spaces. He proposes five postulates for measurements in
the space and by means of them obtains his tensor calculus. As he points out,
his affine connection is essentially different from that of Berwald and it is
more nearly analogous to that of a Riemann space; its main advantage is in
the fact that lengths are preserved in parallel displacement, Of course here, as
is usual, only spaces leading to a regular problem in the calculus of variations
are considered. Of the scalar differential forms the author considers only the
most important one—the angular metric of Landsberg, and he shows that it
has curvature +1. There are three sections on the geometry of curves and
surfaces in a three-dimensional Finsler space which show to what extent or
with what modifications classical differential geometry can be carried over to
apply to Finsler spaces.

The author also considers some special #-di ional spaces cl ized
by the vanishing of some tensor invariant; of particular interest is the one for
which the determinant of the fundamental tensor is a point-function (4:*=0).
Another interesting problem considered is the representation of the geometry

of line elements (éléments d’appui) as the geometry of surface elements, The
whole seems to be very closely related to the study of conservative dynamical
systems as treated by contact transformations.

‘The pamphlet as a whole is extremely well done. The formulas are usually
given geometrical content—an attribute often lacking in works on tensor
analysis—and the proofs are clear and not too formal. Above all, brief as
this pamphlet is, it contains many interesting ideas that seem to be worth
elaborating.

M. S. KNEBELMAN
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A Brief Historic Perspective (continued)

@ 1942 Herbert BUSEMANN

THE GEOMETRY OF FINSLER SPACES
HERBERT BUSEMANN

The term “Finsler space” evokes in most mathematicians the pic-
ture of an impenetrable forest whose entire vegetation consists of
tensors. The purpose of the present lecture is to show that the asso-
ciation of tensors (or differential forms) with Finsler spaces is due te an
historical accident, and that, at least at the present time, the frustful
and relevant problems lde in o different divection.

Finsler spaces were discovered by Riemann in his lecture [1]:t
Uber die Hypoth welche der G irie su Grunde liegen (1854).
The goal which Riemann set for himself was the definition and dis-
cussion of the most general finite-dimensional space in which every curve
has a lemgth derived from an infinitesimal length or line elemens. In
modern terminology Riemann’s approach is this: Let a differentiable
manifold M of a certain class be given. In any local coordinate sys-
tem (x1, - - -, %a) = (%) a length F(x, &x) must be assigned to a given
line element (x, dx)={(x1, - » - , %n; di, « + -, dwa) with origin x. If
x{?) is a (smooth) curve in 3 then fF(x, #)dtis its length.

In order to insure that the length of a curve is positive and inde-
pendent of the sense in which the curve is traversed, Riemann re-
quires F(x, dx) >0 for dx#0 and F(x, dx) = F(x, —dx).

Next Riemann assumes [1, p. 277] that the length of the line ele-
ment remains unchanged except for terms of second order, if all points
undergo the same infinitesimal change. This amounts to the condition
F(x, kdx) =kF(z, dx) for >0. Nowadays we rather justify this con-
dition by requiring that a change of the parametrization of the curve
does not change its length.

Riemann then turns immediately to the special case where F(x, dx)
= [ 2 galx)dxidxs ]2, that is, to those spaces which are now cailed
Riemann spaces. The general case is passed over with the following
remarks: the next simplest case would comprise the manifolds, in
which the line element can be expressed as the fourth root of a bi-
quadratic differential form. The investigation of these more general
types would not require any essentially different principles, but it
would be time consuming and contribute comparatively little new to
the theory of space (verhiltnismissig auf die Lehre vom Raume wenig
neues Licht werfen), because the results cannot be interpreted geo-
metrically (see [1, p. 278]).

Sectional Meetings; received by the editors Decenber 8, 1948.
* Numbers in brackets refer to the references cited at the end of the paper.
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A Brief Historic Perspective (continued)

@ 1942 Herbert BUSEMANN

@ 1944-1948 Shiing-Shen CHERN's papers on Finsler Geometry

@ 1955-1970 André LICHNEROWICZ, Hassan AKBAR-ZADEH,
Pierre DAZORD

@ 1986-... Patrick FOULON's dynamic approach

@ 1992 Shiing-Shen CHERN's Compte-Rendu note at the Paris
Science Academy

@ 1993-... David Dai-Wai BAO, Zhongmin SHEN, Robert
BRYANT, Juan Carlos ALVAREZ-PAIVA, Daniel EGLOFF, ...

@ 1993-... Viktor BANGERT, Hans-Bert RADEMACHER,
Yiming LONG, Wei WANG,...

@ 2009 Shin-Ichi OHTA

@ 2012 Thomas BARTHELME

° ..
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Relevance of Finsler Geometry in Modelling

@ Physics. Crystals in electromagnetic fields; binocular visual
space; thermodynamics;...

e Biology. Ecology; Marine Biology (evolution of corral
colonies); Host/Parasite systems;...

@ Stochastic Models. Beyond the Brownian motion;...
@ Control Theory.
° ..
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Comparing Riemannian and Finsler Geometry

@ Basic Object. Riemannian metric g, Finsler metric F.

o Covariant derivative. Levi-Civita connection D& (g-metric
and torsion free), in the Finsler setting connections introduced
by P. BERWALD and E. CARTAN (metric with torsion), also
by S.S. CHERN (torsionfree not metric).

@ Curvature. Ri yZ measures the deviation from flatness, in
the Finsler context there are several notions, e.g., flag
curvature.

o Geodesics. Extremals of length, generalize straight lines,
behaviour governed by R#, in the Finsler context they are
extremals of the functional F(c) = [P F(¢(t)) dt.

@ Space forms. Spaces of constant curvature serve as models.
Many examples of constant curvature spaces.
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Specific Features of Finsler Geometry

To a coordinate system (x') on M, one naturally associates a
coordinate system (x', X') on TM.

@ The form Y7 | OF /OX' dx' = d"F is well defined.
@ Also, at a point v € TM — {0},

1 <~ O?F? -

— 1 J

gr(v) = > 2 8X’8Xf(v) dx' dx:

ij=1

is a well defined Riemannian metric on T,M — {0}.
(Note that, for Fg, gr, = g).
@ The Cartan tensor Ar is defined on TM as

n 3F3 . _
i dxd
Ar(v Ek 18X 8XJ(9X"( v) dx' dx! dx

(For Fg, Ar, =0).
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Different Approaches to Finsler Geometry

@ Tensorial approach. This was the classical one.
There is a real difficulty to identify the geometric content as
the technicalities are quite formidable.

@ Moving frame approach. This was the one privileged by
both E. CARTAN and S.S. CHERN.
The key feature is the role of exterior differentiation.
Again one needs a very specific geometric insight in order to
concentrate on the right notions.

@ Dynamic Approach. This was the one introduced in the late
1980s by Patrick FOULON.

The starting point is more subtle, but later on only
geomerically relevant notions come up.
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The Basic Setting of Finsler Geometry

@ One starts from the Calculus of Variations. The famous
Euler-Lagrange equations are actually mathematical subtle

d(OLN 0L o 1<i<n
dt\oxXi) ox o T

@ In intrinsic form, this is a second order differential equation,
i.e. amap Z: TM — TTM which is a section of both
wrm : T(TM) — TM and Trp - T(TM) — T(M).

@ We shall see later that, from the second order differential
equation Zr determined by a Finsler metric F, a lot of
geometry follows.



4. Modern Basics
00000000

The Basic Setting of Finsler Geometry (continued)

@ The basic object is the homogeneous bundle of M, i.e., the
space of half-lines of the tangent bundle mpy: TM — M
HM = TM /Rt — M.

(It is in some sense an intrinsic, but equivalent, way of dealing
with the sphere bundle {v € TM | F(v) = 1}.)

@ The Hilbert form attached to F, namely dF, descends to
HM where it is called wg. The strong convexity of F implies
that wr A (dwg)™ 1 # 0, i.e., wr is a contact form on HM.

@ The dynamics defined by F is the vector field Zg which is the
Reeb field of wg satisfying

dwF(ZF, ) =0 s w/:(ZF) =1.
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The Basic Setting of Finsler Geometry (continued)

To any second differential equation Z on HM are associated:
@ a splitting of THM

THM =R.Z® VHM @& hzHM ,

where hy HM = ker Lzvz (for vz the vertical e~ndomorphism
associated to Z defined as vz(Z) =0, vz([Z,V]) = -V,
vz(V) = 0 for any vertical vector V € VHM);

@ a dynamical derivative D% on vector fields on HM defined by
1 .
D4(fZ) = (£2f)Z, D?(V)= —5vz(1Z,12,V]])

DA(X) = FD?(X) + (LzF) X ;

@ a Cauchy-Riemann structure JZ.
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The Basic Setting of Finsler Geometry (end)

@ The splitting of THM and the Cauchy-Riemann structure J
associated to Z are parallel for D

D?(VHM) C VHM ,D?(hzHM) C hyHM ,D*Z =0 .

e This gives rise to a Jacobi endomorphism R% on hy HM
defined as by

RZ(X) = J#(projvum([Z,X])) .

@ On HM, any Finsler metric F gives rise to a natural
Riemannian metric gr for which:
o the splitting R.Zr & VHM @ hz, HM is gr-orthogonal;
o gr(Zr,ZF) = 1, gr(Vi, Vo) = dwe([ZF, V4], Va);
o gr(X1,X2) = gr (47 (X1).J% (X2)).
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Second Variation Formula

@ The variation of geodesics by geodesics gives rise to an index
form I (as Zf is naturally attached to F, we use F as index
for quantities such as D and R instead of ZF)

/F(Al,Ag) = /b <—gF(X17DFDFX2) - gF(XlaRF(X2))> dt,

where A; = \; Z + V; + X,.

@ This fits completely with the classical situation in Riemannian
Geometry if one has identified the Finsler Jacobi
endomorphism RF with the Riemannian one by setting

RFs(X) = R&(X,¢)c .

e Note that gr is Df-parallel and that RF is gf-symmetric.
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Finsler versus Riemannian

@ Many global theorems in Riemannian Geometry remain true in
Finsler Geometry (basically all those who have to do with the
calculus of variations of geodesics):

e GauBl Lemma

Myers Theorem

Synge Theorem
Hopf-Rinow Theorem
Hadamard-Cartan Theorem
Anosov Theorem

@ The fundamental problem is to understand well what
distinguishes Finsler Geometry from Riemannian Geometry.
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Example of the Hilbert Geometries

@ If the boundary of the convex body C is smooth, the Jacobi
endomorphism of the associated Finsler metric F is Rf = —Id.

Theorem (P. FUNK, L. BERWALD)

Any reversible Finsler metric which is complete and projectively flat
with constant negative curvature on a simply connected manifold
is a Hilbert Geometry.

Theorem (P. FOULON)

Any projectively flat Finsler metric on S? that is reversible with
constant positive curvature is Riemannian.

@ R. BRYANT showed that projective flatness was actually not
necessary.
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Closed Geodesics

@ On a compact Riemannian manifold, there are infinitely many
closed (distinct) prime geodesics. (The most difficult case is
that of the sphere!)

@ On S? Anatoly KATOK and Wolfgang ZILLER constructed a
non reversible Finsler metric with exactly TWO closed
geodesics. (The metric is rather simple, even of Randers type.)

@ One gets easily ONE closed geodesic on any compact Finsler
manifold by standard Calculus of Variations argument.

Theorem (Viktor BANGERT, Yiming LONG)

On S2, any Finsler metric has at least TWO distinct closed prime
geodesics.



6. Recent Results
000000

Characteristic Forms and Metrics

@ The starting point is the GauB-Bonnet formula following
S.S. CHERN's point of view, namely to lift the characteristic
form to the homogeneous bundle where the form transgresses:
e in a Riemannian setting x(M*") = [, P(R€) vy , where

Pi—LKs, p—
1 om 2 =

@ in a Finsler setting things are not that simple.

o 2(IWgI2 |Z87 + [UE]?) -

@ Here is a partial result:

Theorem (D. BAO, S.S. CHERN, Z. SHEN)

A GauB-Bonnet formula can be established provided the volume of
the Finsler sphere at each point is constant, or similar technical
assumptions.
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Defining a Finsler Laplace-Beltrami Operator

There has been many attempts to define such an operator on M.
Here | report on the promising efforts by Thomas BARTHELME.

@ One can construct a volume element on M associated to F
thanks to the key remark that any volume element Q on M
determines an (n — 1)-form of? on HM so that

S A Q= wr A (dwp)™ L

@ By normalizing the integral of a® to be the standard volume
of $"1, one can determine a unique volume form QF so that

oS AT QE = wr A (dwe)™ L

restricted to VHM, the (n — 1)-form aq, gives a solid angle.

@ Actually, viewing M as a metric space thanks to F, this
volume form is also known as the Holmes- Thomson measure.
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Defining a Finsler Laplace-Beltrami Operator (cont.)

o T. BARTHELME defines the Finsler Laplace-Beltrami

Operator for a Finsler metric F as follows
n
AFF)(x) = ———F 2. (f o
( )(X) VO/e(Snil) HXMLZF( Oﬂ-l\/l)a

@ The operator enjoys a number of important properties:

Theorem (T. BARTHELME)

For a Finsler metric F, the Finsler Laplace-Beltrami operator AF is
an elliptic linear second order differential operator that is
symmetric with respect to QF.

It coincides with the Laplace-Beltrami operator of a Riemannian
metric g if the Finsler metric is Fg.
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| thank you for your attention.

Jean-Pierre BOURGUIGNON
Institut des Hautes Etudes Scientifiques
35, route de Chartres
F-91440 BURES-SUR-YVETTE
(France)

JPBQihes.fr
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