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We will support the mission of CIM to develop and 
promote mathematics in Portugal and to strengthen 
international outreach. We will organize and promote 
presentations and mini courses given by accomplished 
mathematicians. We will organize and promote semi-
nars and international conferences in mathematics and 
emphasize the importance of the interdisciplinary con-
nections with other fields of science, engineering and in-
dustry. These events will be targeted mainly to scholars, 
researchers and Ph.D. students, however, M.Sc.and un-
dergraduate students will be welcome.
 We will organize and promote programs we consid-
er important for the future success of Portuguese math-
ematics. We will create collaborative programs to bring 
together academic institutes and industry partners to re-
search and develop applications of mathematics for use 
in industrial and service-oriented sectors. We will pro-
mote joint workshops between industry partners and 

Statement of Candidacy 
for CIM Board of Directors

CIM associates to stimulate future collaboration. We will 
promote mathematics awareness by conducting events 
directed to the general public, as well as events targeted 
to more specific groups.
 We will take an active role in the European and In-
ternational organizations where CIM is a member and 
we will collaborate with other national and international 
commissions, councils, organizations and associations to 
develop the broad field of mathematics. We will work 
to encourage and assist Portuguese mathematicians to 
become actively engaged in European and International 
projects.
 We are confident we can count on the support and 
commitment of the CIM membership to achieve our 
goals. We will invite other recognized organizations to 
be members and sponsors of CIM.
 Submitted by Alberto Adrego Pinto on behalf of the 
candidates for the Board of Directors of CIM.
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Coming Events

Elementary Geometry from an Advanced Point of View
Universidade de Aveiro
01–02 September 2011

The aim of this conference is to present several contem-
porary perspectives on Geometry including, among oth-
ers, talks on visualization, applications and surveys, both 
at elementary and more advanced levels. The goal of this 
meeting, promoted by CIM in collaboration with CI-
DMA/Univ. Aveiro, CMAT/Univ. Minho and CMAF/
Univ. Lisboa, is to contribute to the current internation-
al reflection on the ICMI/IMU Klein Project concern-
ing central topics on Geometry, its contents, interdisci-
plinary connections and approaches for the teaching of 
this mathematics discipline at senior secondary school 
and first years at University level.
Organisors: Ana Breda (U. Aveiro), Chair, Ana Pereira 
do Vale (U. Minho), Tomas Recio (U. Cantabria), Eu-
génio Rocha (U. Aveiro), José Francisco Rodrigues (U. 
Lisboa).

NOMA’11: International Workshop on Nonlinear Maps
and their Applications
Évora
15–16 September 2011

In the field of Dynamical Systems, nonlinear iterative 
processes play an important role. Nonlinear mappings 
can be found as immediate models for many systems 
from different scientific areas, as Engineering, Econom-
ics, Biology, or can be obtained via numerical methods 
permitting to solve non-linear differential equations. In 

both cases, the understanding of specific dynamical be-
haviours and phenomena is of the greatest interest for 
scientists. This workshop is opened for theoretical stud-
ies as well as for applications. We hope that the interac-
tion and the knowledge exchange between Mathemati-
cians, Physicists, Engineers, and other specialists from 
Nonlinear Sciences will be very fruitful and will give 
rise to new developments in this area. We invite to pre-
sent contributions in the fields of Biology, Economics, 
Electronics, Engineering, Telecommunications, besides 
more fundamental lectures.

Intelligent Data Analysis Analyzing and Understanding 
Complex Systems
Porto
21–31 October 2011

When the biennial IDA Symposium series started in 
1995, it focused on the problem of end-to-end intelli-
gent support for data analysis. IDA 2011 will refocus on 
an important and still emerging class of problems: mod-
eling and analyzing complex, dynamical systems such 
as economic systems, gene regulatory networks, social 
networks, systems of natural resources, and cognitive 
systems. The Symposium seeks “first look” papers that 
might elsewhere be considered preliminary but contain 
potentially high impact research. The IDA Symposium 
is open to all kinds of modeling and analysis methods, 
irrespective of discipline. It is expected to be an interdis-
ciplinary meeting that seeks abstractions that cut across 
domains. IDA2011 welcomes papers that focus on dy-
namic and evolving data, models, and structures.
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You have started your undergraduate studies in 
Electrical Engineering. What made you choose your 
way in Mathematics?
Well, perhaps we should not say Electrical Engineering, 
because I didn’t finish it. I shifted to Economical 

by José Ferreira Alves [Universidade do Porto]

An Interview

with Jacob Palis

On the 24th February 2011, after delivering a Pedro Nunes Lecture at the 
University of Porto.

Engineering in the meantime. Anyhow, since I came 
to Engineering School, I had the idea that that was a 
place for Mathematics — to some extent for Physics 
too, but specially for Mathematics. This idea was 
offered to me by my second oldest brother, who was an 
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Engineer. Actually, very successful that time, later on he 
became a politician. For a while he was quite a brilliant 
Engineer and I couldn´t see otherwise. I came from the 
interior of Brazil, so I went to Engineering because that 
was ready.

But did you have Mathematics in mind from the very 
beginning?
Oh, I loved Mathematics since I was a kid! Because 
of that, my brother convinced me that I should go to 
Engineering. It was as simple as that. Of course talking 
about Brazil of the early fifties, that is quite a long time 
ago. To make it brief, you know, at that point families 
had the idea that if you like some kind of Biology you 
should go into Medicine and if you like Mathematics 
or Physics you should go into Engineering; otherwise, 
you would go into Law.  As simple as that. Me and 
my four brothers, we went exactly that way. We went 
to Engineering, to Medicine and one to Law, and that 
was the picture. In Engineering School I used to ask 
questions, being sometimes audacious but never being 
impolite or improper, in the sense of not appreciating 
the teacher. But I did ask a number of times 
embarrassing questions, apparently. And so by the end 
of the Engineering course, although enjoying the course, 
and enjoying specially the last part on economical 
engineering, I developed the taste for Mathematics. I 
went to participate in seminars, at IMPA already and 
at some centers for physics also. I formed the idea that 
I should study Mathematics and Physics and then go 
back to Engineering to see it better and to know how to 
answer some of my questions. I was not able to get good 
answers from the professors at the time. Anyhow, my 
family was very surprised with the idea, because at that 
point I already had several offers to work in Engineering, 
but I convinced them that it was reasonable to get 
a fellowship and go to the United States to study 
Mathematics. So, that is how the story started.

How did you get in touch with Steve Smale?
Since I have decided to go to do Mathematics in 
the United States, I inquired who was the best 
mathematician that had visited Brazil in recent times. 
Then I was told it was Steve Smale, and I wrote him 
asking if he would be my advisor in the University of 
Columbia. Looking back it is amazing how I dared to do 
that myself. Anyhow, the answer was yes. He certainly 
consulted people he knew in Brazil, but I don´t know 
about that. Then at the last moment he moved to 
Berkeley. That again was interesting, because there 
was no more time to apply for Berkeley and he had to 

negotiate the acceptance from Columbia University to 
Berkeley. He succeeded and I went there. Well, I was 
not a mathematician, my education was not complete, 
there were some fronts where I felt extremely well and 
others where I felt I had to start from scratch. Somehow 
I survived in the three years I completed my PhD, 
together with the master degree, which at that point 
was not much.

Did you make a personal choice on Steve Smale, not 
conditioned by the area he was working in?
Your question is very appropriate. Of course, among 
the courses I had at IMPA, one by Peixoto was on 
Dynamical Systems and I liked that. Peixoto at one 
point said: “This topic will not be covered because 
is too hard”. So, I went home and I did it. It was 
the Unstable Manifold Theorem. Later on I learned 
it in more sophisticated ways, but I did it with the 
instruments I had at the time. I liked that. Of course, 
I had some good courses in Algebra, good courses in 
Topology and Differential Topology, but somehow I liked 
the fact that he had visited IMPA in Brazil.

Steve Smale was already working in Dynamical 
Systems?
He was definitely working in Dynamical Systems. When 
he visited Brazil he was in a transition from Differential 
Topology to Dynamical Systems. Anyhow, the reasons 
sound like not very deep ones, but that was the way 
I would go ahead. I went to the United States and I 
did it quite well. My thesis was well accepted and 
immediately it was generalized by myself and my advisor 
and we formulated the conjecture. That was interesting. 
This shows how I was, I proposed it to Smale and he 
said: “Well, let´s do it”. What was called the Stability 
Conjecture became really one of the main sources of 
research for the next 20 years, and it was finally well 
solved in some interesting way — not completely, but... 
— by a student of mine: Ricardo Mañe. So that was the 
first big question I was involved in asking.

Did you think about staying in the United States?
Then I got some good news from Brazil in terms of more 
support for science. The National Bank for Development 
initiated a new program in Economical Engineering 
that was precisely this way. Some of the economists 
convinced the bank to put a percentage of its budget 
— this was quite huge — into basic science and basic 
engineering. This was good news and then there was 
the organization of a graduate program — sometimes 
we call postgraduate program —, another interesting 
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fact. I did get some offers to stay in the United States 
but I was not really available and with some good news 
from Brazil, together with the bad one that we had 
a dictatorship in 1964. But, on the other hand, the 
organization of the masters and PhD programs in Brazil 
was done in a superb way, because they did focus in 
the best groups not on institutions. Usually institutions 
are very heavy. I was surprised because I thought the 
University of São Paulo and all its doctorate courses 
would be immediately approved, but it was not that way. 
The choice was made on the existence of good groups of 
researchers.

That made you feel even more confident about 
returning to Brazil.
Sure. At that point, another good memory I have is that 
going to bookshops in Berkeley I found this little book 
called The Double Helix, by James Watson, which was 
the story of how DNA structure was found. A little book 
I was reading, it was not long and it let me curious 
for a few days. There were some gossips inside and 
whatsoever, but that was not the point that took me. It 
was the fact that he described quite well — very well in 
my opinion — the atmosphere in Cavendish Laboratory. 
This was really what I always talked: one should have 
some kind of magic in the ambience for the young 
talents to pursue science. Perhaps we could do so in 
Mathematics and other areas in Brazil. So I decided to 
go back and try to contribute with some creation of a 
magical place for Mathematics in Brazil.

I must say that this fits perfectly well the opinion I 
have about you. An informed opinion, since I got my 
PhD at IMPA.
Thank you. I didn´t even listened to the offers that 
were made to me. I was not available. But I stayed 
ten more months in the United States, in the East 
coast. To make brief a long story, I went to visit Brown 
and MIT, specially these two places (I also went to 
Harvard...), mostly in Brown to some extent. In February 
I returned to Berkeley, they had offered me an Assistant 
professorship which I took. But I kept saying that I was 
going to quit in August and return to Brazil.

There was always in your mind the idea of returning to 
Brazil…
Basically yes, but as I told you, around 1967, when 
I  was about to finish — I finished in September — I 
heard some good news from Brazil and as soon as I 
finished I also got an offer to go back to IMPA and 
another offer to go to the Federal University of Rio de 

Janeiro. The final decision was really at that point. I 
had the idea to go back, but I didn´t play any game in 
either way if I would stay or not. But when I got this, 
basic science was starting to get better funding for the 
construction of graduate programs in Brazil. Then this 
little book... I thought I could contribute to create such 
a magical place in Brazil. I decided to go. Probably I 
had more chances in Brazil than in the United States, 
where to some extent this idea was already there in 
more developed places. Brazil was a bigger challenge 
and my country. I did return in August 1968 to IMPA 
and to the University, but quickly I saw that my dream 
could perhaps be better achieved in IMPA, not so 
easy to do so at the University, too big. So I quit the 
University, but people were not happy.

IMPA was not as it is now…
No, but on the other hand it is important to say that 
IMPA was founded in the right way by three people in 
1952. Three good people: Leopoldo Nachbin, Maurício 
Peixoto and another one more senior, Lélio Gama, a 
good guy in Astronomy and Mathematics. So it started 
very well. The point is that IMPA was very good from 
the beginning, but both Peixoto and Nachbin would 
travel a lot. They had positions abroad later on. It was 
indeed a more stable situation in institutions where they 
could do very good research as a routine. So, that was 
very important that it started very well with this people 
playing a very important role. However, it was clear to 
me when I decided to go back — I started convincing 
Manfredo do Carmo who came for a postdoc — we had 
to do very good research on the day by day basis, do it 
continuously.

You kept a strong collaboration with some American 
universities with constant visits in both directions.
That is right. It is not a criticism, just a fact: Peixoto 
was connected to Brown University and Nachbin to New 
York University — not the State University. My idea was 
that we should have a Program working regularly. That 
was the key word: regularity. I should say quickly that 
we set up a new PhD Program at IMPA in the seventies. 
Not alone, of course, with do Carmo, Lima and Peixoto 
that finally came back from the United States. To my 
surprise, I had immediately wonderful students. In fact, 
in two and a half years three of them had concluded 
the thesis. Among them was Welington de Melo, an 
excellent mathematician, and Ricardo Mañe. That was 
very fulfilling to have such bright people concluding in 
record time. There was also Pedro Mendes, very good 
too. The first one was Welington, the second was Mañé 
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and this was incredibly fulfilling to me, corresponding to 
this idea of having a regular program, and that went on 
without stopping.

Let us talk about Mañé. Is it true that he wrote you a 
letter saying he solved some problems?
Yes, absolutely! Unfortunately I am not good at archives.  
This letter was lost when we moved from one building 
to the other. We were downtown and we moved to the 
new building in the Botanical Garden neighborhood. 
The most precious part of my correspondence was in 
a unique box — which was stupid — and this box was 
lost. I searched it back and forth and, my God, I was 
desperate! Inside there was this beautiful letter by 
Mañé. He didn´t even have the master degree, he wrote 
me a letter saying that he had solved five questions in 
Dynamics. The first one maybe he had it, I don´t know, 
and that was certainly correct because I had done it 
before. It was a good question, not a great question. 
But the other four, each of them would grant him a 
permanent position essentially in any place. A number 
of them are open until now, including the Stability 
Conjecture. These questions are still open in a more 
general way, but he solved them in some particular cases.

How old was him?
It was the year of 1970, so he was 22. This letter came 
in an interesting moment. Well, my life is full of special 
moments. To initiate this new Program I had talked to 
Peixoto about it. And Elon Lages Lima — a very good 
mathematician in Topology, always very helpful — was 
there all the time. Anyhow, we decided to organize 
an international meeting in Dynamics, in 1971, in 
the middle of the year. In a certain way, to stimulate 
students. It was thought to be that way. We would work 
hard since late 1969 on until 1971. It would be a 
good time to have very good people to come to Brazil in 
Dynamics, and more broadly in Geometry also. So, we 
start preparing these students, among them Welington 
de Melo, also very audacious. He came from Minas 
Gerais to get Master. He came to my seminar and I said 

“my God, like I did in Berkeley”. I came directly to the 
seminar of Smale, which was a seminar really about 
recent research. I had big gaps like Probability Theory 
and Welington did the same in Rio. He insisted he 
could do it, and I agreed. “If you can stand it, amazing”. 
I´ll never forget this fact. I told him: “I did survive, if 
you can survive…”

The case of Mañé is similar.
Mañé in some sense yes, also. Anyhow, in that letter 
he showed such a maturity! One of the questions I 

remember is open until now. Not solved, except in very 
few cases: the Stability Conjecture. It is much settled 
by him, in the C1 topology is complete. Another one was 
about Anosov systems: if the periodic points would be 
dense or not. It is open until now. It is amazing, but he 
stated the questions extremely well. He claimed that he 
had good ideas to solve them. I remember specially this 
two, but there were four or five. I was very impressed. 
That also showed how I would react toward this 
situation, certainly not conservative about these things. 
I took that letter — I was enthusiastic about it — and I 
convinced Peixoto and Lima that we should invite him 
for the meeting in the following year.

The famous meeting in Bahia!
Yes, in 1971, the first time I met Mañé. And he was 
invited without even completing the undergraduate 
studies. He was about to complete them. People reacted 
in different ways. Jorge Lewowicz didn´t like it because 
he was in a sense the supervisor of Mañé for what 
they call tesina — it´s common in Spanish speaking 
countries. He didn´t like it at all, but I loved it! I 
convinced people they should know this guy. I was taken 
by the maturity of the statements, but one has to have 
good will. Peixoto and Lima told me: “OK, we agree”. 
Then he came and we discussed one of the topics that I 
have done but he improved. He asked me what I thought 
about him going to NYU to work with Moser, and I said: 

“Well, wonderful!” But instead he wrote me in September 
of 1971 saying that he wanted to come to IMPA and 
asking me if I could be his advisor. Similar to what I did. 
I said: “Sure! I bet on you.” And he came.

Presently, do you still see young students using that 
method?
No. It is not so common. I think it became more 
standard. Anyhow, I know these two cases. Maybe it 
happens still... In a certain sense it happens, but not 
exactly in the same way. You see these young fellows, 
Artur Avila and Gustavo Moreira, it is a different story 
because they won the Olympiads and they came to 
IMPA very early. They were audacious too, both Avila 
and Moreira, but they came through courses. Also 
Carlos Matheus. This two guys [de Melo and Mañé] 
were more at the level of research, but I agree it still 
happens.

Just to finish about Mañé: looking back and knowing 
about his fantastic work from the very beginning, it’s 
strange that he didn´t win the Fields Medal. Do you 
think nowadays it would be different?
I do hope so.
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 Latin American has no Fields Medal.
No, but I think Artur already deserved it.

This last time?
Sure, a wonderful candidate. Maybe he didn´t get it 
because he was too young.

Still very young…
He is 33 now. Well, the only chance of Mañé, because 
of age, was 1986. I did talk to Moser about him, and 
Moser was the chair of International Mathematical 
Union at that time. You know, not being at a main 
center is not easy. He was certainly considered. But you 
have different explanations. That year there were three 
people, I think, all with outstanding work, so there was 
a place for a fourth person. Anyhow, one had to do with 
the solution of Fermat’s Problem, not the complete 
solution, but quite spectacular. Another one was the 
Poincaré Conjecture in dimension four.

Always Poincaré Conjecture…
Smale had done it for dimension five or more. That was 
also wonderful without no questions about it. But, you 
know, it depends a lot on the committee and it depends 
also on visibility. In terms of visibility, of course the 
main centers in America win. The Russians took quite 
a while to get Fields Medal. After Sergei Novikov it 
became more common. But Sergei, I think, he was the 
first one, which is strange in some sense because they 
had very good schools before. Sergei was in 1970, I 
believe, there were no Russians before. It is a question 
of visibility, of people knowing also.

There was a wall!
Being outside the main centers is not such an easy 
task. Now Avila, in some sense we are very happy to 
have Avila half of the time. Then the idea of being also 
in Paris I think is very good for visibility too. Not only 
that, the French school is wonderful. So it is nice. In 
the case of Mañé, either he would win in 86 or not. The 
result was spectacular, but also he obtained this result 
perhaps too close to date of decision. That was only a 
question of time, it was very short.

Bad luck…
Certainly, I´m sure he was considered. Then there was 
the case of Marcelo Viana in the year of 2002, very 
disappointing. 

Marcelo has also been considered?
Certainly very much considered. I would say he was 
on a short list. Then it was given to two algebrists, it’s 

too much. As a secretary to IMU, eight years before we 
approved certain obvious principles on how to get the 
Fields Medal. One was diversity. It’s bad for science to 
repeat the same field and there was no justification for 
that. I was the president, so I was very disappointed 
because the chair was Sinai and they did not follow 
the principle. Now I hope this will disappear with 
Avila. When they are forming committees, the most 
natural tendency is to have people from the main 
centers. Anyhow, to conclude that, certainly Mañé was 
in the level of Fields Medal, and I insist on saying the 
same about Marcelo. Now there is Artur and I have no 
questions about that.

Let us change topic. 1982 was the year of your 
first scientific visit to Portugal. Tell me about that 
experience.
Well, I got this invitation by a group, a kind of 
international institution, a network called Mathematicians 
of Latin Languages. I didn´t quite understand what was 
that. I knew Lisbon, I got to Lisbon a couple of times 
but just for vacation, returning from some other places in 
Europe, but I didn´t get in touch with the mathematical 
community. So I got this invitation for a meeting to be 
held in Coimbra. I got several invitations before. Some 
colleagues in Portugal wanted me to visit their own 
institutions, but I never set any date. Finally in 1982 I 
said: “Ok, I say yes to his invitation”. It’s funny, because 
latter I was told they were not expecting me to accept 
this time. Coimbra was very attractive, a visible place, the 
history... Then to my surprise when I got there in Pousada 
de São Marcos — to me it was a reproduction of a castle, 
a palace very austere but at the same time with good 
taste — and there was a very nice cocktail to welcome 
participants. There was a number of participants to give 
main talks of the meeting and I was one of them. Then, 
toward the end of the cocktail one of the main organizers 
told me:  “You know, Leopoldo Nachbin criticized us for 
inviting you” [laughs]. Because Nachbin was a member 
of this network and he said someone had a better name 
than mine. I said: “Well, I am already here!” And he said: 

“No, no, it´s OK. I just mention this for you to know”. I 
said: “I don’t care, I’m here, I´m happy”. It was like that. 
In the day after there was the idea of the special group 
giving the main talks dining there at the same place 

— the table for dinner reminded me the Tavola of King 
Arthur! Then we had some activities and I met the young 
people. I decided to stay with them, in particular with 
Marcelo and Jorge Rocha. Marcelo was giving a talk, not 
one of the main talks. He was very young but had very 
nice results. At the end of the lecture I told him it was 
very good and so on.
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He was already a good speaker, I guess.
Good speaker. Good results for a kid. It was quite 
impressive. I thought “my god, I go to get dinner with 
senior people and here we have bright young people”. 
So I decided to stay with them and I said: “Look, it is a 
pleasure for me to stay with you,  having dinner together, 
but you have to take me back to this place, otherwise I 
have to go to a hotel and I offend the organizers”. But 
when we came back I was sure the way it looked the 
place was closed. So I suggested throwing little stones 
at the windows in the back. Luckily, there was someone 
in the kitchen that opened the door. Absolutely true 
story! This was very good, because I think we started a 
very strong connection with Portuguese young people. 
Maybe a year or two later — I don’t remember exactly — 
three of them went to IMPA.

Maria Carvalho went to work with Mañé, Marcelo and 
Jorge to work with you.
That is right. It was a nice story. Again it shows that 
uncertainty is a very precious thing in life. It’s hard 
for people; it was hard for me to accept the idea 
of uncertainty as part of everyday life. All these 
things I am telling you fit perfectly well this idea that 
uncertainty is part of live. I think that if you accept 
this idea, in many cases you can turn it into very good 
things. Certainly, one of the best things in my life was 
to accept that invitation.

That´s fantastic! It was almost 30 years ago. How 
do you see the development of the Portuguese 
Mathematics in the last 30 years.
Immense! It is absolutely another world. Potentially, 
of course, people were here, but the number of good 
researchers in Mathematics now is very impressive. It 
was a very successful development. It is not a question 
of criticizing the past; these things were like that in 
Brazil. But now here is much better. I come and feel at 
home. I saw people in the lecture today and how people 
reacted. I think you went a long way. I am not saying that 
nothing was there in the beginning, it is not true, good 
people, but much more dense now, much more visible. 
And you have young people. It is a beautiful thing.

A good way of measuring that is perhaps looking at 
the quantity of young people involved.
Like the one you introduced me today. He is doing very 
good things.

Jorge Freitas…
We were talking nice Mathematics just over the coffee, 
which certainly was not here before. This is almost the 

proof of big changes. It is much more active the present 
caring for young people.

I’m glad to hear that. Let us talk about Mathematics 
in general. Nowadays we feel a big pressure in 
Mathematics, as if one should have applications almost 
immediately. We hear very often: “what is the use of 
this?”  What is your opinion about that?
That is terrible. We should not pursue this kind of topic. 
I think there is a certain confusion about more basic 
science — sometimes more pure — or applied sciences. 
They should live together. I think it is very important to 
be creative in basic sciences as well as in the Industry 
or in applications. It´s part of a complex, you have to 
do both. I think there is a wrong vision often about 
pressure to have people doing basic science to move to 
applications. That is completely nonsense. It is obvious 
that basic science turns into good applications, not 
necessary by the same people that have created basic 
science. Then you have to have those things together. 
No pressure. The pressure does not solve anything. It 
depends on the talent. For instance, it is very important 
to have research and development in the Industry. 
Otherwise, the Industry will be offering the same 
products over and over again. We know that you need 
creativity, things move on. Human beings like novelties, 
new tv sets, very thin, now we have iPods, taking over 
computers, smartphones and so on.  However, you 
have to have an ambience of freedom, stimulation, and 
magic as I said, in both sectors, both are very precious 
and important in a community. They both should be 
supported and stimulated. You cannot do this part 
and forget the other one. I cannot understand people 
being nervous about economies and then say: “We are 
going to support only applications and patents”. This 
is nonsense. On the other hand, we do need good 
people in that part too. Industry should respond to that, 
should stimulate researchers to come and to be creative. 
Nowadays the magic word is innovation.

Another place where we see pressure and numbers 
measuring everything is in the scientific production, as 
the impact factor and so on. How do you see that?
Very interesting question. Not so easy, because there 
is a lot of that now. Again, my view is that if you apply, 
first of all, indicators across different areas you have 
big distortion, because different areas have different 
cultures. In Mathematics we tend to produce fewer 
papers, but they are more complete. It is not better 
or worse than in other areas, but different culture. In 
Biology the tendency is to produce shorter results 
and publish more. Shorter results are not necessarily 
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less important. So if you go across different areas you 
commit a big mistake. And that is what is common 
nowadays; we have the H factor or the number of 
citations... On the other hand, if you look more globally 
and don´t mix areas it makes more sense. My view is 
not for individuals, if you apply this for individuals you 
are again about to make a mistake, a serious mistake.  
I like the idea — I think it is a reasonable idea, not 
wonderful — to have indicators like number of citations 
in certain areas, for instance, Mathematics, the average 
in certain countries with respect to the world average. 
This makes some sense to me. There is some logic 
in that. Again, indicators always have high degree of 
uncertainty. Anyhow, this seems to be reasonable to 
say that more citations mean better journals because 
better journals are more visible and so it is a tendency 
to correlate that.

That can also be increased artificially.
Not if you are talking about countries. If you talk about 
individuals, I don´t think any of this things make 
any sense. But if you talk about a global community, 
the tendency is to be more reasonable the indicator 
comparing with the world average in the same area. 
That is more concentrated in more advanced countries. 
Everything I am saying makes sense to me, reasonably.

Ok, Jacob, thanks a lot for this wonderful 
conversation.
It was my pleasure!

José Ferreira Alves and Jacob Palis
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The use of wavelet analysis is very common in a large va-
riety of disciplines, such as signal and image processing, 
quantum mechanics, geophysics, medicine, biology, etc. 
In economics, however, wavelets are still a mysterious, 
but colorful, tool for time-series analysis. The pioneering 
work of Ramsey and Lampart [26] is unknown to the ma-
jority of economists. Among the exceptions to this rule, 
one can point to [4], [14], and [12]. See [6], for a recent 
survey of wavelet applications to economic data. Prob-
ably, wavelets are not more popular among economists, 
because wavelet multivariate analysis is still incipient. 
Recently, however, Gallegati [11] — using the maximum 
overlap discrete wavelet transform — and Crowley and 
Mayes [5] and Aguiar-Conraria and Soares [1] — using 
the continuous wavelet transform — showed how the 
cross-wavelet analysis could be fruitfully used to uncover 
time-frequency interactions between two economic time-
series. Still, most surely, wavelets will not become very 
fashionable in economics until a concept analogous to 
the spectral partial-coherence is developed. On this re-
gard, the proficient reader may be interested in our most 
recent working-paper [2].
 We present a brief and self-contained introduction 
to the wavelet tools used, namely the continuous wavelet 
transform, the wavelet coherency and the wavelet phase-
difference. Then we apply these tools to a real world eco-
nomic problem — the study of the synchronization of 

the Portuguese and Spanish economic cycles, in the last 
5 decades. Decades that include the democratic transi-
tion in both countries (mid-1970s), the European Union 
membership of both countries (1986), and the adoption 
of a single currency, the Euro (1999).

Time-frequency localizaTion

In what follows, 𝐿𝐿􏺾􏺾(ℝ) denotes the set of square inte-
grable functions, i.e. the set of functions defined on the 
real line and satisfying ∫

∞
−∞

􏿖􏿖𝑥𝑥𝑥𝑥𝑥𝑥􏿖􏿖
􏺾􏺾
𝑑𝑑𝑥𝑥 𝑑 ∞, with the usual 

inner product
⟨𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 ∫

+∞
−∞

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑦𝑦𝑥𝑥

and associated norm ‖𝑥𝑥‖ = ⟨𝑥𝑥𝑥 𝑥𝑥𝑥
􏺽􏺽
􏺾􏺾. By influence of the sig-

nal process literature, this space is usually referred to as 
the space of finite energy signals, the energy of a signal 
𝑥𝑥 being simply its squared norm.
 Given a function 𝑥𝑥 𝑥 𝑥𝑥􏺾􏺾(ℝ), 􏾦􏾦𝑥𝑥 will denote its Fourier 
transform, here defined as:

􏾦􏾦𝑥𝑥𝑥𝑥𝑥𝑥 𝑥 􏾙􏾙
+∞

−∞
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥−𝑖𝑖𝑥𝑥𝑥𝑥𝑑𝑑𝑥𝑥. {1}

Note 1.—With the above convention of the Fourier 
transform, 𝜔𝜔 is an angular (or radian) frequency. The 
relation to the usual Fourier frequency 𝑓𝑓 is given by 
𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓.

Note 2.—We use the symbol 𝑥𝑥 to denote a general func-
tion, since this is a more common notation for time-se-
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{1}  As it is well known, for a function in 𝐿𝐿􏺾􏺾(ℝ) , the above formula must be understood as the result of a 
limiting process, e.g. 􏾦􏾦𝑥𝑥𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥 ∫

𝑛𝑛

−𝑛𝑛
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥−𝑖𝑖𝑥𝑥𝑥𝑥𝑑𝑑𝑥𝑥 , with l.i.m. denoting the limit in the mean, i.e. the limit in 

the 𝐿𝐿􏺾􏺾 sense; we will use this type of abuse of notation frequently in these notes.
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ries, which are our main objects of interest in this paper.

The spectral representation of a function given by its 
Fourier transform determines  all the spectral compo-
nents embedded in the function, but  does not provide 
any information about when they are present. To over-
come this problem, Denis Gabor, the Hungarian-born 
Nobel laureate in physics, proposed, in his fundamental 
paper on communication theory [10], the use of a mod-
ified version of the Fourier transform which became 
known as a windowed Fourier transform (or short time 
Fourier transform). The idea is simple: we first choose 
a window function 𝑔𝑔, i.e. a well localized function in 
time;{2} by multiplying the function 𝑥𝑥 by translated copies 
of 𝑔𝑔, we are able to selects “local sections” of 𝑥𝑥, whose 
Fourier transforms are then computed. We thus obtain a 
function of  two-variables, 𝜏𝜏 (the translation parameter) 
and 𝜔𝜔 (the angular frequency), given by

ℱ𝑔𝑔𝑔𝑔𝑔(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏 ∫
+∞
−∞

𝑔𝑔(𝑥𝑥𝜏𝑔𝑔(𝑥𝑥 − 𝜏𝜏𝜏𝑔𝑔−𝑖𝑖𝜏𝜏𝑥𝑥𝑑𝑑𝑥𝑥.

We can also view the above procedure in a different man-
ner: starting with a basic window function 𝑔𝑔, a two-pa-
rameter family of functions 𝑔𝑔𝜏𝜏𝜏𝜏𝜏 is generated, via transla-
tion by 𝜏𝜏 and modulation by 𝜔𝜔, 𝑔𝑔𝜏𝜏𝜏𝜏𝜏(𝑡𝑡𝑡 𝑡 𝑔𝑔(𝑡𝑡 𝑡 𝜏𝜏𝑡𝑡𝑡

𝑖𝑖𝜏𝜏𝑡𝑡, and 
the inner products of 𝑥𝑥 with all the member of this fam-
ily are then computed: ℱ𝑔𝑔𝑔𝑔𝑔(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏 𝜏𝑔𝑔𝜏 𝑔𝑔𝜏𝜏𝜏𝜏𝜏⟩. The princi-
pal limitation of this technique is that it gives us a fixed 
resolution over the entire time-frequency plane. In fact, 
the functions 𝑔𝑔𝜏𝜏𝜏𝜏𝜏, being obtained by simple translations 
in time and modulations (i.e. translations in frequency) 
of the window function 𝑔𝑔, all have the same “size” as 𝑔𝑔 ; 
see Figure 1.
 The main idea of the continuous wavelet transform 
is again to compute the inner products ofthe function 𝑥𝑥 
with members of a two-parameter family of functions 
𝜓𝜓𝜏𝜏𝜏𝜏𝜏. In this case, however, the  functions 𝜓𝜓𝜏𝜏𝜏𝜏𝜏 are obtained 

from a given window function 𝜓𝜓 — the so-called mother 
wavelet — which is already oscillatory (and hence, in a 
certain way, can be seen as a function of a given frequen-
cy), by a dilation by a scaling factor 𝑠𝑠 and a translation 
by 𝜏𝜏, 

𝜓𝜓𝜏𝜏𝜏𝜏𝜏(𝑡𝑡𝑡 𝑡 𝑡𝜏𝜏𝑡
−􏺽􏺽􏺽􏺽􏺽𝜓𝜓(

𝑡𝑡 − 𝜏𝜏
𝜏𝜏
𝑡;

see Figure 2. For |𝑠𝑠| 𝑠 𝑠𝑠, the windows 𝜓𝜓𝜏𝜏𝜏𝜏𝜏 become larger 
(hence, correspond to functions with lower frequency) 
and when the scales satisfy |𝑠𝑠| 𝑠 𝑠𝑠, the windows become 
narrower (hence, become functions with higher frequen-
cy). The main advantage of the continuous wavelet trans-
form, as opposed to the windowed Fourier transform, is 
now clear: it provides us a time-scale (or time-frequency) 
representation of a function with windows whose size 
automatically adjusts to frequencies.

WaveleT Tools

The Wavelet
The minimum requirement imposed on a function 
𝜓𝜓 𝜓 𝜓𝜓􏺾􏺾(R) to qualify for being a mother (admissible or 
analyzing) wavelet is that it satisfies the following tech-
nical condition, usually referred to as the admissibility 
condition (AC):

􏺼􏺼 􏺼 􏾙􏾙
+∞

−∞

|􏾧􏾧𝜓𝜓𝜓𝜓𝜓𝜓|
|𝜓𝜓|

𝑑𝑑𝜓𝜓 􏺼 ∞;

see [7, p.22]. In this case, the constant given by the value 
of the above integral,

𝐶𝐶𝜓𝜓 = 􏾙􏾙
+∞

−∞

|􏾧􏾧𝜓𝜓𝜓𝜓𝜓𝜓|
|𝜓𝜓|

𝑑𝑑𝜓𝜓,

is called the admissibility constant. The wavelet 𝜓𝜓 is usu-
ally normalized to have unit energy, which we always 
assume here. We should point out that the square inte-
grability of 𝜓𝜓 is a very mild decay condition and that, in 
practice, much more stringent conditions are imposed. In 

(1)

figure 1.—A Gaussian function 𝑔𝑔 (in red) and the real part of two functions 𝑔𝑔𝜏𝜏𝜏𝜏𝜏: 𝑔𝑔􏺼􏺼􏺼􏺼􏺼 
(in black) and 𝑔𝑔􏺼􏺼􏺼􏺼􏺼􏺼􏺼 (in blue).

{2}  Gabor, in his paper, used Gaussian functions as windows and the transform with this particular class of 
functions is now called a Gabor transform.

(1)



CIM :: InternatIonal Center for MatheMatICs 12 

fact, for the purpose of providing a useful time-frequency 
localization, the wavelet must be a reasonable well local-
ized function, both in the time domain as well as in the 
frequency domain. For functions with sufficient decay, 
imposing the AC (1) is equivalent to requiring that

􏾧􏾧𝜓𝜓𝜓𝜓𝜓𝜓 𝜓 􏾙􏾙
+∞

−∞
𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓𝜓 ;

again, [7, p.24]. This implies that the function 𝜓𝜓 has to 
wiggle up and down the 𝑡𝑡-axis, i.e. it must behave like a 
wave; this, together with the assumed decaying proper-
ty, justifies the choice of the term wavelet (originally, in 
French, ondelette) to designate 𝜓𝜓.

The Continuous Wavelet Transform
As referred before, starting with a mother wavelet 𝜓𝜓, a 
family 𝜓𝜓𝜏𝜏𝜏𝜏𝜏 of “wavelet daughters” can be obtained by 
simply scaling 𝜓𝜓 by 𝑠𝑠 and translating it by 𝜏𝜏

𝜓𝜓𝜏𝜏𝜏𝜏𝜏 (𝑡𝑡) ∶=
􏺽􏺽
√|𝜏𝜏|

𝜓𝜓 􏿶􏿶
𝑡𝑡 𝑡 𝜏𝜏
𝜏𝜏 􏿹􏿹 𝜏𝜏𝜏 𝜏𝜏 𝜏 𝜏𝜏 𝜏𝜏 𝜏 𝜏𝜏.

The parameter 𝑠𝑠 is a scaling or dilation factor that con-
trols the length of the wavelet (the factor 􏺽􏺽􏺽√|𝑠𝑠| being 
introduced to guarantee preservation of the unit norm, 
‖𝜓𝜓𝜏𝜏𝜏𝜏𝜏‖ = 􏺽􏺽) and 𝜏𝜏 is a location parameter that indicates 
where the wavelet is centered.
 Given a function 𝑥𝑥 𝑥 𝑥𝑥􏺾􏺾(ℝ), its continuous wavelet
transform (CWT) with respect to the wavelet 𝜓𝜓 is a func-
tion of two-variables, 𝑊𝑊𝑥𝑥𝑥𝑥𝑥, obtained by projecting 𝑥𝑥, in 
the 𝐿𝐿􏺾􏺾 sense, onto the over-complete family {𝜓𝜓𝜏𝜏𝜏𝜏𝜏}:

𝑊𝑊𝑥𝑥𝑥𝑥𝑥 (𝜏𝜏𝜏 𝜏𝜏) = ⟨𝑥𝑥𝜏 𝑥𝑥𝜏𝜏𝜏𝜏𝜏⟩ =
􏺽􏺽
√|𝜏𝜏|

􏾙􏾙
∞

−∞
𝑥𝑥 (𝑡𝑡) 𝑥𝑥 􏿶􏿶

𝑡𝑡 − 𝜏𝜏
𝜏𝜏 􏿹􏿹 𝑑𝑑𝑡𝑡.

Note 3.—When the wavelet 𝜓𝜓 is implicit from the context, 
we abbreviate the notation and simply write 𝑊𝑊𝑥𝑥 for 𝑊𝑊𝑥𝑥𝑥𝑥𝑥.

Inversion of CWT
The importance of the admissibility condition (1) is due 
to the fact that its fulfilment guarantees that the energy of 

the original function 𝑥𝑥 is preserved by the wavelet trans-
form, i.e., the following Parseval-type relation holds:

􏾙􏾙
+∞

−∞
|𝑥𝑥𝑥𝑥𝑥𝑥|􏺾􏺾𝑑𝑑𝑥𝑥 𝑑

􏺽􏺽
𝐶𝐶𝜓𝜓

􏾙􏾙
+∞

−∞
􏾙􏾙

+∞

−∞
􏿖􏿖𝑊𝑊𝑥𝑥𝑥𝜏𝜏𝜏 𝜏𝜏𝑥􏿖􏿖

􏺾􏺾 𝑑𝑑𝜏𝜏𝑑𝑑𝜏𝜏
𝜏𝜏􏺾􏺾

.

In other words, the operator defined by

  𝒲𝒲𝜓𝜓 ∶ 𝐿𝐿
􏺾􏺾(ℝ) ⟶ 𝐿𝐿􏺾􏺾􏿵􏿵ℝ × ℝ ⧵ {􏺼􏺼􏺼􏺼

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑􏺾􏺾

􏿸􏿸

          𝑥𝑥 𝑥
􏺽􏺽

􏽮􏽮𝐶𝐶𝜓𝜓
𝑊𝑊𝑥𝑥𝑥𝜓𝜓

is an isometry. Also, if 𝜓𝜓 satisfies (1), it is possible to re-
cover 𝑥𝑥 from its wavelet transform. In fact, due to the 
high redundancy of this transform (observe that a func-
tion of one variable is mapped into a bivariate function), 
many reconstruction formulas are available. For example, 
when the wavelet 𝜓𝜓 and 𝑥𝑥 are real-valued, it is possible 
to reconstruct 𝑥𝑥 by using the formula

𝑥𝑥𝑥𝑥𝑥𝑥 𝑥
􏺾􏺾
𝐶𝐶𝜓𝜓

􏾙􏾙
∞

􏺼􏺼
􏿰􏿰􏾙􏾙

+∞

−∞
𝑊𝑊𝑥𝑥𝑥𝜏𝜏𝜏 𝜏𝜏𝑥𝜓𝜓𝜏𝜏𝜏𝜏𝜏𝑥𝑥𝑥𝑥𝑡𝑡𝜏𝜏􏿳􏿳

𝑡𝑡𝜏𝜏
𝜏𝜏􏺾􏺾

,

showing that no information is lost if we restrict the 
computation of the transform only to positive values of
the scaling parameter 𝑠𝑠, which is a usual requirement, in 
practice; see e.g. [7].

Wavelet Power and Wavelet Phase
When the wavelet 𝜓𝜓 is a complex-valued function, the 
wavelet transform 𝑊𝑊𝑥𝑥𝑥𝑥𝑥 is also complex-valued and can, 
therefore, be expressed in polar form as 

𝑊𝑊𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏 𝜏𝑊𝑊𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏𝜏𝜏𝜏
𝑖𝑖𝑖𝑖𝑥𝑥(𝜏𝜏𝜏𝜏𝜏𝜏𝜏 𝑖𝑖𝑥𝑥 ∈ (−𝜋𝜋𝜏 𝜋𝜋𝜋.

The square of the amplitude, |𝑊𝑊𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏|
􏺾􏺾 is called the wave-

let power and the the angle 𝜙𝜙𝑥𝑥(𝑠𝑠𝑠 𝑠𝑠𝑠 is known as the (wave-
let) phase.
 For real-valued wavelet functions, the imaginary 
part is constantly zero and the phase is, therefore, unin-
formative. Hence, in order to obtain phase information 
about a time-series, it is necessary to make use of com-
plex wavelets.

figure 2.—A mother-wavelet 𝜓𝜓 (in black) and two 
functions 𝜓𝜓𝜏𝜏𝜏𝜏𝜏: 𝜓𝜓􏺼􏺼􏺼􏺼􏺼 (in red) and 𝜓𝜓􏺿􏺿􏺿􏺿􏺿􏺿􏺿􏺿 (in blue).

(2)
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Analytic Wavelets
When a complex wavelet 𝜓𝜓 is to be used, it is convenient 
to choose it as analytic (or progressive), where by this 
we mean that its Fourier transform is supported on the 
positive real-axis only, i.e. 􏾧􏾧𝜓𝜓𝜓𝜓𝜓𝜓 𝜓 𝜓𝜓 for 𝜔𝜔 𝜔 𝜔𝜔.{3} In fact, 
when 𝜓𝜓 is analytic and 𝑥𝑥 is real, reconstruction formu-
las involving only positive values of the scale parameter 
𝑠𝑠 are still available; in particular, if the wavelet satisfies 
􏺼􏺼 􏺼 􏺼􏺼􏺼𝜓𝜓􏺼 􏺼 ∞ where

𝐾𝐾𝜓𝜓 = 􏾙􏾙
∞

􏺼􏺼

􏾧􏾧𝜓𝜓𝜓𝜓𝜓𝜓
𝜓𝜓

𝑑𝑑𝜓𝜓,

then one can use the following reconstruction formula, 
known as the Morlet formula, which is particularly use-
ful for numerical applications:

𝑥𝑥𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥􏿵􏿵
􏺽􏺽
𝐾𝐾𝜓𝜓

􏾙􏾙
∞

􏺼􏺼
𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑡 𝑡𝑡𝑥

𝑑𝑑𝑡𝑡
𝑡𝑡􏺿􏺿􏺿𝑥𝑥

􏿸􏿸,

where ℜ(.) denotes real part; see, e.g. [8] or [17]. For other 
useful features of analytic wavelets, we refer the reader 
to [27], [25], [20], [21] and also [24].

Note 4.—In what follows, we assume that all the wave-
lets considered are analytic and hence, that the wavelet 
transform is computed only for positive values of the 
scaling parameter 𝑠𝑠. For this reason, in all the formulas 
that would normally involve the quantity |𝑠𝑠|, this will 
simply be replaced by 𝑠𝑠.

The Morlet Wavelets
The admissibility condition (1) is a very weak condi-
tion. In fact, it can be shown easily that the set of wave-
let functions, {𝜓𝜓 𝜓 𝜓𝜓􏺾􏺾(ℝ) ∶ 𝜓𝜓 satisfies AC()}, is dense in 
𝐿𝐿􏺾􏺾(ℝ); see, e.g. [23, p. 5]. In practice, however, the choice 
of which wavelet to use is an important aspect to be tak-
en into account, and this will be dictated by the kind of
application one has in mind.
 To study the  synchronism between different time-
series, it is important to select a wavelet whose corre-
sponding  transform contains information on both am-
plitude and phase, and hence, a complex-valued analytic 
wavelet is a natural choice.
 The most popular analytic wavelets used in practice 
belong to the so-called Morlet wavelet family. This is a 
one-parameter family of functions, first introduced in 
[15], and given by

𝜓𝜓𝜔𝜔􏺼􏺼(𝑡𝑡𝑡 𝑡 𝑡𝑡
−􏺽􏺽􏺽􏺽􏺽𝑒𝑒𝑖𝑖𝜔𝜔􏺼􏺼𝑡𝑡𝑒𝑒−

𝑡𝑡􏺾􏺾

􏺾􏺾 .

Strictly speaking, the above functions are not true wave-
lets, since they fail to satisfy the admissibility condi-
tion.{4}

 
In fact, since the Fourier transform of the Mor-

let wavelet 􏾧􏾧𝜓𝜓𝜔𝜔􏺼􏺼 is given by 􏾧􏾧𝜓𝜓𝜔𝜔􏺼􏺼(𝜔𝜔𝜔 𝜔 √􏺾􏺾􏺾􏺾
􏺽􏺽􏺽􏺽􏺽 𝑒𝑒−

􏺽􏺽
􏺾􏺾
(𝜔𝜔−𝜔𝜔􏺼􏺼𝜔

􏺾􏺾
, one 

has 􏾧􏾧𝜓𝜓𝜔𝜔􏺼􏺼(􏺼􏺼􏺼 􏺼 √􏺾􏺾􏺾􏺾
􏺽􏺽􏺽􏺽􏺽 𝑒𝑒−𝜔𝜔􏺼􏺼􏺾􏺾􏺽􏺾􏺾 ≠ 􏺼􏺼. However, for sufficiently 

large 𝜔𝜔􏺼􏺼, e.g. 𝜔𝜔􏺼􏺼 > 􏻁􏻁, the values of 􏾧􏾧𝜓𝜓𝜔𝜔􏺼􏺼(𝜔𝜔𝜔 for 𝜔𝜔 𝜔 𝜔𝜔 are 
so small that, for numerical purposes, 𝜓𝜓𝜔𝜔􏺼􏺼 can be consid-
ered as an analytic wavelet; see [9].
 The popularity of the Morlet wavelets is due to their 
interesting properties. First, for numerical purposes, as 
we have just seen,  they can be treated as  analytic wave-
lets. Second, since the wavelet 𝜓𝜓𝜔𝜔􏺼􏺼 is the product of a 
complex sinusoidal of angular frequency 𝜔𝜔􏺼􏺼, 𝑒𝑒𝑖𝑖𝑖𝑖􏺼􏺼 𝑡𝑡, by a 
Gaussian envelope, 𝑒𝑒−𝑡𝑡􏺾􏺾/􏺾􏺾, it makes perfect sense to asso-
ciate the angular frequency 𝜔𝜔􏺼􏺼 — i.e. the usual Fourier 
frequency 𝑓𝑓􏺼􏺼 = 𝜔𝜔􏺼􏺼/(􏺾􏺾􏺾􏺾􏺾 — to this function; in this case, 
the wavelets at scale 𝑠𝑠 can be associated with frequencies 
𝑓𝑓𝑠𝑠 = 𝜔𝜔􏺼􏺼/􏺾􏺾􏺾􏺾𝑠𝑠; in particular, for the very common choice of 
𝜔𝜔􏺼􏺼 = 􏻂􏻂, we have 𝑓𝑓𝑠𝑠 ≈ 􏺽􏺽􏺽𝑠𝑠 and hence the period (or wave-
length) is 𝑝𝑝𝑠𝑠 ≈ 𝑠𝑠, which greatly facilitates the interpreta-
tion of the wavelet analysis as a time-frequency analysis. 
Finally, the wavelet 𝜓𝜓𝜔𝜔􏺼􏺼 is a function with  optimal joint 
time-frequency concentration, in the sense that it attains 
the minimum possible value of uncertainty associated 
with the Heisenberg uncertainty principle.
 All our numerical results were obtained with the 
Morlet wavelet 𝜓𝜓𝜔𝜔􏺼􏺼 for the particular choice 𝜔𝜔􏺼􏺼 = 􏻂􏻂.

Computational Aspects
In practice, when one is dealing with a discrete time-
series 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑘𝑘 ∶ 𝑘𝑘 𝑥 𝑘𝑘𝑘 𝑘 𝑘 𝑘𝑘 𝑘 𝑘𝑘𝑘  of 𝑇𝑇 observations with 
a uniform time step 𝛿𝛿𝛿𝛿, the integral in (2) has to be dis-
cretized and is, therefore, replaced by a summation over 
the 𝑇𝑇 time steps; also, it is convenient, for computation-
al efficiency, to compute the transform for 𝑇𝑇 values of 
the parameter 𝜏𝜏, 𝜏𝜏 𝜏 𝜏𝜏𝜏𝜏𝜏𝜏; 𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑛 𝑛 𝑛𝑛 𝑛 𝑛𝑛. Naturally, the 
wavelet transform is computed only for a selected set of 
scale values 𝑠𝑠 𝑠 𝑠𝑠𝑠𝑚𝑚 ∶ 𝑚𝑚 𝑚 𝑚𝑚𝑚 𝑚 𝑚 𝑚𝑚 𝑚 𝑚𝑚𝑚 (corresponding to 
some frequencies 𝑓𝑓𝑚𝑚; 𝑚𝑚 𝑚 𝑚𝑚𝑚 𝑚 𝑚 𝑚𝑚 𝑚 𝑚𝑚). Hence, our com-
puted wavelet spectrum of the discrete time-series 𝑥𝑥 will 
simply be a 𝐹𝐹 𝐹 𝐹𝐹 matrix 𝑊𝑊𝑥𝑥 = (𝑤𝑤𝑚𝑚𝑚𝑚) whose (𝑚𝑚𝑚 𝑚𝑚𝑚 ele-
ment is given by

{3}  Functions with a  positive frequency spectrum were introduced in signal analysis by D. Gabor in [10]. He 
called them “analytic signals”, because they can be extended analytically to the upper-half complex  plane.

{4}  In order to fulfill the admissibility condition, a correction term has to be added, as:
  𝜓𝜓𝜔𝜔􏺼􏺼(𝑡𝑡𝑡 𝑡 𝑡𝑡

−􏺽􏺽􏺽􏺽􏺽 􏿴􏿴𝑒𝑒𝑖𝑖𝜔𝜔􏺼􏺼𝑡𝑡 − 𝑒𝑒−𝜔𝜔􏺾􏺾
􏺼􏺼 􏿷􏿷 𝑒𝑒−𝑡𝑡􏺾􏺾􏺽􏺾􏺾.
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𝑤𝑤𝑚𝑚𝑚𝑚 =
𝛿𝛿𝛿𝛿

√𝑠𝑠𝑚𝑚

𝑇𝑇𝑇𝑇𝑇

􏾝􏾝
𝑘𝑘=𝑘𝑘

𝑥𝑥𝑘𝑘𝜓𝜓 􏿶􏿶(𝑘𝑘 𝑇 𝑚𝑚)
𝛿𝛿𝛿𝛿
𝑠𝑠𝑚𝑚
􏿹􏿹.

Although it is possible to calculate the wavelet transform 
using the above formula for each value of 𝑚𝑚 and 𝑛𝑛, one 
can also identify the computation for all the values of 𝑛𝑛
simultaneously as a simple convolution of two sequences; 
in this case, one can follow the standard procedure and 
calculate this convolution as a simple product in the Fou-
rier domain, using the Fast Fourier Transform algorithm 
to go forth and back from the time and spectral domains.
 As with other types of transforms, the CWT applied 
to a finite length time-series inevitably suffers from bor-
der distortions; this is due to the fact that the values of 
the transform at the beginning and the end of the time-
series are incorrectly computed, in the sense that they 
involve missing values of the series which are then arti-
ficially prescribed. Since the “size” of the wavelets 𝜓𝜓𝜏𝜏𝜏𝜏𝜏 
increases with 𝑠𝑠, these edge-effects also increase with 𝑠𝑠 . 
The region in which the transform suffers from these 
edge effects is called the cone-of-influence (COI). In this 
area of the time-frequency plane the results are less reli-
able and have to be interpreted carefully.
 We also compute the so-called wavelet ridges which 
are simply the “local maxima” of the wavelet power ma-
trix |𝑊𝑊𝑥𝑥|. These are computed in the following manner: in 
each column, every element is compared with the neigh-
bors located up to a specified distance, and the values 
which are larger than a given factor of the “global maxi-
mum” of |𝑊𝑊𝑥𝑥| (i.e. its largest value) are selected.

Note 5.—Although, numerically, we compute the wave-
let transform in a discrete grid of the time-scale plane, 
the time and scale discretizations are so fine that we still 
refer to this as the continuous wavelet transform. The 
so-called discrete wavelet transform (DWT) often used 
in practice, but which we do not consider in this paper, 
corresponds to a very specific choice of 𝑠𝑠 and 𝜏𝜏 — the 
dyadic grid 𝑠𝑠 𝑠 𝑠𝑠𝑗𝑗 , 𝜏𝜏 𝜏 𝜏𝜏𝑗𝑗𝑗𝑗 ; j, 𝑘𝑘 𝑘 𝑘 — and makes the 
transform non-redundant. This, however, imposes far 
more stringent conditions on the choice of the mother 
wavelet 𝜓𝜓; see, e.g. [7].

Example: time-frequency localization of the CWT
We have argued  that the main advantage of wavelet analy-
sis over spectral analysis is the possibility of tracing tran-
sitional changes across time. To illustrate this, we now 
consider an example,  with simulated data, taken from 
[2]. We generate 100 years of monthly data, according 
to the following data generating process:

𝑦𝑦𝑘𝑘 = cos 􏿵􏿵
􏺾􏺾􏺾􏺾
􏺽􏺽􏺽􏺽
𝑡𝑡𝑘𝑘􏿸􏿸 + cos

⎛
⎜
⎝

􏺾􏺾􏺾􏺾
𝑝𝑝𝑘𝑘
𝑡𝑡𝑘𝑘
⎞
⎟
⎠
+ 𝜀𝜀𝑘𝑘, 𝑘𝑘 = 􏺽􏺽, 𝑘 , 􏺽􏺽􏺾􏺾􏺽􏺽􏺽􏺽,

with 𝑡𝑡𝑘𝑘 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑘𝑘 𝑘 𝑘𝑘𝑘 𝑘 𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, and where

𝑝𝑝𝑘𝑘 =
⎧⎪
⎨⎪⎩

􏻁􏻁􏻁 if 􏻀􏻀􏻀􏻀􏻀􏻀 􏻀 𝑘𝑘 􏻀 􏻀􏻀􏻀􏻀􏻀􏻀
􏺿􏺿􏻁 other values of 𝑘𝑘

and 𝜀𝜀𝑘𝑘 is a white noise. The above time-series is the sum 
of two periodic components with a random error term. 
The first periodic component represents a 10-year cy-
cle, while the second periodic component shows some 
transient dynamics. It represents a 3-year cycle that, be-
tween the fourth and and sixth decades, changes to a 
5-year cycle. Figure 3 displays some results related with 
this example.
 The change in the dynamics of the series is nearly 
impossible to spot in Figure 3 (a), which contains a sim-
ple representation of the time-series. Furthermore, if we 
use the traditional spectral analysis, the information on 
the transient dynamics is completely lost, as we can see 
in Figure 3 (d). The power spectral density estimate is 
able to capture both the 3-year and the 10-year cycles, 
but it completely fails to capture the 5-year cycle that 
occurred in the fifth and sixth decades.
 Comparing with Figure 3 (c), we observe that spec-
tral analysis gives us essentially the same information as 
the global wavelet power spectrum (GWPS), which is an 
average, across all times, of the wavelet power spectrum. 
On the other hand, Figure 3 (b) shows the wavelet power 
spectrum itself. On the horizontal axis, we have the time 
dimension (in years) and the vertical axis gives us the pe-
riods.{5} The intensity of power is given by the color. The 
color code for power ranges from blue (low power) to 
red (high power), with regions with warm colors thus 
representing areas of high power. The cone-of-influence 
is shown with a thick grey line. The white lines show the 
local maxima (or ridges) of  the wavelet power spectrum, 
giving us a more precise estimate of the cycle period. We 
observe a white line on period 10 across all times, mean-
ing that there is a permanent cycle with this period.  We 
are also able to spot the 3-year cycle that occurs up to 
year 40 and, again, between years 60 and 100. Finally, we 
are also able to identify a yellow/orange region between 
the years 40 and 60, with the white stripes indicating a 
cycle of period five. This means that a cycle of roughly 
5-year periodicity, relatively important in explaining the 
total variance of the time-series and taking place between 
years 40 and 60, was hidden by the Fourier power spec-
trum estimate.

{5}  Note that, since we are using a 𝜓𝜓􏻂􏻂 Morlet wavelet, the periods are almost identical to the scales.
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 Figure 3 (b) clearly illustrates the big advantage of   
wavelet analysis over spectral analysis. While the Fourier 
transform is silent about changes that happen across time, 
with wavelets we are able to estimate the power spectrum 
as a function of time and, therefore, we do not loose the 
time dimension. The wavelet power spectrum is able to 
capture not only the 3-year and 10-year cycles, but also 

to capture the change that occurred between years 40 
and 60.

cross-WaveleT analysis

In many applications, one is interested in detecting and 
quantifying relationships between two non-stationary 
time-series. The concepts of  cross-wavelet power, wave-
let coherency and wavelet phase-difference are natural 
generalizations of the basic wavelet analysis tools that 
enable us to appropriately deal with the time-frequency 
dependencies between two time-series.

Cross-Wavelet Transform,  Cross-Wavelet Power and 
Phase-Difference
The cross-wavelet transform (XWT) of two time-series, 
𝑥𝑥 and 𝑦𝑦, first introduced by Hudgins, Friehe and Mayer 
[18], is simply defined as

𝑊𝑊𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏 𝑊𝑊𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏𝑊𝑊𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏 ,

where 𝑊𝑊𝑥𝑥 and 𝑊𝑊𝑦𝑦 are the wavelet transforms of 𝑥𝑥 and 𝑦𝑦,
respectively. The modulus of the XWT, |𝑊𝑊𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏|  is 
known as the cross-wavelet power.
 As for the wavelet transform, if the wavelet 𝜓𝜓 is com-
plex-valued, the cross-wavelet transform is also complex-
valued and can be written as

𝑊𝑊𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏 𝜏𝑊𝑊𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏𝜏𝜏𝜏
𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥(𝜏𝜏𝜏𝜏𝜏𝜏,

where

𝜙𝜙𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏 𝜙𝜙𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏 𝜙𝜙𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏,

with 𝜙𝜙𝑥𝑥 and 𝜙𝜙𝑦𝑦 denoting the phases of 𝑥𝑥 and 𝑦𝑦 respec-
tively,{6} is the phase-difference of 𝑥𝑥 and 𝑦𝑦 (also called the 
phase-lead of 𝑥𝑥 over 𝑦𝑦). A phase-difference of zero indi-
cates that the two time-series move together at the speci-
fied (𝜏𝜏𝜏 𝜏𝜏𝜏 value; if 𝜙𝜙𝑥𝑥𝑥𝑥 ∈ (􏺼􏺼􏺼 􏺼􏺼􏺼􏺼􏺼􏺼, then the series move in-
phase, but the time-series 𝑥𝑥 leads over 𝑦𝑦; if 𝜙𝜙𝑥𝑥𝑥𝑥 ∈ (−𝜋𝜋𝜋𝜋𝜋𝜋 𝜋𝜋𝜋, 
the series also move in-phase, but, in this case, is the se-
ries 𝑦𝑦 that is leading; a phase-difference of 𝜋𝜋 indicates an 
anti-phase relation; if 𝜙𝜙𝑥𝑥𝑥𝑥 ∈ (𝜋𝜋𝜋𝜋𝜋𝜋 𝜋𝜋𝜋, then the series are 
out-of-phase, and 𝑦𝑦 is leading; finally, if 𝜙𝜙𝑥𝑥𝑥𝑥 ∈ (−𝜋𝜋𝜋 −𝜋𝜋𝜋𝜋𝜋𝜋 , 
the series are out-of-phase and 𝑥𝑥 is leading.

Complex Wavelet Coherency
In analogy with the  concept of coherency used in Fou-
rier analysis, given two time-series 𝑥𝑥 and 𝑦𝑦 one can de-
fine their complex wavelet coherency, 𝜚𝜚𝑥𝑥𝑥𝑥, by:

𝜚𝜚𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏
𝒮𝒮 􏿴􏿴𝑊𝑊𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏􏿷􏿷

􏿮􏿮𝒮𝒮 􏿴􏿴|𝑊𝑊𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏|
􏺾􏺾􏿷􏿷𝒮𝒮 􏿴􏿴|𝑊𝑊𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏|

􏺾􏺾􏿷􏿷􏿷􏿷
􏺽􏺽􏺽􏺾􏺾,

figure 3.—(a) Series 𝑦𝑦𝑘𝑘 = cos(􏺾􏺾􏺾􏺾􏺾􏺾𝑘𝑘/􏺽􏺽􏺽􏺽􏺽 􏺽 cos(􏺾􏺾􏺾􏺾􏺾􏺾𝑘𝑘/𝑝𝑝𝑘𝑘􏺽 􏺽 𝜀𝜀𝑘𝑘 . 
(b) Wavelet power spectrum of 𝑦𝑦— The cone-of-influ-
ence is shown with a grey line; the color code for power 
ranges from blue (low power) to red (high power); the 
white lines show the local maxima of the wavelet power 
spectrum. (c) Global wavelet power spectrum, i.e. aver-
age wavelet power (over all times) for each frequency. 
(d) Fourier power spectral density.

{6}  More correctly, we have 𝜙𝜙𝑥𝑥𝑥𝑥 = 𝜙𝜙𝑥𝑥 − 𝜙𝜙𝑥𝑥(mod 􏺾􏺾􏺾􏺾􏺾.

(3)
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where 𝒮𝒮  denotes a smoothing operator in both time and 
scale; smoothing is necessary, because, otherwise, coher-
ency would be identically one at all scales and times. Time 
and scale smoothing can be achieved, e.g. by convolu-
tion with appropriate windows; see [3] or [16], for details.
 The absolute value of the complex coherency is 
called the wavelet coherency and is denoted by 𝑅𝑅𝑥𝑥𝑥𝑥𝑥(𝜏𝜏𝑥 𝜏𝜏𝜏.
As in the case of the usual Fourier coherency, wavelet co-
herency satisfies the inequality 􏺼􏺼 􏺼 􏺼􏺼𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏 􏺼 𝜏𝜏, whenev-
er the ratio (3) is well defined. At points (𝜏𝜏𝜏 𝜏𝜏𝜏 for which 
𝒮𝒮 􏿴􏿴|𝑊𝑊𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏|

􏺾􏺾􏿷􏿷𝒮𝒮 􏿴􏿴|𝑊𝑊𝑦𝑦(𝜏𝜏𝜏 𝜏𝜏𝜏|
􏺾􏺾􏿷􏿷 = 􏺼􏺼, we will define

𝑅𝑅𝑥𝑥𝑥𝑥(𝜏𝜏𝜏 𝜏𝜏𝜏 𝜏 𝜏𝜏.
 As referred by Liu [22], the advantage of these 

“wavelet-based” quantities is that they may vary in time 
and can detect transient associations between studied 
time-series.

significance TesTs

As with other time-series methods, it is important to 
assess the statistical significance of the results obtained 

by wavelet analysis. The seminal paper by Torrence and 
Compo [28] is one of the first works to discuss signifi-
cance testing for wavelet and cross-wavelet power. How-
ever, more work needs to be done on this area. For rea-
sonable general processes, like an ARMA process, one 
has to rely on bootstrap techniques or Monte Carlo Sim-
ulations. To our knowledge, there is no good way of as-
sessing the statistical significance of the phase-difference. 
In fact, Ge [13] argues that one should not use signifi-
cance tests for the wavelet phase-difference. Instead, its 
analysis should be complemented by inspection of the 
coherence significance.

Business cycle synchronizaTion BeTWeen 
PorTugal and sPain

In this section we describe the application of the contin-
uous wavelet tools — more specifically, wavelet coher-
ency, phase, and the phase-difference — to the study of 
the synchronization of the economic cycles of Portugal 
and Spain, before and after these two countries joined 

figure 4.—Total Manufacturing for Portugal (a) and cor-
responding wavelet power spectrum (b). Color codes are 
as in Fig.3. The thick black contour represents the 5% 
significance level.

figure 5.—Total Manufacturing for Spain (a) and corre-
sponding wavelet power spectrum (b). Color codes are 
as in Fig.3. The thick black contour represents the 5% 
significance level.
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the Euro Zone. The data used consist of the total man-
ufacturing year-to-year growth rates for Portugal and 
Spain. We gathered monthly data from January of 1962 
until February of 2011. The results are displayed in Fig-
ures 4–6. Figures 4 (a) and (b) represent the time-series 
for Portugal and the corresponding wavelet power spec-
trum and Figures 5 (a) and (b) the same  quantities, but 
for Spain. The color codes are as in Figure 3. The black 
thick contour indicates the 5% significance level.
 Wavelet coherency is shown in Figure 6 (a). Figure 
6 (b) displays the average values of the phases and phase-
difference at the 3–8 year frequency band: the green line 
represents the phase for Spain, the blue line the phase for 
Portugal and the red line the phase-difference between 
Spain and Portugal. Figure 4 (b) tells us that for the en-
tire period of analysis Portugal has a very active business 
cycle around the 8-year frequency. A cycle with a similar 
period is also present in Spain — Figure 5 (b) — how-

ever, it is statistically significant only after 1990. Cycles 
associated with shorter periods are also statistically sig-
nificant in both countries until 1980. It is interesting to 
note that at the end of the sample, probably because of 
the world financial and economic crisis, both countries 
display a large wavelet power spectrum. This is particu-
larly true in the case of Spain, one might add. We recall 
that, although the precise details are different, these two 
countries, during the decade of 1960 and in the first half 
of the decade of 1970, both  had proto-fascist regimes 
([19]) and, in the second half of that decade, they both 
turned into democratic regimes.
 In 1982, Portugal had a severe Current Account 
crisis that led to an IMF intervention in 1983. The two 
countries applied together to be part of the European 
Economic Community, which they joined in the first of 
January of 1986. It is very interesting to note how this 
historical evolution of the countries is reflected in the 
evolution of the synchronization of their economic cy-
cles and how this can be read with the wavelet tools.
 In Figure 6 (a), we see that until early 1980’s, the 
two time-series are highly coherent and in Figure 6 (b), 
we observe that their phases, at business cycle frequen-
cies 3–8 years period cycles, were well aligned in this pe-
riod of time, with a slight lead from Portugal. From the 
early 1980s to about 1986, coinciding with the period 
immediately after the IMF intervention, we clearly see 
a de-synchronization between the two countries busi-
ness cycles. Between 1986 and 1995, the two countries 
became more synchronized again, in particular at lower 
frequencies, as we can see in Figure 6 (a), but the phases 
were not aligned anymore. Instead, the phase-difference 
between Spain and Portugal (red line) tells us that the 
Portuguese business cycle was lagging the Spanish one. 
After 1999, when both countries joined the Euro, the 
phase-difference started approaching zero. After 2002, 
the phase-difference became almost zero, suggesting that 
the business cycles became aligned again. After 2004, we 
also observe a region of high coherency, which reinforc-
es our previous conclusion. Therefore, coinciding with 
the adoption of a common currency, the business cycles 
became more synchronized.

Note 6.—The pictures and the numerical results given 
in the paper were obtained using a matlab toolbox de-
veloped by the authors, the ASToolbox, freely available 
at http://sites.google.com/site/aguiarconraria/joanasoares-wavelets.

figure 6.—(a) Wavelet coherency — coherency rang-
es form blue (low coherency) to red (high coherency); 
the black thick contour designates the 5% significance 
level. (b) Phases and phase-difference at the 3–8 year 
frequency band — The green line represents the phase 
for Spain, the blue line the phase for Portugal and the 
red line represents the phase-difference between Spain 
and Portugal.
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inTroducTion

In the diverse geoscience problems investigated at the 
Instituto Dom Luiz (IDL), a partner of CIM, the iden-
tification and quantification of trends is one of the most 
ubiquitous activities. From the analysis of the outputs of 
complex meteorological numerical models in a climate 
change context to the exploitation of geophysical re-
sources and renewal energy sources, accurate knowledge 
of trends and corresponding uncertainties is fundamen-
tal for answering most scientific and societal questions.
 Although the concept of trend, as a general direc-
tion and tendency, is physically intuitive and apparently 
simple, its mathematical formulation is far from trivi-
al. In fact, there’s no formal definition of trend, which 
makes trend quantification a delicate, despite common, 
activity. The wide range of time scales involved in most 
geophysical problems, and the usually very short period 
for which reliable data are available, further hinders the 
identification and quantification of geophysical trends. 
Here the mathematical aspects of trend assessment in a 
geophysical context are briefly described. Specific details 
can be found in Fatichi et al (2009) and Barbosa (2011).

sTochasTic models

Different types of stationary and non-stationary process-
es can originate sequences of observations with trend-
like features. Even purely random processes can generate 
time series exhibiting visually appealing trends, particu-
larly for relatively short records. Some of the most com-
mon generating models assumed for geophysical time 
series are described below.

Autoregressive model
A first order autoregressive process 𝑋𝑋𝑡𝑡  is defined as 
𝑋𝑋𝑡𝑡 = 𝑐𝑐 𝑐 𝑐𝑐𝑋𝑋𝑡𝑡𝑡𝑡𝑡 𝑐 𝜀𝜀𝑡𝑡  with 􏺼􏺼 􏺼 􏺼􏺼 􏺼 􏺼􏺼 , 𝑐𝑐 𝑐 constant  and 
𝜀𝜀𝑡𝑡 ∼ 𝓝𝓝 𝓝𝓝𝓝𝓝 𝓝𝓝􏺾􏺾). It is also called a red noise since its spec-
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trum decreases as frequency increases, similarly to red 
light in the range of visual radiation. This is a purely ran-
dom, stationary process, with constant mean and vari-
ance, but red-noise time series can exhibit an apparent 
monotonic temporal structure that can be misleadingly 
taken as indication of non-stationary behavior.

Trend-stationary model
A trend-stationary process 𝑋𝑋𝑡𝑡 is defined as 𝑋𝑋𝑡𝑡 = 𝑎𝑎 𝑎 𝑎𝑎𝑡𝑡 𝑎 𝑎𝑎𝑡𝑡 
with 𝑎𝑎𝑎 𝑎𝑎 𝑎 constant and 𝜀𝜀𝑡𝑡 ∼ 𝓝𝓝𝓝𝓝𝓝𝓝 𝓝𝓝. It is a non-station-
ary process, since the mean evolves in time. This is the 
model implicitly considered in the majority of geophysi-
cal contexts, though the purely linear approximation can 
be inadequate (e.g. Miranda & Tomé, 2009).

Difference-stationary model
A random walk or difference stationary process 𝑋𝑋𝑡𝑡  is de-
fined as 𝑋𝑋𝑡𝑡 = 𝑐𝑐 𝑐 𝑐𝑐𝑋𝑋𝑡𝑡 − 􏺽􏺽 𝑐 􏺽􏺽𝑡𝑡 with 𝜙𝜙 𝜙 𝜙𝜙 and describes a 
process whose value at a time 𝑡𝑡 is equal to its value at the 
previous instant plus a random shock, similarly to the 
path of a drunken man whose position at a given time is 
its position at the previous time plus a step in a random
direction. It corresponds to a 1st order autoregressive 
process with 𝜙𝜙 𝜙 𝜙𝜙 and is also called an integrated pro-
cess of order 1, since its 1st derivative is stationary. This 
is a non-stationary process, since both the mean and the 
variance evolve in time.

Long-memory model
A process 𝑋𝑋𝑡𝑡  is a stationary long range dependent or 
long memory process if its autocovariance function 𝛾𝛾𝑋𝑋 
decays as a power law, such that observations widely 
separated in time can still have a non-negligible covari-
ance: lim𝜏𝜏𝜏𝜏 𝛾𝛾𝑋𝑋(𝜏𝜏𝜏 𝜏 𝜏𝜏𝜏𝜏

−𝛼𝛼−𝛼𝛼, where 𝐶𝐶 and 𝛼𝛼 are constants 
satisfying 𝐶𝐶 𝐶 𝐶𝐶 and −􏺽􏺽 􏺽 􏺽􏺽 􏺽 􏺽􏺽. Long-memory time se-
ries are characterised in the time domain by persistent-
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in-time autocorrelations, decaying as a power law, and 
in the frequency domain by high spectral content at fre-
quency zero.

Trend assessmenT

A fundamental aspect in the study of geophysical trends 
is the possible underlying mechanism generating the 
observed sequence of observations. Though inherently 
unobtainable, understanding the underlying generating 
process is the ultimate aim of any trend analysis.
 The conventional approach in the study of geophysi-
cal trends is to assume a trend-stationary model, estimate 
the parameters a, b of the regression, and then test the 
adequacy of the model from the statistical significance 
of the resulting estimates. However, even if the slope of 
a linear regression model is statistically significant, the 
underlying stochastic model may not be a reasonable as-
sumption. In fact, all of the stochastic models mentioned 
in section 2 are able to generate finite sequences with sta-
tistically significant linear trends.
 Assessment of whether the monotonic behavior ex-
hibited by a geophysical time series is better character-
ised by a trend-stationary model, a difference-sttaionary 
model or a long-memory model has both conceptual and 
practical implications. For example, while both trend-
stationary and difference-stationary time series exhibit 
a tendency behavior, the former is characterised by a de-
terministic trend tendency with stable variance, while 
the latter is characterized by a stochastic tendency with 
increasing variance. The distinction between the two 
kinds of nonstationary behavior has not only practical 
implications (e.g. forecasting) but more importantly on 
the physical interpretation of the identified trend: in the 
case of a trend-stationary model the trend can be inter-
preted as deterministic and due to some forcing factor, 
while in the case of a difference-stationary model the ap-
parent trend is the result of stochastic fluctuations.
 A possible approach to trend assessment is based 
on parametric statistical tests, developed in economet-
rics contexts for discriminating between difference-sta-
tionary and trend-stationary time series. The PP test 
(Phillips & Peron, 1988) tests the null hypothesis of a 
difference stationary random walk process against a 
trend stationary alternative. It is based on the model 
𝑋𝑋𝑡𝑡 = 𝜂𝜂 𝜂 𝜂𝜂𝑡𝑡 𝜂 𝜋𝜋𝑋𝑋𝑡𝑡𝑡𝑡𝑡 𝜂 𝜓𝜓𝑡𝑡  where 𝜓𝜓𝑡𝑡 is a stationary noise 
process and 𝜂𝜂 and 𝛽𝛽 are the parameters of a first-order 
polynomial regression. The null hypothesis is expressed 
by 𝐻𝐻􏺼􏺼 ∶ 𝜋𝜋 𝜋 𝜋𝜋 against the alternative 𝐻𝐻􏺽􏺽 ∶ 𝜋𝜋 𝜋 􏺽􏺽 . The KPSS 
test (Kwiatkowski et al, 1992) tests the null hypothesis 
of a trend-stationary process against a difference-sta-
tionary alternative. The KPSS test is based on the model 

𝑋𝑋𝑡𝑡 = 𝛽𝛽𝑡𝑡 𝛽 𝛽𝛽𝑡𝑡 𝛽 𝜈𝜈𝑡𝑡, where 𝑟𝑟𝑡𝑡 is a random walk, 𝑟𝑟𝑡𝑡 = 𝑟𝑟𝑡𝑡𝑡𝑡𝑡 + 𝜀𝜀𝑡𝑡, 
𝜀𝜀𝑡𝑡 ∼ 𝑁𝑁𝑁𝑁𝑁𝑁 𝑁𝑁􏺾􏺾𝜀𝜀) and 𝜈𝜈𝑡𝑡 is a stationary noise process.
 The joint application of the KPSS and PP allows to 
assess whether a deterministic linear trend is a reasonable 
assumption for the data considered. If only the null hy-
pothesis of the KPSS test is rejected, the time series is dif-
ference stationary. Then its long-term variability should 
not be characterized by the slope of a linear regression 
model (even if it is statistically significant), since the as-
sumption of a deterministic trend is not itself plausible. 
Conversely, if only the null of the PP test is rejected, the 
time series is trend-stationary. If both tests reject the re-
spective null hypothesis, alternative behaviors (such as 
long range dependence) should be considered.

concluding remarks

The identification of trends is one of the most common 
activities in geosciences and one with the highest societal 
implications, since policy makers require information on 
tendencies to sustain environmental policies, for example 
in a climate change context. Different kind of stochastic 
processes can originate finite temporal sequences with 
visually appealing (and statistically significant!) trends. 
Trend assessment is therefore a fundamental activity, that 
can be performed by the joint application of parametric 
statistical tests of hypothesis.
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inTroducTion

Mountain waves are a type of internal gravity waves 
forced by airflow over mountains. Internal gravity waves 
exist, not at an interface, like ocean waves, but in the inte-
rior of the atmosphere. They require an atmosphere with 
stable stratification, where air parcels that are displaced 
vertically tend to oscillate. These waves are fairly com-
mon, but can only be visualized when the atmosphere 
has enough moisture for clouds to form in the regions 
of ascending motion. Associated with mountain waves 
there is a pressure distribution at the surface which caus-
es a drag force on the mountains (Smith, 1980). To this 
corresponds a reaction force acting on the atmosphere, 
which must be represented in some way (parametrized) 
in global climate and weather prediction models. This is 
required because the dominant contributions to this force 
come from mountains of width ≈10km, which are typi-
cally not resolved by these models. Current research at 
IDL aims to understand how mountain wave drag varies 
with input parameters of the incoming large-scale flow, 
in order to contribute to the improvement of existing 
parametrizations of this process.

mounTain Wave equaTions

Mountain waves, like other meteorological phenomena, 
are governed by a set of partial differential equations 
comprising the Navier-Stokes equation, the conservation 
of mass, a heat balance equation and an equation of state 
for ideal gases. In the following equation set, the rotation 

of the Earth is neglected, because the scale of the motions 
is relatively small, yet viscosity is also neglected because 
the scale is larger that that of viscous boundary layers.

𝜕𝜕�⃗�𝑣
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𝑝𝑝 𝑝 𝑝𝑝𝛼𝛼𝜌𝜌𝜌𝜌 .

In (1)–(4), �⃗�𝑣 𝑣 𝑣𝑣𝑣𝑣 𝑣𝑣𝑣 𝑣𝑣𝑣 is the velocity vector, 𝜌𝜌 is the den-
sity, 𝑝𝑝 is the pressure, 𝑇𝑇 is the absolute temperature, ⃗𝑔𝑔 is 
the acceleration of gravity, 𝑅𝑅𝑎𝑎 is the ideal gas constant 
for air and 𝑐𝑐𝑝𝑝 is the corresponding specific heat at con-
stant pressure.
 Equation (2) results from the first law of thermo-
dynamics for adiabatic processes, because the motions 
associated with mountain waves are fast enough for heat 
transfer to be insignificant (except when there is cloud 
formation).
 For simplicity, 2D motion (in an 𝑥𝑥 𝑥 𝑥𝑥 vertical plane) 
is considered. The flow is also assumed to be stationary, 
because the waves are generated by a fixed topographic 
forcing. Additionally, the Boussinesq approximation is 
assumed. This is combined next with linearization of the 
equations of motion to obtain a final simplified equa-
tion set. In the Boussinesq approximation, the thermo-
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dynamic dependent variables of (1)–(4) are decomposed 
as 𝜌𝜌 𝜌 􏼞􏼞𝜌𝜌𝜌𝜌𝜌𝜌 𝜌 𝜌𝜌 , 𝑝𝑝 𝑝 �̅�𝑝𝑝𝑝𝑝𝑝 𝑝 𝑝𝑝  and 𝑇𝑇 𝑇 􏼙􏼙𝑇𝑇𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇 , where the 
overbar denotes a reference state that depends only on 
height and the primes denote perturbations associated 
with the mountain waves. The reference state is assumed 
to be in hydrostatic equilibrium:

𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= −𝜌𝜌𝜌𝜌.

Additionally, constant reference values of the density and 
other flow variables (denoted by a zero subscript) are as-
sumed to exist such that 𝜌𝜌 𝜌 𝜌𝜌􏺼􏺼 and 𝜌𝜌 /𝜌𝜌 𝜌 𝜌𝜌 /𝜌𝜌􏺼􏺼 and simi-
larly for the other variables. The Boussinesq approxima-
tion also assumes that

𝜌𝜌
𝜌𝜌􏺼􏺼

≈ −
𝜃𝜃
𝜃𝜃􏺼􏺼

,

where 𝜃𝜃 𝜃 􏼞􏼞𝜃𝜃𝜃𝜃𝜃𝜃 𝜃 𝜃𝜃  is the potential temperature. This is 
defined as

𝜃𝜃 𝜃 𝜃𝜃 􏿶􏿶
𝑝𝑝􏺼􏺼
𝑝𝑝 􏿹􏿹

𝑅𝑅𝑎𝑎/𝑐𝑐𝑝𝑝
,

where 𝑝𝑝􏺼􏺼 is a reference pressure (generally assumed to 
be 𝑝𝑝􏺼􏺼 = 􏺽􏺽􏺼􏺼

􏻁􏻁Pa). 𝜃𝜃 is a very important quantity in mete-
orology because it is conserved in adiabatic processes. 
Equation (6) amounts to assuming that the density is a 
much weaker function of pressure than of temperature, 
which is acceptable for motions much slower than the 
speed of sound.
 Linearization of the equations of motion goes one 
step further by assuming the same kind of decomposition 
also for the velocity vector: �⃗�𝑣 𝑣 𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑣 𝑣𝑣 , 𝑉𝑉𝑣𝑣𝑣𝑣 𝑣 𝑣𝑣 , 𝑤𝑤 𝑣  
(where the capital letters correspond to the reference 
wind, which is only a function of height), and neglect-
ing all products of perturbations. With all these simpli-
fications, which are valid for waves over relatively low 
mountains, the equation set (1)–(4) becomes:

𝑈𝑈
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑤𝑤
𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

= −
􏺽􏺽
𝜌𝜌􏺼􏺼

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,

𝑈𝑈
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
􏺽􏺽
𝜌𝜌􏺼􏺼

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑏𝑏,

𝑈𝑈
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑁𝑁􏺾􏺾𝑤𝑤 = 􏺼􏺼,

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 􏺼􏺼,

where 𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏𝑏 /𝑏𝑏􏺼􏺼)  is a buoyancy perturbation and 
𝑁𝑁􏺾􏺾 = (𝑔𝑔𝑔𝑔𝑔􏺼􏺼)(𝑑𝑑 􏼞􏼞𝑔𝑔𝑔𝑑𝑑𝜃𝜃) is the mean static stability.
 Through differentiation and summation, these equa-
tions may be combined into one single equation for 𝑤𝑤 :

𝜕𝜕􏺾􏺾𝑤𝑤
𝜕𝜕𝜕𝜕􏺾􏺾

+
𝜕𝜕􏺾􏺾𝑤𝑤
𝜕𝜕𝜕𝜕􏺾􏺾

+ 𝑙𝑙􏺾􏺾(𝜕𝜕𝑧𝑤𝑤 = 􏺼􏺼,

where

𝑙𝑙􏺾􏺾 =
𝑁𝑁􏺾􏺾

𝑈𝑈􏺾􏺾 −
􏺽􏺽
𝑈𝑈
𝑑𝑑􏺾􏺾𝑈𝑈
𝑑𝑑𝑑𝑑􏺾􏺾

.

𝑙𝑙𝑙𝑙𝑙𝑙 is called the Scorer parameter. 
 Since the boundary conditions are most conveniently 
applied in wavenumber space and the waves are expect-
ed to be confined near an isolated topography, Fourier 
analysis is adopted to express all flow variables, includ-
ing 𝑤𝑤 :

𝑤𝑤 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 􏾙􏾙
∞

−∞
􏾧􏾧𝑤𝑤(𝑤𝑤𝑥 𝑥𝑥𝑥𝑤𝑤𝑖𝑖𝑤𝑤𝑥𝑥𝑑𝑑𝑤𝑤,

where 􏾧􏾧𝑤𝑤 is the Fourier transform of 𝑤𝑤 . Then, (12) can 
be written

􏾧􏾧𝑤𝑤 + 􏿮􏿮𝑙𝑙􏺾􏺾(𝑧𝑧𝑧 𝑧 𝑧𝑧􏺾􏺾􏿱􏿱 􏾧􏾧𝑤𝑤 𝑤 𝑤𝑤,

where the primes denote differentiation with respect to 
𝑧𝑧. Despite its simplicity, in general this equation has no 
analytical solution. Two exceptions occur when 𝑙𝑙𝑙𝑙𝑙𝑙 is ei-
ther a slow function of 𝑧𝑧, or is piecewise constant. These 
two cases will be addressed next in turn.

sloWly varying scorer ParameTer Profile

When the Scorer parameter varies relatively slowly with 
height, the WKB approximation can be used to solve (15). 
This entails defining a new rescaled vertical coordinate as 
𝑍𝑍 𝑍 𝑍𝑍𝑍𝑍, where 𝜀𝜀 is a small parameter (Bender and Orszag, 

1999), so that (15) becomes:

𝜀𝜀􏺾􏺾�̈�􏾧𝑤𝑤 𝑤 􏿰􏿰
𝑁𝑁􏺾􏺾

𝑈𝑈􏺾􏺾 − 𝜀𝜀􏺾􏺾
�̈�𝑈
𝑈𝑈
− 𝑘𝑘􏺾􏺾􏿳􏿳 􏾧􏾧𝑤𝑤 𝑤 𝑤𝑤,

where the dots denote differentiation with respect to 𝑍𝑍. 
Additionally, a solution of the form

􏾧􏾧𝑤𝑤 𝑤 􏾧􏾧𝑤𝑤𝑤𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖
−􏺽􏺽 ∫𝑤𝑤

𝑤𝑤
[𝑚𝑚𝑤𝑤𝑤𝜚𝜚𝑤𝜚𝑖𝑖𝑚𝑚􏺽􏺽𝑤𝜚𝜚𝑤𝜚𝑖𝑖􏺾􏺾𝑚𝑚􏺾􏺾𝑤𝜚𝜚𝑤𝜚𝜚𝜚𝜚𝜚𝜚𝜚

is adopted. In this equation, the vertical wavenumber of 
the mountain waves is expanded as a power series of 𝜀𝜀 . 
By inserting (17) into (16), and considering terms only 
up to second-order in 𝜀𝜀, the following set of algebraic 
equations for 𝑚𝑚􏺼􏺼, 𝑚𝑚􏺽􏺽 and 𝑚𝑚􏺾􏺾 is obtained:

−𝑚𝑚􏺾􏺾
􏺼􏺼 +

𝑁𝑁􏺾􏺾

𝑈𝑈􏺾􏺾 − 𝑘𝑘
􏺾􏺾 = 􏺼􏺼,

𝑖𝑖�̇�𝑚􏺼􏺼 − 􏺾􏺾𝑚𝑚􏺼􏺼𝑚𝑚􏺽􏺽 = 􏺼􏺼,

𝑖𝑖�̇�𝑚􏺽􏺽 − 􏺾􏺾𝑚𝑚􏺼􏺼𝑚𝑚􏺾􏺾 − 𝑚𝑚􏺾􏺾
􏺽􏺽
�̈�𝑈
𝑈𝑈
= 􏺼􏺼.

If the wave motion itself can be considered hydrostat-
ic, i.e. 

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(13)

(14)

(15)

(16)

(17)

(12)

(18)

(19)

(20)
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􏺽􏺽
𝜌𝜌􏺼􏺼

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑏𝑏,

then the 𝑘𝑘􏺾􏺾 term in (18) must be neglected. This corre-
sponds to relatively wide mountains, which are those that 
give a dominant contribution to the drag. In this case, the 
definitions for 𝑚𝑚􏺼􏺼, 𝑚𝑚􏺽􏺽 and 𝑚𝑚􏺾􏺾 found from (18)-(20) are:

𝑚𝑚􏺼􏺼 =
𝑁𝑁
𝑈𝑈
sgn(𝑘𝑘𝑘,

𝑚𝑚􏺽􏺽 = −
􏺽􏺽
􏺾􏺾
𝑖𝑖
�̇�𝑈
𝑈𝑈

,

𝑚𝑚􏺾􏺾 = −
􏺽􏺽
􏻄􏻄
𝑈𝑈
𝑁𝑁
sgn(𝑘𝑘𝑘 􏿶􏿶

�̇�𝑈􏺾􏺾

𝑈𝑈􏺾􏺾 + 􏺾􏺾
�̈�𝑈
𝑈𝑈 􏿹􏿹

.

In (22)–(24) it was assumed that 𝑁𝑁 is constant, because 
generally the vertical variation of 𝑈𝑈 is more important in 
the atmosphere. The sign function has been included in 
𝑚𝑚􏺼􏺼 (and as a consequence appears also in 𝑚𝑚􏺾􏺾) so that the 
wave energy propagates upward, as is logical for waves 
forced topographically. It can be shown that if the ver-
tical wavenumber of these waves (and thus 𝑚𝑚􏺼􏺼) has the 
same sign as 𝑈𝑈𝑈𝑈, the group velocity of the waves has a 
positive vertical component, as required.
 The lower boundary condition, which requires that, 
in inviscid conditions, the flow is tangential to the topog-
raphy, can be expressed, in the linearized approximation, 
as

𝑤𝑤 (𝑧𝑧 𝑧 𝑧𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧
𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

⇒ 􏾧􏾧𝑤𝑤(𝑧𝑧 𝑧 𝑧𝑧𝑧 𝑧 𝑤𝑤𝑧𝑧𝑧𝑧𝑘𝑘􏾦􏾦𝜕,

where 𝑈𝑈􏺼􏺼 = 𝑈𝑈𝑈𝑈𝑈 = 􏺼􏺼𝑈, ℎ(𝑥𝑥𝑥 is the surface elevation and 􏾦􏾦ℎ(𝑘𝑘𝑘 
is its Fourier transform. This completely specifies the so-
lution to the problem. If an explicit solution is required, 
the integrals in the exponent of (17) must be calculated. 
This is possible analytically for the term involving 𝑚𝑚􏺽􏺽, but 
not in general for those involving 𝑚𝑚􏺼􏺼 and 𝑚𝑚􏺾􏺾 . Neverthe-
less, for calculating mountain wave drag this is not nec-
essary, since, the drag per unit spanwise length
of the mountain is defined as

  𝐷𝐷 𝐷 􏾙􏾙
+∞

−∞
𝑝𝑝 (𝑧𝑧 𝐷 𝑧𝑧𝑧

𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝜕𝜕

   = 􏺾􏺾􏺾􏺾􏺾􏺾􏾙􏾙
+∞

−∞
𝑘𝑘􏾦􏾦𝑝𝑝∗(𝑧𝑧 = 𝑧𝑧𝑧􏾦􏾦ℎ 𝑑𝑑𝑘𝑘,

where the asterisk denotes complex conjugate and 􏾦􏾦𝑝𝑝 is 
the Fourier transform of the pressure perturbation. Us-
ing (8) and (11), this quantity can be expressed as

􏾦􏾦𝑝𝑝 𝑝 𝑝𝑝
𝜌𝜌􏺼􏺼
𝑘𝑘
(𝑈𝑈 􏾧􏾧𝑤𝑤 𝑤 𝑈𝑈􏾧􏾧𝑤𝑤 ),

which means that at the surface, using (17), it becomes

 􏾦􏾦𝑝𝑝𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑈𝑈
􏺾􏺾
𝑝𝑝 􏿯􏿯𝑚𝑚𝑝𝑝𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝 𝑧 𝑧𝑧𝑚𝑚􏺽􏺽𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝

        +𝑖𝑖
𝑈𝑈􏺼􏺼

𝑈𝑈􏺼􏺼
+ 𝜀𝜀􏺾􏺾𝑚𝑚􏺾􏺾(𝑧𝑧 𝑧 􏺼􏺼𝑧􏿲􏿲 􏾦􏾦ℎ,

where 𝑈𝑈􏺼􏺼 = 𝑈𝑈 (𝑧𝑧 = 􏺼􏺼𝑧. If (28) is used in (26), and (22)–(24) 
are also employed, the drag normalized by its value 𝐷𝐷􏺼􏺼 
for a constant mean wind 𝑈𝑈􏺼􏺼 is given by (Teixeira and 
Miranda, 2004)

𝐷𝐷
𝐷𝐷􏺼􏺼

= 􏺽􏺽 =
􏺽􏺽
􏻄􏻄
𝑈𝑈􏺼􏺼

􏺾􏺾

𝑁𝑁􏺾􏺾 −
􏺽􏺽
􏻀􏻀
𝑈𝑈􏺼􏺼 𝑈𝑈􏺼􏺼

𝑁𝑁􏺾􏺾􏺽􏺽 􏺽 􏺽􏺽
𝐷𝐷
𝐷𝐷􏺼􏺼

= 􏺽􏺽 =
􏺽􏺽
􏻄􏻄
𝑈𝑈􏺼􏺼

􏺾􏺾

𝑁𝑁􏺾􏺾 −
􏺽􏺽
􏻀􏻀
𝑈𝑈􏺼􏺼 𝑈𝑈􏺼􏺼

𝑁𝑁􏺾􏺾 ,

correct to second-order in 𝜀𝜀, where

𝐷𝐷􏺼􏺼 = 􏻀􏻀􏻀􏻀􏻀􏻀􏺼􏺼𝑁𝑁𝑁𝑁􏺼􏺼 􏾙􏾙
+∞

􏺼􏺼
𝑘𝑘𝑘􏾦􏾦ℎ𝑘􏺾􏺾 𝑑𝑑𝑘𝑘.

Thus the WKB approximation allows one to obtain a 
closed-form analytical expression for the correction to 
the drag due to the variation of the wind with height. 
Something analogous could be done if 𝑁𝑁 was assumed 
to be a function of height as well.

TWo-layer aTmosPhere

Consider now that the atmosphere has a two-layer struc-
ture, with different (constant) values of 𝑙𝑙 in each layer: 𝑙𝑙􏺽􏺽 
near the surface (􏺼􏺼 􏺼 􏺼􏺼 􏺼 􏺼􏺼) and 𝑙𝑙􏺾􏺾 aloft (𝑧𝑧 𝑧 𝑧𝑧). It will 
be assumed that 𝑙𝑙􏺽􏺽 > 𝑙𝑙􏺾􏺾, since unlike the opposite possi-
bility, this allows wave trapping near the surface, which 
affects mountain wave drag in an interesting way (Scorer, 
1949). In this situation, (15) has solutions of the form:

  􏾧􏾧𝑤𝑤 𝑤 𝑤𝑤􏺽􏺽𝑒𝑒𝑖𝑖𝑖𝑖􏺽􏺽𝑧𝑧 + 𝑏𝑏􏺽􏺽𝑒𝑒−𝑖𝑖𝑖𝑖􏺽􏺽𝑧𝑧 if 𝑘𝑘􏺾􏺾 < 𝑙𝑙􏺾􏺾􏺽􏺽,

  􏾧􏾧𝑤𝑤 𝑤 𝑤𝑤􏺽􏺽𝑒𝑒−𝑛𝑛􏺽􏺽𝑧𝑧 + 𝑑𝑑􏺽􏺽𝑒𝑒𝑛𝑛􏺽􏺽𝑧𝑧 if 𝑘𝑘
􏺾􏺾 > 𝑙𝑙􏺾􏺾􏺽􏺽,

in the lower layer, where 𝑚𝑚􏺾􏺾
􏺽􏺽 = 𝑙𝑙

􏺾􏺾
􏺽􏺽 − 𝑘𝑘

􏺾􏺾 and 𝑛𝑛􏺾􏺾􏺽􏺽 = 𝑘𝑘
􏺾􏺾 − 𝑙𝑙􏺾􏺾􏺽􏺽. In 

the upper layer, on the other hand,

  􏾧􏾧𝑤𝑤 𝑤 𝑤𝑤􏺾􏺾𝑒𝑒𝑖𝑖𝑖𝑖􏺾􏺾𝑧𝑧 if 𝑘𝑘􏺾􏺾 < 𝑙𝑙􏺾􏺾􏺾􏺾,

  􏾧􏾧𝑤𝑤 𝑤 𝑤𝑤􏺾􏺾𝑒𝑒−𝑛𝑛􏺾􏺾𝑧𝑧 if 𝑘𝑘
􏺾􏺾 > 𝑙𝑙􏺾􏺾􏺾􏺾,

where 𝑚𝑚􏺾􏺾
􏺾􏺾 = 𝑙𝑙

􏺾􏺾
􏺾􏺾 − 𝑘𝑘

􏺾􏺾 and 𝑛𝑛􏺾􏺾􏺾􏺾 = 𝑘𝑘
􏺾􏺾 − 𝑙𝑙􏺾􏺾􏺾􏺾 . The first solutions 

in (31)–(32) and (33)–(34) correspond to waves whose 
energy propagates vertically, while the second solutions 
are evanescent. In the upper layer (33) corresponds to an 
upward propagating solution, whereas (34) corresponds 
to a wave that decays with height. This makes physical 
sense for topographically generated waves. 𝑎𝑎􏺽􏺽 , 𝑏𝑏􏺽􏺽, 𝑐𝑐􏺽􏺽, 𝑑𝑑􏺽􏺽, 
𝑎𝑎􏺾􏺾 and 𝑐𝑐􏺾􏺾 are functions of 𝑘𝑘 which are determined by the 
boundary conditions. These prescribe that the waves ei-
ther propagate upward or decay as 𝑧𝑧 𝑧 𝑧𝑧 (this is al-

(25)

(26)

(21)

(22)

(23)

(24)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(27)
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ready included in (33)–(34), as mentioned above), that 
the flow is tangential to the topography at the surface, 
(25), and that the streamline slope and pressure pertur-
bation are continuous at 𝑧𝑧 𝑧 𝑧𝑧. For simplicity, it is as-
sumed next that the discontinuity of 𝑙𝑙 is due to 𝑁𝑁 and not 
to 𝑈𝑈, which is taken as constant. This slightly simplifies 
the boundary conditions, but other possibilities could 
be accommodated without too much effort, if required.
 Then it can be shown that

  𝑎𝑎􏺽􏺽 =
𝑖𝑖𝑖𝑖𝑖𝑖􏾦􏾦ℎ(𝑚𝑚􏺽􏺽 + 𝑚𝑚􏺾􏺾)𝑒𝑒−𝑖𝑖𝑚𝑚􏺽􏺽𝐻𝐻

􏺾􏺾𝑚𝑚􏺽􏺽 cos(𝑚𝑚􏺽􏺽𝐻𝐻) − 􏺾􏺾𝑖𝑖𝑚𝑚􏺾􏺾 sin(𝑚𝑚􏺽􏺽𝐻𝐻)
,

  𝑏𝑏􏺽􏺽 =
𝑖𝑖𝑖𝑖𝑖𝑖􏾦􏾦ℎ(𝑚𝑚􏺽􏺽 − 𝑚𝑚􏺾􏺾)𝑒𝑒𝑖𝑖𝑚𝑚􏺽􏺽𝐻𝐻

􏺾􏺾𝑚𝑚􏺽􏺽 cos(𝑚𝑚􏺽􏺽𝐻𝐻) − 􏺾􏺾𝑖𝑖𝑚𝑚􏺾􏺾 sin(𝑚𝑚􏺽􏺽𝐻𝐻)
,

if 𝑘𝑘􏺾􏺾 < 𝑙𝑙􏺾􏺾􏺾􏺾. If 𝑙𝑙􏺾􏺾􏺾􏺾 < 𝑘𝑘
􏺾􏺾 < 𝑙𝑙􏺾􏺾􏺽􏺽 instead, then:

  𝑎𝑎􏺽􏺽 =
𝑈𝑈𝑈𝑈􏾦􏾦ℎ(𝑖𝑖𝑖𝑖􏺽􏺽 − 𝑛𝑛􏺾􏺾)𝑒𝑒−𝑖𝑖𝑖𝑖􏺽􏺽𝑧𝑧

􏺾􏺾𝑖𝑖􏺽􏺽 cos(𝑖𝑖􏺽􏺽𝐻𝐻) 𝐻 􏺾􏺾𝑛𝑛􏺾􏺾 sin(𝑖𝑖􏺽􏺽𝐻𝐻)
,

  𝑏𝑏􏺽􏺽 =
𝑈𝑈𝑈𝑈􏾦􏾦ℎ(𝑖𝑖𝑖𝑖􏺽􏺽 + 𝑛𝑛􏺾􏺾)𝑒𝑒𝑖𝑖𝑖𝑖􏺽􏺽𝑧𝑧

􏺾􏺾𝑖𝑖􏺽􏺽 cos(𝑖𝑖􏺽􏺽𝐻𝐻) + 􏺾􏺾𝑛𝑛􏺾􏺾 sin(𝑖𝑖􏺽􏺽𝐻𝐻)
.

When the waves are evanescent in both layers, i.e. 𝑘𝑘
􏺾􏺾 > 𝑙𝑙􏺾􏺾􏺽􏺽, 

it can be shown that no mountain wave drag is produced, 
since the pressure perturbation is symmetric with respect 
to the orography. When 𝑙𝑙

􏺾􏺾
􏺽􏺽 > 𝑙𝑙

􏺾􏺾
􏺾􏺾, two possibilities exist: ei-

ther the waves propagate vertically in both layers (when 
𝑘𝑘􏺾􏺾 < 𝑙𝑙􏺾􏺾􏺾􏺾), or they propagate in the first layer but not in the 
second, i.e. are trapped ( 𝑙𝑙

􏺾􏺾
􏺾􏺾 < 𝑘𝑘

􏺾􏺾 < 𝑙𝑙􏺾􏺾􏺽􏺽). In both cases, the 
drag is given by (26) with

􏾦􏾦𝑝𝑝𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝 𝑝
𝜌𝜌𝑝𝑝𝑈𝑈𝑈𝑈􏺽􏺽

𝑘𝑘
𝑝𝑎𝑎􏺽􏺽 − 𝑏𝑏􏺽􏺽𝑝

which results from (27) and (31). If the necessary calcu-
lations are performed, the drag is found to be given by 
two contributions: one from wavenumbers between 􏺼􏺼
and 𝑙𝑙􏺾􏺾 (𝐷𝐷􏺽􏺽) and the other from wavenumbers between 
𝑙𝑙􏺾􏺾 and 𝑙𝑙􏺽􏺽 (𝐷𝐷􏺾􏺾). These two contributions can be written:

𝐷𝐷􏺽􏺽 = 􏻀􏻀􏻀􏻀􏻀􏻀􏺼􏺼𝑈𝑈
􏺾􏺾 􏾙􏾙

𝑙𝑙􏺾􏺾

􏺼􏺼
𝑘𝑘𝑘􏾦􏾦ℎ𝑘􏺾􏺾

𝑚𝑚􏺾􏺾
􏺽􏺽𝑚𝑚􏺾􏺾

𝑚𝑚􏺾􏺾
􏺽􏺽 cos􏺾􏺾(𝑚𝑚􏺽􏺽𝐻𝐻𝐻 𝐻 𝑚𝑚􏺾􏺾

􏺾􏺾 sin􏺾􏺾(𝑚𝑚􏺽􏺽𝐻𝐻𝐻
𝑑𝑑𝑘𝑘 ,

𝐷𝐷􏺾􏺾 = Re􏿯􏿯􏻀􏻀􏻀􏻀􏻀􏻀􏻀􏻀􏺼􏺼𝑈𝑈
􏺾􏺾 􏾙􏾙

𝑙𝑙􏺽􏺽

𝑙𝑙􏺾􏺾
𝑘𝑘𝑘􏾦􏾦ℎ𝑘􏺾􏺾𝑚𝑚􏺽􏺽

     ×
𝑚𝑚􏺽􏺽 sin(𝑚𝑚􏺽􏺽𝐻𝐻𝐻 𝐻 𝐻𝐻􏺾􏺾 cos(𝑚𝑚􏺽􏺽𝐻𝐻𝐻
𝑚𝑚􏺽􏺽 cos(𝑚𝑚􏺽􏺽𝐻𝐻𝐻 𝐻 𝐻𝐻􏺾􏺾 sin(𝑚𝑚􏺽􏺽𝐻𝐻𝐻

𝑑𝑑𝑑𝑑􏿲􏿲.

The integral in (40), which gives the drag due to moun-
tain waves that propagate in the two atmospheric layers, 
must be evaluated numerically. Since the integrand in 
(41) is real, contributions to the drag from this integral 
only come from singularities along the real axis. These 
correspond to the modes of the trapped lee waves. These 
modes are given by the condition that the denominator 

in the integrand of (41) vanishes, that is

tan(𝑚𝑚􏺽􏺽𝐻𝐻𝐻 𝐻 𝐻
𝑚𝑚􏺽􏺽𝐻𝐻
𝑛𝑛􏺾􏺾𝐻𝐻

.

The wavenumber of each lee wave mode, say 𝑘𝑘𝑖𝑖 (with 
𝑖𝑖 𝑖 𝑖𝑖𝑖 𝑖𝑖𝑖 𝑖𝑖𝑖 ), can be found by solving (42) numerically. 
Then, the lee wave drag, which is produced by waves 
which are trapped in the lower atmospheric layer, can be 
calculated by finding the imaginary part of the integral 
in (40). In this calculation, which only receives contribu-
tions from the singularities on the real axis, the integra-
tion path must be indented above each singularity. This 
is because, with the addition of Rayleigh damping fric-
tional terms to the governing equations, the singularities 
move to the negative imaginary semi-plane. Then, it can 
be shown that the lee wave drag takes the form:

𝐷𝐷􏺾􏺾 = 􏻀􏻀􏻀􏻀􏺾􏺾𝜌𝜌􏺼􏺼𝑈𝑈
􏺾􏺾􏾝􏾝

𝑖𝑖

|􏾦􏾦ℎ|􏺾􏺾(𝑘𝑘𝑖𝑖)
𝑚𝑚􏺾􏺾
􏺽􏺽(𝑘𝑘𝑖𝑖)𝑛𝑛􏺾􏺾(𝑘𝑘𝑖𝑖)

􏺽􏺽 􏺽 𝑛𝑛􏺾􏺾(𝑘𝑘𝑖𝑖)𝐻𝐻
.

where the sum is performed over all lee wave modes.

concluding remarks

Two examples of mathematical methods that can be prof-
itably employed in the study of mountain waves have 
been described. Additional asymptotic techniques, such 
as the method of multiple scales, or matched asymptot-
ic expansions, to give only two examples, are routinely 
used in fluid mechanics, and can be applied to appropri-
ate problems in meteorology, or in the geosciences in 
general, as long as small parameters exist, of which the 
researcher may take advantage.

references

[1] Bender, C. M. and Orszag, S. A. (1999) Advanced 
Mathematical Methods for Scientists and Engineers. 
Springer, 593 pp. 

[2] Scorer, R. S. (1949) Theory of waves in the lee of 
mountains. Quarterly Journal of the Royal Meteorological 
Society, 75, 41–56.

[3] Smith, R. B. (1980) Linear theory of stratified hydrostatic 
flow past an isolated obstacle. Tellus, 32, 348–364. 

[4] Teixeira, M. A. C. and Miranda, P. M. A. (2004) The effect 
of wind shear and curvature on the gravity wave drag 
produced by a ridge. Journal of the Atmospheric Sciences, 
61, 2638–2643.

(40)

(41)

(42)

(43)

(35)

(36)

(37)

(38)

(39)



Bulletin #30 July 2011 25 

sTraTified models

Along this article 𝓛𝓛  is a first-order language with equal-
ity, no constant symbols, no function symbols and the 
logical symbols:

parentheses “)” and “(”

variables 𝑣𝑣􏺼􏺼, 𝑣𝑣􏺽􏺽, … , 𝑣𝑣𝑛𝑛, …
0-ary connective ⊥ (falsity, falsum, absurdum)

binary connective ⇒ (implication)

universal quantifier ∀

The basic definitions and conventions of 𝓛𝓛  are as usu-
al (see [2]); in particular, ¬𝜙𝜙 (“not” 𝜙𝜙), 𝜙𝜙 𝜙 𝜙𝜙, (𝜙𝜙 “or” 𝜓𝜓 ), 
𝜙𝜙 𝜙 𝜙𝜙 (𝜙𝜙 “and” 𝜓𝜓) and (∃𝑣𝑣𝑖𝑖)𝜙𝜙(𝑣𝑣𝑖𝑖) (“there is a” 𝑣𝑣𝑖𝑖 “such 
that” 𝜙𝜙𝜙𝜙𝜙𝑖𝑖)) abbreviate, respectively, 𝜙𝜙 𝜙 𝜙, (¬𝜙𝜙𝜙 𝜙 𝜙𝜙 , 
¬(¬𝜙𝜙𝜙 𝜙 (¬𝜙𝜙𝜙𝜙 and ¬(∀𝑣𝑣𝑖𝑖)¬𝜙𝜙(𝑣𝑣𝑖𝑖).
 The expressions Term(𝓛𝓛 ), Term𝐶𝐶(𝓛𝓛 ), Atom(𝓛𝓛 ) , 
Form(𝓛𝓛 ), Sent(𝓛𝓛 ), At(𝓛𝓛 ) denote, respectively, the 
classes of the terms, the closed terms, the atomic formu-
lae, the formulae, the sentences and the atomic sentences 
of whatever first-order language 𝓛𝓛  we are using.

Definition.—Let 𝑃𝑃 be a set and ≤ a total, dense, pre-
ordering relation on 𝑃𝑃. The expressions “𝑝𝑝 𝑝 𝑝𝑝” and 

“𝑝𝑝 𝑝≤ 𝑞𝑞” abbreviate, respectively: “𝑝𝑝 𝑝 𝑝𝑝 and 𝑞𝑞 𝑞 𝑞𝑞” and  
“𝑝𝑝 𝑝 𝑝𝑝 and 𝑞𝑞 𝑞 𝑞𝑞”, for each 𝑝𝑝𝑝 𝑝𝑝 𝑝 𝑝𝑝.

Stratified Models in First-Order Logic
by José Roquette*

The various nature of the mathematical objects in what concerns their complexity, our knowledge 
of them or the possibility to make them explicit (for example, infinitesimal or ilimited real numbers) 
is a strong motivation to consider their distribution into levels or strata. The stratification depends 
on the selected property (or properties) of the mathematical objects that are the subject-matter of 
our study.

* Departamento de Matemática, Instituto Superior Técnico: jroquet@math.ist.utl.pt

We will be interested on total dense preorderings 
ℙ = (𝑃𝑃𝑃 𝑃𝑃  having a ≤-minimal element 𝟘𝟘≤ (which we 
denote simply by 𝟘𝟘 when no confusion arises) and no 
≤-maximal element; more explicitely: 𝟘𝟘 𝟘 𝟘𝟘, for every 
𝑝𝑝 𝑝 𝑝𝑝 ; and given 𝑞𝑞 𝑞 𝑞𝑞 there is a 𝑝𝑝 𝑝 𝑝𝑝  such that 𝑞𝑞 𝑞 𝑞𝑞
and 𝑝𝑝 𝑝 𝑝𝑝.
 Fix ℙ = (𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃𝑃 as above and consider a class val-
ued function 𝐷𝐷 defined on 𝑃𝑃 such that, for each 𝑝𝑝 𝑝 𝑝𝑝 , 
the image of 𝑝𝑝 under 𝐷𝐷 is a non-empty class. For ℙ, 𝐷𝐷 
as before, a sequence 𝓕𝓕 𝓕𝓕 𝓕𝓕𝓕𝓕 𝓕𝓕 𝓕𝓕𝓕 𝓕𝓕𝓕 𝓕 𝓕𝓕𝓕 𝓕𝓕𝓕 is called a 
stratifying frame. The elements of 𝑃𝑃 are the nodes of 𝓕𝓕  
and for each 𝑝𝑝 𝑝 𝑝𝑝, the set 𝐷𝐷𝐷𝐷𝐷𝐷 is the domain of 𝓕𝓕  at the 
node 𝑝𝑝.
 To each 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 we associate a constant symbol 𝑎𝑎  
(using different constant symbols for different elements 
of 𝐷𝐷𝐷𝐷𝐷𝐷). If 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎, then the constant symbol as-
sociated with 𝑎𝑎 is the same.
 At this point it is convenient to introduce some ex-
tensions of the original first-order language 𝓛𝓛 .
By 𝓛𝓛∗, we understand the first-order extension of 𝓛𝓛  
defined as 𝓛𝓛∗ ∶= 𝓛𝓛 𝓛 𝓛𝓛𝓛𝓛 𝓛𝓛, where 𝟎𝟎 is a constant sym-
bol and ⊑  is a new binary relation symbol called pre- 
cedence of level.
 For each 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝 we denote by 𝓛𝓛𝑝𝑝

∗  the first-order 
extension of 𝓛𝓛∗ given by 𝓛𝓛𝑝𝑝

∗ ∶= 𝓛𝓛∗ ∪ {𝑎𝑎 𝑎 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑝𝑝𝑎𝑎.
 Finally, 𝓛𝓛+

∗  is the first-order extension of 𝓛𝓛∗ defined 
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as: 𝓛𝓛+
∗ ∶= ∪𝑝𝑝𝑝𝑝𝑝𝓛𝓛

𝑝𝑝
∗ . The language 𝓛𝓛∗ is the stratifying lan-

guage associated with 𝓛𝓛 .
 So, the class of all closed terms of 𝓛𝓛+

∗  is:

Term𝐶𝐶(𝓛𝓛
+
∗ ) = {𝑎𝑎 𝑎 (𝑎𝑎𝑎 𝑎 𝑎𝑎)𝑎𝑎 𝑎 𝑎𝑎(𝑎𝑎)𝑎 𝑎 {𝑎𝑎𝑎.

For any terms 𝑡𝑡􏺽􏺽, 𝑡𝑡􏺾􏺾 ∈ Term(𝓛𝓛
+
∗ ), the expression 𝑡𝑡􏺽􏺽 ⊏ 𝑡𝑡􏺾􏺾 

abbreviates “𝑡𝑡􏺽􏺽 ⊑ 𝑡𝑡􏺾􏺾  and 𝑡𝑡􏺾􏺾 ⋢ 𝑡𝑡􏺽􏺽”. (The relations 𝑡𝑡􏺽􏺽 ⊑ 𝑡𝑡􏺾􏺾  
and 𝑡𝑡􏺽􏺽 ⊏ 𝑡𝑡􏺾􏺾 must be read, respectively, as “𝑡𝑡􏺽􏺽 precedes 𝑡𝑡􏺾􏺾” 
and “𝑡𝑡􏺽􏺽 strictly precedes 𝑡𝑡􏺾􏺾”.)
 Consider a function 𝑉𝑉  defined on Term𝐶𝐶(𝓛𝓛

+
∗ ) and 

with values in 𝑃𝑃 such that 𝑉𝑉𝑉𝑉𝑉𝑉 𝑉 𝑉𝑉, 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and for 
each 𝑝𝑝 𝑝 𝑝𝑝 if 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎, then 𝑉𝑉𝑉𝑎𝑎𝑎 𝑎 𝑎𝑎 and 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎, for ar-
bitrary 𝑞𝑞 𝑞 𝑞𝑞𝑞𝑎𝑎𝑎 in 𝑃𝑃. (𝑉𝑉𝑉𝑎𝑎𝑎 must be thought as “the”{1} 
first level of interpretation of 𝑎𝑎 .)
 Having described how closed terms are interpreted 
we will now make the necessary preparatory steps to-
wards the description of the semantics in stratified models 
(a concept to be introduced later). Consider a function 
Σ defined on 𝑃𝑃 such that, for each 𝑝𝑝 𝑝 𝑝𝑝, the value of 𝑝𝑝 
under Σ is a set of atomic sentences of 𝓛𝓛𝑝𝑝

∗ . (The set Σ(𝑝𝑝𝑝 
establish, for each 𝑝𝑝 𝑝 𝑝𝑝 the “basic truths” at 𝑝𝑝.)
 The functions 𝐷𝐷, Σ and 𝑉𝑉  satisfy the following con-
ditions:

1. If 𝑝𝑝 𝑝 𝑝𝑝, then 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷 𝐷𝐷𝐷𝐷𝐷𝐷.
2. ⊥ ∉ Σ(𝑝𝑝𝑝, for every 𝑝𝑝.

3. If 𝑝𝑝 𝑝 𝑝𝑝, then Σ(𝑝𝑝𝑝 𝑝 Σ(𝑝𝑝𝑝.
4. The formula 𝑎𝑎􏺽􏺽 = 𝑎𝑎􏺾􏺾 is in Σ(𝑝𝑝𝑝 iff 𝑉𝑉𝑉𝑎𝑎􏺽􏺽) ≤ 𝑝𝑝, 

𝑉𝑉𝑉𝑎𝑎􏺾􏺾) ≤ 𝑝𝑝 and 𝑎𝑎􏺽􏺽 = 𝑎𝑎􏺾􏺾.
5. the formula 𝑎𝑎􏺽􏺽 ⊑ 𝑎𝑎􏺾􏺾 is in Σ(𝑝𝑝𝑝 iff 

𝑉𝑉𝑉𝑉𝑉􏺽􏺽) ≤ 𝑉𝑉𝑉𝑉𝑉􏺾􏺾) ≤ 𝑝𝑝.
6. If 𝑅𝑅𝑖𝑖 is a 𝑛𝑛𝑖𝑖-ary relation symbol of 𝓛𝓛  

and 𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛𝑖𝑖 , 𝑏𝑏􏺽􏺽, … , 𝑏𝑏𝑛𝑛𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷 with 
𝑎𝑎􏺽􏺽 = 𝑏𝑏􏺽􏺽, … , 𝑎𝑎𝑛𝑛𝑖𝑖 = 𝑏𝑏𝑛𝑛𝑖𝑖, then: 𝑅𝑅𝑖𝑖(𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛𝑖𝑖 ) in Σ(𝑝𝑝𝑝 
implies that 𝑅𝑅𝑅𝑏𝑏􏺽􏺽, … , 𝑏𝑏𝑛𝑛𝑖𝑖 ) is in Σ(𝑝𝑝𝑝. (Evidently, 
if 𝑅𝑅𝑖𝑖 is a 𝑛𝑛𝑖𝑖-ary relation symbol of 𝓛𝓛  and 
𝑅𝑅𝑖𝑖(𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛𝑖𝑖 ) is in Σ(𝑝𝑝𝑝, then: 𝑉𝑉𝑉𝑉𝑉𝑗𝑗) ≤ 𝑝𝑝 [for 
􏺽􏺽 􏺽 􏺽􏺽 􏺽 􏺽􏺽𝑖𝑖] since Σ(𝑝𝑝𝑝 consists of atomic 
formulas of 𝓛𝓛𝑝𝑝

∗ .

Definition.—For 𝑃𝑃, ≤, 𝐷𝐷, Σ, 𝑉𝑉 , 𝟘𝟘 as described previous-
ly let 𝓕𝓕 𝓕𝓕 𝓕𝓕𝓕𝓕 𝓕𝓕 𝓕𝓕𝓕 𝓕𝓕𝓕 be a stratifying frame. A stratified 
model for 𝓛𝓛∗ is a sequence 𝓢𝓢∗ ∶= (𝓕𝓕𝓕 𝓕𝓕 𝓕𝓕𝓕 𝓕𝓕𝓕 such that,

1. 􏺼􏺼 􏺼 􏺼􏺼 (𝟘𝟘𝟘;
2. 􏺼􏺼 is identified with 𝟎𝟎.

The nodes of 𝓢𝓢∗ and the domain of 𝓢𝓢∗ at each 𝑝𝑝 𝑝 𝑝𝑝 are 
those of 𝓕𝓕 .
Remark.—If 𝓢𝓢∗ = (𝓕𝓕𝓕 𝓕𝓕 𝓕𝓕𝓕 𝓕𝓕𝓕  is a stratified model for 𝓛𝓛∗ , 
then it is easy to prove that 𝑃𝑃 is an infinite set and, at each 

𝑝𝑝 𝑝 𝑝𝑝, 𝐷𝐷 and Σ determine a classical structure (see [1]) 
𝔄𝔄𝑝𝑝 whose domain (which we denote by |𝔄𝔄𝑝𝑝|) is 𝐷𝐷𝐷𝐷𝐷𝐷 and:

1. if 𝑝𝑝 𝑝 𝑝𝑝, then |𝔄𝔄𝑝𝑝| ⊆ |𝔄𝔄𝑞𝑞|.
2. The interpretations 𝑅𝑅𝔄𝔄𝑝𝑝𝑖𝑖  of a 𝑛𝑛𝑖𝑖-ary relation 

symbol 𝑅𝑅𝑖𝑖 of 𝓛𝓛  and ⊑𝔄𝔄𝑝𝑝 of ⊑ are: 𝑅𝑅
𝔄𝔄𝑝𝑝
𝑖𝑖 (𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛𝑖𝑖 ) 

iff the formula 𝑅𝑅𝑖𝑖(𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛𝑖𝑖 ) belongs to Σ(𝑝𝑝𝑝, and 
𝑎𝑎􏺽􏺽 ⊑𝔄𝔄𝑝𝑝 𝑎𝑎􏺾􏺾 iff the formula 𝑎𝑎􏺽􏺽 ⊑ 𝑎𝑎􏺾􏺾 belongs to Σ(𝑝𝑝𝑝.

So, for 𝑝𝑝 𝑝 𝑝𝑝 we have that 𝑅𝑅𝔄𝔄𝑝𝑝𝑖𝑖 ⊆ 𝑅𝑅𝔄𝔄𝑞𝑞𝑖𝑖  (i.e. 𝑅𝑅𝔄𝔄𝑞𝑞𝑖𝑖  
extends 𝑅𝑅𝔄𝔄𝑝𝑝𝑖𝑖 ) and ⊑𝔄𝔄𝑝𝑝⊆⊑𝔄𝔄𝑞𝑞 (i.e. ⊑𝔄𝔄𝑞𝑞 extends ⊑𝔄𝔄𝑝𝑝).

3. 𝑎𝑎𝔄𝔄𝑝𝑝 ∶= 𝑎𝑎 for every 𝑝𝑝 𝑝 𝑝𝑝 and for every 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎;
4. in particular, since 𝟎𝟎 is 􏺼􏺼 we obtain, 𝟎𝟎𝔄𝔄𝑝𝑝 ∶= 􏺼􏺼 for 

every 𝑝𝑝 𝑝 𝑝𝑝.

Proposition.—Let 𝓢𝓢∗ ∶= (𝓕𝓕𝓕 𝓕𝓕 𝓕𝓕𝓕 𝓕𝓕𝓕  be a stratified 
model for 𝓛𝓛∗. Then,

1. if 𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛 are closed terms of 𝓛𝓛+
∗ , then there is 

a 𝑝𝑝 𝑝 𝑝𝑝 such that: 
𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷 and 𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷 implies 
𝑝𝑝 𝑝 𝑝𝑝, for every 𝑞𝑞 𝑞 𝑞𝑞 
(we refere to this last proposition as “(*)”).

2. If 𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛 are closed terms of 𝓛𝓛+
∗ , then there is 

a 𝑝𝑝 𝑝 𝑝𝑝 such that: 𝑉𝑉𝑉𝑎𝑎𝑗𝑗) ≤ 𝑝𝑝 (for 􏺽􏺽 􏺽 􏺽􏺽 􏺽 􏺽􏺽) and 
if 𝑉𝑉𝑉𝑎𝑎𝑗𝑗) ≤ 𝑞𝑞 (for 􏺽􏺽 􏺽 􏺽􏺽 􏺽 􏺽􏺽), then 𝑝𝑝 𝑝 𝑝𝑝, for every 
𝑞𝑞 𝑞 𝑞𝑞.

3. If 𝑝𝑝􏺽􏺽, 𝑝𝑝􏺾􏺾 ∈ 𝑃𝑃 satisfy proposition (*), then 
𝑝𝑝􏺽􏺽 =≤ 𝑝𝑝􏺾􏺾.

If 𝓢𝓢∗ ∶= (𝓕𝓕𝓕 𝓕𝓕 𝓕𝓕𝓕 𝓕𝓕𝓕  is a stratified model for 𝓛𝓛∗  and 
𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛 are closed terms of 𝓛𝓛+

∗ , we define 𝑉𝑉𝑉𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛) as 
“the” 𝑝𝑝 (unique modulo =≤) satisfying the proposition (*).
(The level 𝑉𝑉𝑉𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛) is “the” first level of interpretation 
of all the 𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛.)

sTraTified semanTics

In order to completely characterize the semantics in 
stratified models, we need to extend the considerations 
made in the previous section to arbitrary formulae. The 
next proposition fully describes the situation. In fact, by 
induction on the complexity of formulae we can prove 
the following,

Proposition.—Let 𝓢𝓢∗ ∶= (𝓕𝓕𝓕 𝓕𝓕 𝓕𝓕𝓕 𝓕𝓕𝓕  be a stratified 
model for 𝓛𝓛∗. Then there exists a unique function Σ∗ , 
defined on 𝑃𝑃, such that for each 𝑝𝑝 𝑝 𝑝𝑝, Σ(𝑝𝑝𝑝 is a subset 
of Σ∗(𝑝𝑝𝑝 which consists of sentences of 𝓛𝓛𝑝𝑝

∗  and

1. if 𝜙𝜙 is an atomic formula of 𝓛𝓛𝑝𝑝
∗  and 𝜙𝜙 𝜙 𝜙𝜙𝜙𝜙𝜙, 

then 𝜙𝜙 𝜙 𝜙∗(𝑝𝑝𝑝.

{1} The definite article refers to the binary relation =≤.
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2. if 𝜙𝜙 𝜙 𝜙𝜙 is a formula of 𝓛𝓛+
∗  then 𝜙𝜙 𝜙 𝜙𝜙 

belongs to Σ∗(𝑝𝑝𝑝 iff 𝜙𝜙 𝜙 𝜙∗(𝑝𝑝𝑝 or 𝜓𝜓 𝜓 𝜓∗(𝑝𝑝𝑝 and 
both 𝜙𝜙 and 𝜓𝜓 are sentences of 𝓛𝓛𝑝𝑝

∗ .

3. if (∀𝑣𝑣𝑖𝑖)𝜙𝜙(𝑣𝑣𝑖𝑖) is a formula of 𝓛𝓛+
∗  then (∀𝑣𝑣𝑖𝑖)𝜙𝜙(𝑣𝑣𝑖𝑖) 

belongs to Σ∗(𝑝𝑝𝑝 iff 𝜙𝜙𝜙𝑎𝑎𝑎 belongs to Σ∗(𝑝𝑝𝑝, for 
every 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎.

Notation.—{2} We write 𝑝𝑝 𝑝 𝑝𝑝 for 𝜙𝜙 𝜙 𝜙∗(𝑝𝑝𝑝 (read “𝑝𝑝
forces 𝜙𝜙”).

So, we have, for each 𝑝𝑝 𝑝 𝑝𝑝:

1. 𝑝𝑝 𝑝 𝑎𝑎􏺽􏺽 = 𝑎𝑎􏺾􏺾 iff 𝑉𝑉𝑉𝑎𝑎􏺽􏺽) ≤ 𝑝𝑝, 𝑉𝑉𝑉𝑎𝑎􏺾􏺾) ≤ 𝑝𝑝 and 𝑎𝑎􏺽􏺽 = 𝑎𝑎􏺾􏺾.
2. 𝑝𝑝 𝑝 𝑎𝑎􏺽􏺽 ⊑ 𝑎𝑎􏺾􏺾 iff 𝑉𝑉𝑉𝑎𝑎􏺽􏺽) ≤ 𝑉𝑉𝑉𝑎𝑎􏺾􏺾) ≤ 𝑝𝑝.
3. 𝑝𝑝 𝑝 𝑝.

4. 𝑝𝑝 𝑝 𝑝𝑝 𝑝 𝑝𝑝 iff 𝑝𝑝 𝑝 𝑝𝑝 or 𝑝𝑝 𝑝 𝑝𝑝, for all sentences 
𝜙𝜙 and 𝜓𝜓 of 𝓛𝓛𝑝𝑝

∗ .

5. 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑖𝑖)𝜙𝜙𝑝𝑝𝑝𝑖𝑖) iff 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑎𝑎𝑎, for every 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎.

As a direct consequence of the proposition above we 
can derive a few more properties of the forcing relation:

6. 𝑝𝑝 𝑝 𝑝𝑝𝑝 iff 𝑝𝑝 𝑝 𝑝𝑝.

7. 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝 iff 𝑝𝑝 𝑝 𝑝𝑝, for every sentence 𝜙𝜙 of 𝓛𝓛𝑝𝑝
∗ .

8. 𝑝𝑝 𝑝 𝑝𝑝 𝑝 𝑝𝑝 iff 𝑝𝑝 𝑝 𝑝𝑝 or 𝑝𝑝 𝑝 𝑝𝑝.

9. 𝑝𝑝 𝑝 𝑝𝑝 𝑝 𝑝𝑝 iff 𝑝𝑝 𝑝 𝑝𝑝 and 𝑝𝑝 𝑝 𝑝𝑝, for all sentences 
𝜙𝜙 and 𝜓𝜓 of 𝓛𝓛𝑝𝑝

∗ .

10. 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑖𝑖)𝜙𝜙𝑝𝑝𝑝𝑖𝑖) iff there is an 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 such that 
𝑝𝑝 𝑝 𝑝𝑝𝑝𝑎𝑎𝑎.

11. 𝑉𝑉𝑉𝑎𝑎􏺽􏺽) ⊩ 𝑎𝑎􏺽􏺽 ⊑ 𝑎𝑎􏺾􏺾 iff 𝑉𝑉𝑉𝑎𝑎􏺽􏺽) =≤ 𝑉𝑉𝑉𝑎𝑎􏺾􏺾).
11. 𝑉𝑉𝑉𝑎𝑎􏺾􏺾) ⊩ 𝑎𝑎􏺽􏺽 ⊑ 𝑎𝑎􏺾􏺾 iff 𝑉𝑉𝑉𝑎𝑎􏺽􏺽) ≤ 𝑉𝑉𝑉𝑎𝑎􏺾􏺾).
12. 𝑝𝑝 𝑝 𝑎𝑎􏺽􏺽 ⊏ 𝑎𝑎􏺾􏺾 iff 𝑉𝑉𝑉𝑎𝑎􏺽􏺽) < 𝑉𝑉𝑉𝑎𝑎􏺾􏺾) ≤ 𝑝𝑝.

Definition.—If 𝓢𝓢∗ ∶= (𝓕𝓕𝓕 𝓕𝓕 𝓕𝓕𝓕 𝓕𝓕𝓕 is a stratified model 
for 𝓛𝓛∗ and 𝜙𝜙 is a formula of 𝓛𝓛∗,{3} we define: 𝑝𝑝 𝑝 𝑝𝑝 iff 
𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝, where cl(𝜙𝜙𝜙 is the universal closure of 𝜙𝜙 .

Proposition.—Let 𝓢𝓢∗ ∶= (𝓕𝓕𝓕 𝓕𝓕 𝓕𝓕𝓕 𝓕𝓕𝓕  be a stratified 
model for 𝓛𝓛∗. Then, if 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 are different variables 
of 𝓛𝓛 :

1. 𝑝𝑝 𝑝 𝑝𝑝𝑖𝑖 ⊑ 𝑝𝑝𝑖𝑖, for each 𝑝𝑝 𝑝 𝑝𝑝.

2. 𝑝𝑝 𝑝 𝑝𝑝𝑖𝑖 ⊑ 𝑝𝑝𝑗𝑗 iff 𝑉𝑉𝑉𝑎𝑎𝑎 𝑎≤ 𝑉𝑉𝑉𝑏𝑏𝑎, for every 𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎.
3. 𝑝𝑝 𝑝 𝑝𝑝𝑖𝑖 ⊑ 𝟎𝟎 iff 𝑉𝑉𝑉𝑎𝑎𝑎 𝑎≤ 𝟘𝟘, for every 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎.
4. 𝑝𝑝 𝑝 𝑝𝑝 𝑝 𝑝𝑝𝑖𝑖, for each 𝑝𝑝 𝑝 𝑝𝑝.

In certain circumstances truth is preserved when moving 
to an upper strata. The next definition isolates classes of 
formulae for which this is indeed the case.

Let 𝓕𝓕 𝓕𝓕 𝓕𝓕𝓕𝓕 𝓕𝓕 𝓕𝓕𝓕 𝓕𝓕𝓕 be a stratifying frame. The classes of 
the elementary progressive and the elementary regressive 
sentences of 𝓛𝓛+

∗ , denoted, respectively, by Prg􏺼􏺼(𝓛𝓛
+
∗ ) and 

Rgr􏺼􏺼(𝓛𝓛
+
∗ ), are defined inductively as follows:

P1 If 𝜙𝜙 is an atomic formula of 𝓛𝓛+
∗ , then 𝜙𝜙 is 

elementary progressive.

P2 If 𝜙𝜙􏺽􏺽 and 𝜙𝜙􏺾􏺾 are elementary progressive, then 
𝜙𝜙􏺽􏺽 ∧ 𝜙𝜙􏺾􏺾 and 𝜙𝜙􏺽􏺽 ∨ 𝜙𝜙􏺾􏺾 are elementary progressive.

R1 ⊥ is elementary regressive and if 𝜙𝜙 is an atomic 
sentence of 𝓛𝓛+

∗ , different from ⊥, then ¬𝜙𝜙 is 
elementary regressive.

R2 If 𝜙𝜙􏺽􏺽 and 𝜙𝜙􏺾􏺾 are elementary regressive, then 
𝜙𝜙􏺽􏺽 ∧ 𝜙𝜙􏺾􏺾 and 𝜙𝜙􏺽􏺽 ∨ 𝜙𝜙􏺾􏺾 are elementary regressive.

PR If 𝜙𝜙􏺽􏺽 is elementary progressive and 𝜙𝜙􏺾􏺾 is 
elementary regressive, then 𝜙𝜙􏺽􏺽 ⇒ 𝜙𝜙􏺾􏺾 is elementary 
regressive.

RP If 𝜙𝜙􏺽􏺽 is elementary regressive and 𝜙𝜙􏺾􏺾 is elementary 
progressive, then 𝜙𝜙􏺽􏺽 ⇒ 𝜙𝜙􏺾􏺾 is elementary 
progressive.

We may now define the classes of the extended elemen-
tary progressive and the extended elementary regressive 
sentences of 𝓛𝓛+

∗ , denoted, respectively, by Prg(𝓛𝓛 +
∗ ) and 

Rgr(𝓛𝓛 +
∗ ):

Pi If 𝜙𝜙 is elementary progressive, then 𝜙𝜙 is extended 
elementary progressive.

Pii If 𝜙𝜙𝜙𝜙𝜙𝑖𝑖) is a formula of 𝓛𝓛+
∗  such that for each 

𝑝𝑝 𝑝 𝑝𝑝 and 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎, the formula 𝜙𝜙𝜙𝜙𝜙𝜙 is elementary 
progressive, then (∃𝑣𝑣𝑖𝑖)𝜙𝜙(𝑣𝑣𝑖𝑖) is extended elementary 
progressive.

Ri If 𝜙𝜙 is elementary regressive, then it is extended 
elementary regressive.

Rii If 𝜙𝜙𝜙𝜙𝜙𝑖𝑖) is a formula of 𝓛𝓛+
∗  such that for each 

𝑝𝑝 𝑝 𝑝𝑝 and 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎, the formula 𝜙𝜙𝜙𝑎𝑎𝑎 is elementary 
regressive, then (∀𝑣𝑣𝑖𝑖)𝜙𝜙(𝑣𝑣𝑖𝑖) is extended elementary 
regressive.

For these classes of sentences the weak monotonicity 
of the forcing relation holds, i.e. if 𝓢𝓢∗ = (𝓕𝓕𝓕 𝓕𝓕 𝓕𝓕𝓕 𝓕𝓕𝓕 is a 
stratified model for 𝓛𝓛∗, then 𝑝𝑝 𝑝 𝑝𝑝 implies that if 𝑝𝑝 𝑝 𝑝𝑝 , 

{2} For a modal view of forcing, see [6].
{3} Every sentence of 𝓛𝓛∗ is also a sentence of 𝓛𝓛𝑝𝑝

∗  and every formula of 𝓛𝓛∗ is also a formula of 𝓛𝓛𝑝𝑝
∗ .
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then 𝑞𝑞 𝑞 𝑞𝑞 for every extended elementary progressive 
sentence 𝜙𝜙 of 𝓛𝓛𝑝𝑝

∗  and 𝑝𝑝 𝑝 𝑝𝑝 implies that if 𝑞𝑞 𝑞 𝑞𝑞, then 
𝑝𝑝 𝑝 𝑝𝑝, for every extended elementary regressive sentence 
𝜙𝜙 of 𝓛𝓛𝑝𝑝

∗ .
 The following notions are in part borrowed, in part 
adapted from first order-logic:

1. If 𝜙𝜙 is a sentence of 𝓛𝓛∗ and 𝓢𝓢∗ ∶= (𝓕𝓕𝓕 𝓕𝓕 𝓕𝓕𝓕 𝓕𝓕𝓕 is a 
stratified model for 𝓛𝓛∗ we define 𝓢𝓢∗ ⊩ 𝜙𝜙 (read 

“𝓢𝓢∗ forces 𝜙𝜙” or “𝓢𝓢∗ is a stratified model of 𝜙𝜙”) as:
𝓢𝓢∗ ⊩ 𝜙𝜙 iff 𝑝𝑝 𝑝 𝑝𝑝, for every 𝑝𝑝 𝑝 𝑝𝑝.

 We also define ⊩ 𝜙𝜙 (read “𝜙𝜙 is universally valid” or 
“𝜙𝜙 is valid”) as: ⊩ 𝜙𝜙 iff 𝓢𝓢∗ ⊩ 𝜙𝜙, for every stratified 
model 𝓢𝓢∗ for 𝓛𝓛∗.

 If 𝛥𝛥 is a set of sentences of 𝓛𝓛∗, we define 𝓢𝓢∗ ⊩ 𝛥𝛥 
(read “𝓢𝓢∗ forces 𝛥𝛥” or “𝓢𝓢∗ is a stratified model of 
𝛥𝛥”) as: 𝓢𝓢∗ ⊩ 𝛥𝛥 iff 𝓢𝓢∗ ⊩ 𝜙𝜙, for every 𝜙𝜙 𝜙 𝜙𝜙.

2. If 𝛤𝛤 𝛤 𝛤𝛤𝛤𝛤 is a set of sentences of 𝓛𝓛∗ , we define 
𝛤𝛤 𝛤 𝛤𝛤 (read “𝜙𝜙 is a stratified logical consequence 
of 𝛤𝛤”) as: 𝛤𝛤 𝛤 𝛤𝛤 iff for every stratified model 𝓢𝓢∗, 
if 𝓢𝓢∗ ⊩ 𝛤𝛤 , then 𝓢𝓢∗ ⊩ 𝜙𝜙.

 If 𝛤𝛤 𝛤 𝛤𝛤𝛤𝛤 is a set of fomulas of 𝓛𝓛∗ and the free 
variabes of the formulas in 𝛤𝛤 𝛤 𝛤𝛤𝛤𝛤 are among 
𝑣𝑣𝑖𝑖􏺽􏺽 , … , 𝑣𝑣𝑖𝑖𝑛𝑛, we define 𝛤𝛤 𝛤 𝛤𝛤 (read “𝜙𝜙 is a stratified 
logical consequence of 𝛤𝛤”) as: 𝛤𝛤 𝛤 𝛤𝛤 iff for every 
stratified model 𝓢𝓢∗, for every 𝑝𝑝 𝑝 𝑝𝑝 and for 
every 𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷, if 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛) , then 
𝑝𝑝 𝑝 𝑝𝑝𝑝𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛); where 𝑝𝑝 𝑝 𝑝𝑝𝑝𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛) abbreviates:  

“𝑝𝑝 𝑝 𝑝𝑝𝑝𝑎𝑎􏺽􏺽, … , 𝑎𝑎𝑛𝑛), for every 𝜓𝜓 𝜓 𝜓𝜓 .

soundness, conservaTiveness and 
comPleTeness

Along the two preceding sections we described models 
(and the corresponding semantics) for stratified first-
order logic. But a logical system is not completely de-
scribed before we introduce a notion of formal proof—a 
syntactical device conceived to capture truth. Soundness 
and completeness in a certain extent measure the adequa-
cy of this formal device to its purpose. In this case the 
notion of proof generalizes the usual one in the case of 
first-order logic with equality (see [2]). We will skip the 

details here being enough to know that a formal proof 
of a formula 𝜙𝜙 is a tree, each node of it is a formula ob-
tained from nodes that are immediate successors of it by 
applying some basic rule of inference, the bottom node of 
that tree being the formula 𝜙𝜙. As a matter of fact proofs 
are well-founded trees, a fact that allows a form of in-
duction on “proof complexity”.
 As we said before our basic rules of inference are 
those of first-order logic and four more rules that deal 
with the novelty relatively to first-order logic—the bina-
ry precedence of level predicate (see Figure 1). We present 
them here just for the sake of completeness. The non-
specialist can safely ignore them since the understanding 
of their meaning is of no importance for the sequel.
 The soundness theorem establishes precisely the fact 
that if a formula 𝜙𝜙 can be formaly proved or derived from 
hypothesis on a set of 𝓛𝓛∗-formulas 𝛤𝛤 , then 𝜙𝜙 is true in 
every stratified model of 𝛤𝛤 . Using the notation 𝛤𝛤 𝛤 𝛤𝛤 to 
indicate the fact that there is a derivation of 𝜙𝜙 with hy-
pothesis in 𝛤𝛤  the soundeness theorem is usually restated 
as

if 𝛤𝛤 𝛤 𝛤𝛤 then 𝛤𝛤 𝛤 𝛤𝛤.

(The soundness theorem can be proved using induction 
on the derivation of 𝜙𝜙 from 𝛤𝛤 .)
 It is typical of mathematical reasoning to adopt dif-
ferent frameworks to represent the same objects just for 
the sake of making these objects more understandable 
or making easier to establish relations between them. It 
is well known that Hilbert tought that this was the case 
of the use of infinitary notions. Hilbert was correct only 
to a certain extent. But this attitude revealed fruitful in 
fields of mathematics such as non-standard analysis or 
more generaly in the field of mathematical logic via non-
standard models.
 The stratified first-order logic which we have been 
describing is relatively to first-order logic in this exact 
relation. In fact we can prove a result of conservative-
ness, more precisely: if 𝛤𝛤 𝛤 𝛤𝛤𝛤𝛤 are formulas of 𝓛𝓛 , then 
𝛤𝛤 𝛤 𝛤𝛤 in the context of first-order logic iff 𝛤𝛤 𝛤 𝛤𝛤 in the 
context of stratified first-order logic.
 The semantic analog of this relation (the seman-
tic extension property) can be obtained from this, the 

Figure 1. Precedence of Level Rules

(PLR􏻀􏻀)𝟎𝟎 𝟎 𝟎𝟎𝑖𝑖
(PLR􏺿􏺿)𝑣𝑣𝑖𝑖 ⊑ 𝑣𝑣𝑗𝑗 ∨ 𝑣𝑣𝑗𝑗 ⊑ 𝑣𝑣𝑖𝑖

(PLR􏺾􏺾)𝑣𝑣𝑖𝑖 ⊑ 𝑣𝑣𝑗𝑗 ∧ 𝑣𝑣𝑗𝑗 ⊑ 𝑣𝑣𝑘𝑘 ⇒ 𝑣𝑣𝑖𝑖 ⊑ 𝑣𝑣𝑘𝑘
(PLR􏺽􏺽)𝑣𝑣𝑖𝑖 ⊑ 𝑣𝑣𝑖𝑖
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completeness theorem for first-order logic and stratified 
soundness. The semantic extension property establishes 
that if 𝜙𝜙 is a logical consequence of 𝛤𝛤 , then it is a strati-
fied consequence of 𝛤𝛤 . In fact, by completeness of first-
order logic if 𝜙𝜙 is a logical consequence of 𝛤𝛤  then there 
is a proof of 𝜙𝜙 from 𝛤𝛤 . By conservativeness there is also 
a stratified proof of 𝜙𝜙 from 𝛤𝛤 . And using soundness, we 
can conclude that 𝜙𝜙 is a stratified consequence of 𝛤𝛤 .

Definition.—We denote by 𝓟𝓟𝑐𝑐(Sent(𝓛𝓛∗)) the set of all 
𝛤𝛤 𝛤 𝛤𝛤𝛤𝛤𝛤𝛤∗) such that whenever 𝛤𝛤 as a first-order model, 
then 𝛤𝛤  has a stratified model.

Using the previous definition and the completeness the-
orem for first-order logic we can easily prove the fol-
lowing result.

Theorem [Completeness].—If 𝛤𝛤  is a consistent{4} sub-
set of Sent(𝓛𝓛∗) and 𝛤𝛤 𝛤 𝛤𝛤𝛤𝛤𝛤 𝛤 𝛤𝛤𝑐𝑐(Sent(𝓛𝓛∗)), then: if 𝜙𝜙 is 
a stratified consequence of 𝛤𝛤 , then there is a proof of 𝜙𝜙 
with hypothesis in 𝛤𝛤 .

conclusion

The stratification presented in this work may be applied 
to any theory (in the usual, informal sense, of this word) 

{4} Here as elsewhere in this work, “consistent” has the usual meaning in first-order logic.

{5} For a different approach, see [3], [4].

formalizable in a first-order language like 𝓛𝓛 . So, we may 
stratify ZFC{5} or even such theories as Nelson inter-
nal set theory, IST, or Hrbacek set theory, HST, that are 
largely used in nonstandard analysis (see[5]).
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In 2000 the World Mathematical Year offered an occa-
sion for a collective reflection on the great challenges of 
the 21st Century, on the role of Mathematics as a key for 
the development and on the importance of the image of 
Mathematics in the public understanding. The count-
less repeated phrase “the Universe is written in math-
ematics language”, written by Galileu in 1614, is truer 
than ever but it raises new challenges in the current age 
of data-intensive science driven, in particular, by the in-
formation and communication technologies. The “rising 
tide of scientific data” created by the digital revolution 
provides new possibilities to face some of society’s great 
challenges of energy and water supply, global warming 
and healthcare.
 During the last centuries, Mathematics has devel-
oped a “universal method for the study of the systems”. 
In particular, for the Planet Earth System, Jacques-Louis 
Lions synthesized in his book “El planeta Tierra. El papel 
de las matemáticas y de los superordenadores” (Madrid, 
1990) that universal method in three parts: the mathe-
matical modelling; the analysis and the simulation; and 
the control of the systems.
 In 2007 a scientific workshop on “Climate Change: 
From Global Models to Local Action”, organized by 
the Mathematical Sciences Research Institute, in Berke-
ley, identified several mathematical research topics that 
might contribute to resolving problems whose solutions 
have a large societal impact. From high dimensional sys-
tems to model reduction, from multiscale computations 
to data assimilation, from uncertainty quantification to 
economics and societal aspects, the areas of mathematics 
that might have a significant role in those problems vary 
from dynamical systems and nonlinear differential equa-
tions to asymptotic and numerical analysis, from compu-
tational science to statistics and operations research, or 
from stochastic processes to game and control theories.
 During the 2010 International Congress of Math-
ematicians, held in Hyderabad, India, at the meeting 
of delegates of the International Mathematical Sciences 
Institutes, Christiane Rousseau has presented an invita-
tion to Institutes and Societies in Mathematical Scienc-
es around the World: Mathematics of the Planet Earth 

The Planet Earth System, a challenge to 
mathematicians
by José Francisco Rodrigues*

— 2013 www.mpe2013.org. This initiative, first launched in 
USA and Canada, has now many partners in Europe and 
around the world and consists of holding a year of ac-
tivities in 2013 under that theme. The project is to hold 
scientific activities, research programmes and activities 
for the public, the media and the schools.
 Some institutions already announced activities or 
made calls for proposals. For instance, the Centre de Re-
cerca Matemàtica, Barcelona, will be organizing in the 
summer 2012 a special activity entitled “The Mathemat-
ics of Biodiversity”. The Centre de recherches mathéma-
tiques, Montréal, is considering to organize a thematic 
semester on “Biodiversity and Sustainable Develop-
ment”, during the fall of 2013, and to partner with other 
Canadian institutes in the organization of a program on 

“Models and Methods in Ecology, Epidemiology and 
Public health”. The Portuguese Centro Internacional de 
Matemática (CIM), in collaboration with two research 
associates of the University of Lisbon, the CMAF and 
the Instituto Dom Luiz, has made a first public session 
the 6th May 2011 to present the MPE2013 initiative and 
to call for collaboration and initiatives in Portugal under 
the theme Mathematics of the Planet Earth. In addition, 
several mathematical societies, including the European 
Mathematical Society and the Portuguese Mathematical 
Society are also planning to participate with initiatives 
related to that theme.
 On the other hand, it has been suggested for the year 
2013 the organization of A Global Exhibition on Math-
ematics of Planet Earth of a new type. The proposal is 
to have an Open Source Exhibition with modules that 
could be reproduced and utilized by many users around 
the world from science centres and museums to schools. 
The realization will not be centralized. It will rather be 
split among many partners around the world, possibly 
with collaborative networks of participants. Some coor-
dination by an international committee on exhibits and 
museums associated to the MPE2013 initiative is under 
preparation. The exhibition will have a virtual part, as 
well as several material parts. Copies of the material parts 
could be recreated or travel around the world and the 
virtual modules could be available on the basis of creative 

* Universidade de Lisboa
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a PlaneT To discover: oceans; meteorology and climate; 
mantle processes, natural resources; celestial mechanics; 
cartography.

1.—Crystallography: The crystallographic groups 
describe the different possible symmetries of the tilings 
of 3-dimensional space which are invariant under three 
independent translations. There are applications in the 
structure of crystals inside rocks. More generally, in 
chemistry, crystallography is the science of the arrange-
ments of atoms inside a solid. Some arrangements are 
denser than others and the density of the packings is 
related to the chemical properties of the chemical ele-
ments. On the mathematical side, density of packings is 
linked with Kepler conjecture on the densest packing of 
spheres. Different densities can be studied: the densest 
one, the random density when spheres are packed at ran-
dom. The same questions can be asked for objects with 
other shapes than spheres. More recently, mineralogical 
finding offered evidence that quasicrystals might form 
naturally under suitable geological conditions.
2.—Fractals provide models for the shapes of na-
ture: Rocky coasts, ferns, the networks of brooks and 
rivers, for instance deltas. The fractal dimension is a 
measure of the “density” of a fractal which allows to 
compare the density of different fractals.

 3. The movements of the Earth and the planets in 
the Solar system: The inner planets (Mercury, Venus, 
the Earth and Mars) have chaotic motions. Simulations 
show a 1% chance that Mercury be destabilized and en-
counters a collision with the Sun or Venus.  There is a 
much smaller chance that all the inner planets be desta-
bilized and that there could be a collision between the 
Earth and either Venus or Mars in ~3.3Gyr.

4.—The role of the Moon to stabilize the axis of 
the Earth. If we remove the Moon, then simulations 
show that the Earth’s axis would undergo large oscil-
lations and we would not experience the climates that 
we now have. In the same spirit there are recent studies 
making the link between the changes of the parameters of 
the Earth: angle of the axis, eccentricity of the orbit, etc. 
and the past climates of the Earth (glaciations periods).

5.—Why the seasons? Why the length of the day is dif-
ferent at different dates, depending of the latitude? Theses 
themes are very standard. But, in many countries, they 
disappear from basic science education and needs to be 
taught independently.

6.—The eclipses. Two types of eclipses: Sun eclipses of 
Moon eclipses; Explanation of the phenomenon; Previ-
sions of the eclipses.

7.—Weather previsions: The use of models; The but-
terfly effect.

8.—Remote sensing for exploring the Earth. It 
could be the use of aerial photographs to discover re-
sources or the use of seismic waves to discover resources 
in the underground.

9.—Localizing events: Earthquakes, thunderstorms, 
etc. This is done through triangulation when several dis-
tant stations note the time when they register the event. 

10.—The Global Positioning System (GPS).

11.—Elements of cartography. It is not possible to 
draw a map of the Earth respecting ratios of distances. 

12.—The use of tools in geography to measure the 
Earth: How to measure the height of a mountain? How 
to draw maps of a region? 

commons licenses. If possible, a global opening coordi-
nated at the same day in all countries could be planned 
in order to amplify the visibility of the mathematics of 
the planet Earth. The idea was presented by the CIM di-
rector at the annual ERCOM meeting held the 9th April 
2011 in the Mathematical Institute of Oberwolfach, and 
is currently under development.

 The Mathematics of the Planet Earth – 2013 initiative 
will be another great occasion for showing the essential 
relevance of mathematics in planetary issues at research 
level for resolving some of the greatest challenges of the 
21st Century, as well as at the level of raising the pub-
lic awareness of mathematics and at the educational and 
cultural level.

Four themes with potential examples of modules for a virtual exhibition on the

“Mathematics of Planet Earth”
by Christiane Rousseau*

* Université de Montréal



13.—Geometric grids on the Earth to make numer-
ical computations. When making computations on the 
surface of the Earth, it is natural to divide the surface in 
small surface elements. If these are determined by small 
increases in longitude and latitude, then there are singu-
larities at the poles. Geodesic grids could be more con-
venient for such calculations. They are linked to poly-
hedra inscribed in the sphere.

14.—Movement of tectonic plates, continental 
drifts, rifts. Mathematics studies the dynamics of the 
planet mantle as an application to geosciences.
a PlaneT suPPorTing life: ecology, biodiversity, evolu-
tion.

15.—The phylogenetic tree of life. In biology, phy-
logenetics is the study of evolutionary relatedness among 
species. A phylogenetic tree or evolutionary tree is a 
branching diagram or tree showing the inferred evolu-
tionary relationships among various biological species or 
other entities based upon similarities and differences in 
their physical and/or genetic characteristics. Computa-
tional phylogenetics is concerned by applying algorithms 
to assemble a phylogenetic tree representing a hypoth-
esis about the evolutionary ancestry of a set of genes or 
species. It is a tool for taxonomy which is the science of 
classifying organisms

16.—Population models. Models of epidemics. Inva-
sive species.

a PlaneT organized By humans: political, economic, so-
cial and financial systems; organization of transport and 
communications networks; management of resources; 
energy.

17.—Transport systems: How to organize transport 
systems in efficient ways.

18.—The web graph: It is a way of connecting the plan-
et together.
19.—Management of resources.

20.—Game theory and applications in economics 
and in biology. In economics we have Nash equilibri-

um. In biology, game theory is useful for modeling some 
interactions of populations.

21.—The economy of solidarity and how to fight 
poverty around the world: For instance the micro-
credit.
a PlaneT in The Balance: climate change, sustainable de-
velopment, epidemics; invasive species, natural disasters.

22.—Climate models: How to use chaotic weather pre-
visions where no prevision is valid past 14 days to long 
term climate previsions. One technique is to consider an 
average of many simulations with close initial conditions. 

23.—Hydrographic previsions: What will be the quan-
tity of rain expected to be received on a given region? 
This is important for agriculture, but also for filling the 
reservoirs of electric dams. 

24.—Evolution of the human population over his-
tory. Previsions for the next centuries. 

25.—Percolation: At each occupied node of a vertex 
there is a probability p that an adjacent node becomes 
occupied. Depending on p, the final configuration can 
have very different properties. Percolation models are 
useful to study the diffusion of liquids including pollut-
ants inside soils. They also provide models for the dif-
fusion of epidemics. 

26.—The age of the Earth. The first serious attempts 
were done by Lord Kelvin around 1840. Kelvin used 
Fourier’s law of heat the gradient of temperature meas-
ured empirically and some very strong hypotheses sim-
plifying the problem. He gave an interval of 24 to 400 
million years. This estimate was in contradiction with the 
observations of the geologists and it was incompatible 
with the new theory of evolution of Darwin which re-
quired a much older planet. Kelvin has neglected to take 
into accounts the convection movements inside the Earth 
which slow down considerably the cooling of the mantle. 

27. The rising of the sea level with the melting of 
the glaciers. 


