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Dear CIM Colleagues,

First, we are pleased to announce the launch of the new 
CIM Series in Mathematical Sciences to be published by 
Springer-Verlag. The birth of the CIM Series occurred 
during a meeting between the Executive Board of CIM 
and the Springer-Verlag Executive Editor Mathematics 
Martin Peters who honored us with a visit to CIM.
 The CIM Series will contain proceedings of CIM 
events, consisting of expository articles, research mono-
graphs and lecture course notes, among others. Springer 
will develop a special book design for the CIM Series in 
close collaboration with CIM and will publish, distrib-
ute and sell the books in the CIM series worldwide in 
any medium, in particular, in electronic form. The pres-
ident of the Executive Board of CIM and the president 
of the Scientific Council of CIM will be the editors of 
the CIM Series. The first book to be published will be a 
book arising from the conference Mathematics of Planet 
Earth. The authors and editors of CIM volumes should 
have an international recognized scientific impact in their 
research area. CIM invites you to propose volumes for 
the CIM series by sending an email to CIM and to the 
editors.

 Also, I would like to remind you of CIM’s upcoming 
contribution to the international program Mathematics of 
Planet Earth (MPE 2013). To support this global effort, 
CIM is organizing two international conferences and cor-
responding advanced schools: Planet Earth, Mathematics 
of Energy and Climate Change, 25–27 March 2013, with 
the Advanced School Planet Earth, Mathematics of En-
ergy and Climate Change, 18–23 March and 27–28 March 
2013; and Planet Earth, Dynamics, Games and Science, 
2–4 September 2013, with the Advanced School Planet 
Earth, Dynamics, Games and Science, 26–31 August and 
5-7 September 2013. The Portuguese Society of Mathe-
matics (SPM), the Portuguese Society of Statistics (SPE) 
and the Portuguese Society of Operational Research 
(APDIO) enthusiastically support the conferences and 
advanced schools we are organizing for MPE-2013. The 
two international conferences will be hosted in Calouste 
Gulbenkian Foundation. Further information is already 
available at http://sqig.math.ist.utl.pt/cim/mpe2013/ and the regis-
tration will open soon.
 On behalf of the CIM Board, thank you for your 
continued support and interest.

Alberto Adrego Pinto
President of CIM
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Coming Events

This is a first meeting on particle systems and PDE’s 
to be held at the Centre of Mathematics (CMAT) of the 
University of Minho at 5,6 and 7 of December of 2012.
The idea of the meeting is to get together researchers 
from two different areas of mathematics, namely Particle 
Systems and Partial Differential Equations and to present 
recent scientific results in both areas. The goal of the 
meeting is to present to a vast and varied public and even 
to young researchers, the subject of Interacting Particle 
Systems, its motivation from Physics and the impact of 
its results in the area of Physics and its relation with the 
subjects of PDE’s. This will elucidate and highlight the 
interdisciplinary nature of mathematics and bring us 
the possibility to attract young students to dedicate to a 
scientific career on these subjects. 

It is our pleasure to announce that there will be 
Proceedings of the event to be published by Springer. You 
can find more information here:

https://sites.google.com/site/meetingpspde/home/proceedings

Date: December 5-7, 2012.
Place: Universidade do Minho, Campus de Gualtar, 
Braga, Portugal.

Contacts: please send an e-mail to the address
meetingpspde@gmail.com

or contact the organizing committee.
Financial Support: provided by FCT through the research 
project “Non-equilibrium statistical physics” PTDC/
MAT/109844/2009 and CMAT through the project PEst-C/
MAT/UI0013/2011.

Attendance is free but needs registration

Scientific committee:
Pablo Ferrari (UBA, Argentina)
Felipe Linares (IMPA, Brazil)
Maria Conceição Carvalho (FCUL, Portugal)

Organizing committee:
Patricia Gonçalves (CMAT) patg@math.uminho.pt
Mahendra Panthee (CMAT) mpanthee@math.uminho.pt
Ana Jacinta Soares (CMAT) ajsoares@math.uminho.pt

Invited speakers:
Adriana Neumann* (UFRGS, Brazil)
Cedric Bernardin (ENS Lyon, France)
Claudio Landim (IMPA)
Cristina Toninelli (CNRS Paris 6 and 7, France)
Diogo Gomes (IST, Portugal)
François Golse (École Polytechnique France)
Gideon Amir (Bar- Ilan University)
M. Conceição Carvalho (Lisbon University, Portugal)
M. João Oliveira (CMAF, Portugal)
Marielle Simon (UMPA, Lyon, France)
Marton Balazs (Budapest University, Hungary)
Milton Jara (IMPA, Brazil)
Patrik Ferrari (Bonn University, Germany)
Simone Calogero (Granada University)
Stefano Olla (University Paris-Dauphine, France) 
Sunder Sethuraman (Arizona University, USA)
Tertuliano Franco (University of Bahia, Brazil)
Valeria Ricci (University of Palermo, Italy)

* To be confirmed

Particle systems and PDE’s
Braga, Portugal
December 05–07, 2012
[https://sites.google.com/site/meetingpspde/]

Statue of Prometheus (Universidade do Minho, Campus de Gualtar)
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by Gracinda M . S. Gomes [CAUL and DM-FCUL, Universidade de Lisboa] 

with Peter Jephson Cameron 
An Interview

Peter Cameron received a B.Sc. from the University of Queensland and a D.Phil. 
in 1971 from the University of Oxford, with Peter M. Neumann as his supervisor. 
Subsequently he was a Junior Research Fellow and then a Tutorial fellow at Merton 
College, Oxford. He was awarded the London Mathematical Society’s Whitehead 
Prize in 1979 and is joint winner of the 2003 Euler Medal of the Institute of 
Combinatorics and its Applications, http://www.lms.ac.uk/content/list-lms-prize-winners and 
http://en.wikipedia.org/wiki/Euler_Medal.

Peter Cameron is the author of over 300 papers and has written 7 books as well 
as various lecture notes, with more than 130 collaborators; counts with 34 Ph.D. 
students, and 9 “honorary” students, as well as many more Master’s students, 
 http://www.ams.org/mathscinet/search/author.html?mrauthid=44560.

http://en.wikipedia.org/wiki/University_of_Queensland
http://en.wikipedia.org/wiki/University_of_Oxford
http://en.wikipedia.org/wiki/Peter_M._Neumann
http://en.wikipedia.org/wiki/Merton_College
http://en.wikipedia.org/wiki/Merton_College
http://en.wikipedia.org/wiki/London_Mathematical_Society
http://en.wikipedia.org/wiki/Whitehead_Prize
http://en.wikipedia.org/wiki/Whitehead_Prize
http://en.wikipedia.org/wiki/Euler_Medal
http://www.lms.ac.uk/content/list-lms-prize-winners
http://en.wikipedia.org/wiki/Euler_Medal
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Tell me about your way into Mathematics. Did you 
always want to be a mathematician?
I never seriously wanted to be anything else! But I didn’t 
realise that you could be a mathematician as a job until 
I went to University for an interview for admission as 
a student. Before that I thought I would have to work 
in some field like Engineering or Physics that contained 
some mathematics. But I saw the people on the other 
side of the desk and thought, they are mathematicians, I 
could be one too!
Some of my early childhood memories are mathemati-
cal. I grew up on a dairy farm, and we took the milk to 
the cheese factory on a horse-drawn cart. I remember 
sitting on the back of the cart counting to a thousand. A 
bit later I discovered how to sum geometric progressions 
while chasing the cows in to be milked. This was a job 
that didn’t need much concentration: just sit on a horse 
and follow the cows. So I could let my mind wander 
and think about adding up powers of 2, and 3, and so on.

How did you get interested in Algebra?
I think I have always been better at the discrete than the 
continuous. If combinatorics had been a university sub-
ject when I was a student, I may have been seduced by 
that! As it was, algebra suited me very well; I liked the 
way it was highly structured. I did my undergraduate 
honours project on the simplicity of the groups PSL(2,q) 
(though I took this from Dickson’s book, he calls these 
groups LF(2,q), which was a bit confusing to me later).
The purpose of a group is to act on something, and it is 
always interesting to play off the group and the struc-
ture it acts on against one another; one learns interesting 
things in this way.
 A couple of years ago I had a student who did a pro-
ject on Sylow’s proofs of his theorems. Sylow’s original 
proof of his first theorem was phrased in terms of dou-
ble cosets; now we would write it in terms of group ac-
tions. That was a stunningly beautiful proof, and is now 
my favourite of all the many proofs of that theorem. Very 
briefly, you show that if a group G has an overgroup 
which has a Sylow p-subgroup, then G also has one. By 
Cayley’s theorem, every group of order n can be embed-
ded in the symmetric group Sn, and Sn can be embedded 
in GL(n,p), which obviously has a Sylow subgroup (the 
upper triangular matrices).

In which way is your recent research going?
As usual, in many different directions. I have never been 
good at concentrating hard on one problem until I solve 
it; someone comes along with another interesting prob-
lem, and I can’t resist having a go.
There are several big things going on at the moment, all 

in the area between algebra and combinatorics. One pro-
ject is to understand the algebraic properties of roots of 
the chromatic polynomials of graphs. Partly as a result 
of the connection with statistical mechanics, we know 
a lot about the location of these roots in the complex 
plane, but much less about, say, the degrees of the split-
ting fields, and their Galois groups.
Another is the work that brings me to Lisbon, my joint 
work with João Araújo and others on connections be-
tween semigroups, permutation groups, and various 
parts of combinatorics. João believes that, as a result of 
improvements in our understanding of groups, it is time 
to revisit the study of semigroups through their groups 
of units. The connection between transformation semi-
groups and permutation groups is especially close.
It turns out, too, that various concepts of optimality of 
block designs in the theory of experimental design in sta-
tistics can be expressed in terms of Laplacian eigenvalues 
of graphs. This is an area which also connects with ran-
dom walks, electrical networks, isoperimetric problems, 
and other hot topics in network theory.

Between your many results, do you have a particular 
dear theorem?
There are two theorems of mine that I particularly like. One, 
with Jean-Marie Goethals, Jaap Seidel and Ernie Shult, was 
not a new theorem (Alan Hoffman had essentially the same 
result but with a very complicated proof which was never 
published), but our proof was new. The theorem describes all 
graphs for which the least eigenvalue of the adjacency ma-
trix is -2 or greater. The novelty in our proof was to use the 
classification of the finite-dimensional root systems, from 
the theory of simple Lie algebras. 
The second was my first venture into the realm of infinite 
permutation groups. John McDermott asked for an analogue 
of the Livingstone-Wagner theorem, about groups which 
act transitively on the set of k-subsets for all k, but are not 
k-transitive for some k. I was able to give a complete de-
scription of these groups: they preserve or reverse a linear or 
circular order on the underlying set. My proof was a typical 
finite group theorist’s proof; immediately afterwards, Gra-
ham Higman came up with a proof using ideas from mod-
el theory and compactness. He called the lectures he gave 
about it “a Cameronian commentary”.
I am also proud to have a constant named after me, from 
my work on sum-free sets, which also gave me Erdős num-
ber 1 (see Fig. 1).

And how do you see the importance of algebra in 
mathematics and in other fields of knowledge?
Algebra is the best example of how the abstract meth-
od has revolutionised mathematics and its applications. 

Douglas Adams, one of my favourite authors (who wrote 
“Hitch-Hikers’ Guide to the Galaxy”), said “Algebra, for 
instance (and hence the whole of computer program-
ming), derives from the realisation that you can leave 
out all the messy, intractable numbers.” Numbers, ma-
trices, permutations, symmetries, all obey a few simple 
laws; anything we can deduce from those laws (which is 
an impressive amount) will hold in all of these structures.
A few years ago, my department went back to doing 
something we had not done for a very long time: teach-
ing abstract algebra to first-year students. I was given the 
job of designing and presenting the course. The students 
found it hard going, but worked very hard, and the re-
sults were good.

I am a Professor of Mathematics, and proud of that title. 
My work has taken me from model theory (in logic) to 
measurement theory (in mathematical psychology). A 
thread of algebra runs through all of these things.
I probably don’t have to tell your readers about the im-
portance of, and impact of, mathematics in our life to-
day. Angus Macintyre, the immediate past president of 
the London Mathematical Society, argues that the eco-
nomic impact of elliptic curve cryptography (which is 
responsible for the security of cash dispensers, among 
other things) far outweighs anything most disciplines 
have to offer. This is an important issue now, when the 
paymasters are interested in the economic impact of our 
research. But there are many other mathematical top-

Figure. 1.—An approximation to the density spectrum of a random sum-free set. We choose a sum-free set 
of natural numbers in order: if n is the sum of two numbers in the set, then n is excluded, otherwise we toss a 
fair coin to decide whether to include n. The spikes on the right of the picture can be explained; for example, 
the biggest spike corresponds to sets of odd numbers, which occur with probability about 0.218 (“Cameron’s 
constant”). The shape on the left, however, is still a mystery.
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ics which also have practical importance, such as Latin 
squares (see Fig. 2).

Some interesting directions of research in algebra?
I am glad to see that various generalizations of groups, 
whose theories grew up more or less independent of 
group theory, are now moving together again. A very 
good example was the talk by Michael Kinyon, in July 
2011 in Lisbon,  which I talk about later, combining semi-
groups and quasigroups.
As well, there is a lot of Algebra underlying developments 
in mathematical physics, such as conformal field theory.
But to my mind, the most interesting thing that has hap-
pened to Algebra during my career is the re-focusing 
of group theory following the Classification of Finite 
Simple Groups. Some people thought that finite group 
theory would fade away; this hasn’t happened, since we 
have found so many interesting things about the sub-
group structure and representation theory of the almost 
simple groups. Also, some areas of infinite group theory, 
notably locally finite groups and profinite groups, have 
been re-fashioned by our new knowledge of finite groups.

How do you expect the interplay of semigroups and 
groups to develop further?
It is probably unwise of me to make predictions about 
semigroups; I don’t know so much about them. But the 
work I am doing suggests that it is time to look again 
at the group of units of a semigroup, or at its automor-
phism group, and to use the much stronger information 
we have about finite groups in order to make progress.
A longer term goal would be to do something similar 
with infinite transformation semigroups. Infinite permu-
tation groups are a particular love of mine, and I would 
like to see some of the recent work in this area put to use.
In a different area, I have seen that the relationship be-
tween the semigroup and the group given by the same 
(inverse-free) presentation is being studied. I have a re-
cent paper on set-theoretic solutions of the Yang-Baxter 
equation from statistical physics, in which this situation 
arises naturally (and the group given by the presentation 
has a natural homomorphism to a permutation group).

You are a very popular lecture and supervisor, how 
important is for you to teach?
I very much enjoy teaching. In some ways it is a great-
er challenge than research. Rather than just finding an 
argument that convinces me, I have to convince many 
people with different backgrounds and expectations. It 
is very useful that some theorems have many different 
proofs: some students get the hang of one, others catch 
on to a different one.
I have learned a lot from my students, probably far more 
than they have learned from me. It is always better when 
students are involved in the decision about what to work 
on; I prefer not just to lay down the law on this. It does 
become more difficult, as funders now prefer us to have 
specific projects laid out, and give grants to students to 
work on these.

Your many research students, are they all academics? Or 
have they opted for other kind of jobs?
Not all of them have become academics, though some 
have very successful careers in the academy. Some of my 
students have done their PhDs part-time, which is much 
more difficult but means that they don’t have to look for 
a job at the end. Some have gone into commerce, or the 
civil service, others (I am happy to say) into schoolteach-
ing and curriculum development.
When I was a student, the assumption was that a PhD 
always led to an academic job. But this is no longer true. 
I meet many people in the research council who have 
PhDs http://www.epsrc.ac.uk/ 

Do you have an advice for the students who are finishing 
their PhD? With nowadays job situation some feel rather 
concerned.
It is not an easy time to be finishing a PhD! In the longer 
term, things are likely to get better; a pendulum will al-
ways swing back eventually. But if you are starting out 
on your career, this is not comforting advice.
In my own case, a post-doctoral fellowship was a won-
derful opportunity to do whatever I wanted, to learn new 
things, and to start really enjoying doing mathematics. 
Not all post-doc positions give as much freedom as this, 
but most supervisors understand that a young mathema-
tician needs to spread her/his wings, and most people 
judging the outcome of a research grant also realise this 
and are not too strict if the original objectives haven’t 
been met, as long as some good work has been done. I en-
couraged my most recent post-doc to broaden his inter-
ests, and now he has a lecturing job in a good department.
So I think the advice is: if you can get a post-doc posi-
tion, make the most of it!

And what about the ones who are dueling between their 
wish of taking a PhD and looking for a job immediately? 
I would never take on a PhD student without giving a 
couple of warnings; in particular, there is no promise that 
it will lead to a successful career, and certainly not to a 
big salary! I think that someone who does not feel the 
inner compulsion to do mathematics is almost certainly 
better off looking for a job. But if the candidates decides 
that they are committed, I will do the best I can to help 
turn their dream into reality.

Have you been the head of a research group? What are 
your thoughts about running a group?
I was director of pure mathematics at Queen Mary for 
several years, but I have never officially run a research 
group. What happened was that people came to work 
with me, or to study, and a strong group of researchers 
just happened without any bureaucratic interventions. 
In particular, starting from almost nothing, a very active 
group in combinatorics now exists in my department.
Now it is difficult to run a group in this “hands-off” way, 
as universities introduce performance management and 
group leaders are expected to use the stick as well as the 
carrot. I am happy that I don’t have to do this.

Keeping the blog http://cameroncounts.wordpress. com/ 
brought the students even closer to you and to 
mathematics?
Not so much students as ordinary people. I have discov-
ered a large number of acquaintances, some of whom I 
have met, some are just pen-names, who respond to ex-
position of mathematics, or who ask me questions.
A lot of what I blog about is expository: I have a long se-
ries about the symmetric groups, for example. These are 
the posts that keep up their popularity after months and 
years when other more topical posts have faded into ob-
scurity. I used to get this kind of satisfaction from writing 
books, but blogging is so much easier, and the responses 
come much quicker.

At the university, some defend that the number of just 
research places should be increased, how do you feel 
about this? Teaching and research can be dissociated in 
a good university?
I feel very strongly that dissociating teaching and re-
search would be a bad mistake. There are a very few bril-
liant researchers who I would be reluctant to put in front 
of a large first-year class, but for the most part, the same 
people are good at both teaching and research.
Everybody benefits from this arrangement. In preparing 
teaching, or in questions from students, I get a supply of 

Figure 2.—A Latin square, used in agricultural research at Rothamsted Experimental Station. Latin squares are the Cayley tables of 
quasigroups. This picture was provided by Sue Welham.

http://www.epsrc.ac.uk/
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research problems. If I find a new piece of mathematics 
and I am bursting to tell people about it, it often finds its 
way into my teaching. And I don’t think students will 
ever understand what mathematics is really about unless 
they come into close contact with the best researchers.

In your page 
http://www.maths.qmul.ac.uk/~pjc/MTH6128/study.pdf 
there is a “letter” of advice to the students that come 
to the university. Do you feel that the students find 
adjusting to the university harder nowadays?
Yes. I think there are several reasons for this, but let me 
say to start that it is not true that students are less talent-
ed these days. An important factor is that schools do not 
prepare students for independent thought. The pressures 
on schools to achieve good exam results are so strong 
now that it is in everyone’s interest, pupils and teachers 
alike, to be able to respond mechanically to exam ques-

tions without stopping to think for too long. Besides, 
this has the effect that pupils believe that the teacher’s 
job is to help them get good exam results, not to make 
them think. So students arriving at university need to 
have their expectations changed.
 The number of students going to university has 
greatly increased, while the proportion of the popula-
tion with the ability and interest to do a mathematics 
degree probably has not. At some point ten years or so 
ago, word got around that a mathematics degree was the 
best way into a well-paid job in the finance industry. Not 
even the economic crisis has destroyed this expectation.

How did your connection to Portugal start? And how do 
you do see its development?
It started without warning in a talk by my PhD supervi-
sor Peter M. Neumann, who discussed a question sent to 
him by João Araújo, and his answer to it. At almost the 

same time, I was working with a former student Cristy 
Kazanidis on highly symmetric cores (graphs with no 
proper endomorphisms), and also I was visited by an-
other former student Robert Bailey who reported to me 
a conversation he had had with Ben Steinberg at a bus 
stop in Ottawa (interrupted by the arrival of Ben’s bus) 
about a related topic. The upshot is that a group of us, 
with João as the driving force, began working on a con-
nection between synchronizing automata and permuta-
tion groups, which rapidly grew almost beyond control!
Amazingly enough, at that point I had never been to Por-
tugal. Since then I have been three times and plan to re-
turn soon, and this last one has been particularly fruitful 
with three papers about to be finished!
Who can say how it will develop? It seems that interest-
ing things will continue to happen; and now I have dis-
covered for myself what a beautiful city Lisbon is, I will 
certainly be coming back whenever I can!

Last year CAUL and CIM, in collaboration, organized 
the conference  “Groups and Semigroups: interactions 
and computations” in which you were one of the main 
speakers, what did you think of the impact of this 
meeting in the field?
I mentioned above how good it is that groups and semi-
groups are coming together again at last.
There were two particular interactions that made the 
meeting very worthwhile for me. One was meeting John 
Meakin again. John and I were students together at the 
University of Queensland, and then went different ways, 
and our paths didn’t cross until 2005, when we were both 
invited speakers at Groups St Andrews. This time John 
had a whole raft of questions which he thought would 
catch my interest. He was right, though I haven’t got 
very far with them yet.
The other was Michael Kinyon, who works on the oth-
er kind of generalisation of groups (that is, quasigroups 

Figure 3.—With my supervisor, Peter Neumann, and some of my students, at my 60th birthday conference in Ambleside.

Standing: Michael Giudici, Pablo Spiga, Dugald Macpherson, Eric Lander, Cheng Ku, Fuad Shareef, Sarah Rees, David Cohen, Colva 
Roney-Dougal, Robert Bailey, Carrie Rutherford, Thomas Bending, Fatma Al-Kharoosi, Thomas Britz, Francesca Merola, Emil Vaughan.

Seated: Julian Gilbey, Taoyang Wu, Debbie Lockett, Josephine Kusuma, Sam Tarzi.

Figure 4.—With João Araújo at CAUL
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and loops), and might have been expected to be at the 
conference on those which was happening in Prague at 
the same time. But he came to Lisbon and told us about 
a very interesting cross-fertilisation between semigroups 
and loops. Just as a loop has a multiplication group, so 
Michael’s more general structures (which he called “semi-
loops”) have a multiplication semigroup.
 It was also very interesting to see that even people 
who work at the most theoretical end of group theory 
are turning to computation in their research, to make and 
test conjectures and even to help prove theorems. This 
is a trend which will continue!

You are a traveler; would you like to tell us about a 
special trip/episode? 
There are so many stories I could tell, and some of the 
best are possibly embarrassing or dangerous to tell. 
Mathematicians form a universal fellowship, and wher-
ever I go, even in places with authoritarian regimes, the 
mathematicians treat me like one of them, and I see the 
place from the inside. Seeing places as different as Iran 
and Japan from the inside is an amazing experience: skim-
ming stones on the Caspian Sea at sunset as the night fish-
ermen were setting out, and the tea ceremony in Tokyo 
escorted by the partner of a colleague.
 One thing that remains with me happened on my 
visit to India in 1988. I was staying at the University of 
Bombay, and they arranged for me to make a visit to 
Poona to give a talk. I went up and back by train. While 
I was there, the algebraist Devadatta Kulkarni   took me 
round the city on the back of his scooter. One of the 
days of my visit happened to be Christmas Day, but it 
was a busy day at the mathematics department, since a 
big conference was beginning the next day.  So, two stu-
dents were given the job of looking after me and tak-
ing me round the town, to temples, markets, and so on. 
I found out on talking to them that, as well as studying 
for their PhDs, they were both teachers at the local high 
school, doing something like 20 contact hours a week! I 
tried to repay my debt to them by talking about math-
ematics, going through a paper they were reading and 
helping them with some of their difficulties.
 I keep travel diaries on many of my trips, and put 
them on my web page if they are not too scurrilous! The 
story of my Indian trip, and a later trip to India, are both 
there. http://www.maths.qmul.ac.uk/~pjc/travel/

Along the years, you have been seriously interested 
in sport, music, literature, painting, which are your 
hobbies nowadays?
Sport was probably my most serious interest — I was 
Australian Universities champion at cross-country run-
ning when I was a student — but, as I get older, I find that 

injuries take longer to heal, so I do more walking than 
running now. I try to go for a long walk at least once a 
week (anything from 15 to 50 kilometres). London is a 
good city for walking, since the transport system is cen-
tralized, so it is easy to escape in any direction. Also, I 
have rediscovered photography. Digital compact cam-
eras now are probably as good as the SLR I had when I 
was a student, and I am building up a good collection of 
photographs of places where I walk.
 I play the guitar (I learned this at university where I 
played in a band). Since I play by ear, I am not restricted 
in what I can play. The guitar is a good barometer of my 
stress levels; if I go for months without picking it up, I 
am in a bad way! London is also a good city for music 
since every great musician (like every great mathemati-
cian) comes to visit.
 I didn’t read much at school, but discovered litera-
ture at university, and now I am an avid reader; maybe I 
am addicted to print.

An e-reader fan or do you prefer the “real thing”, the 
paper book?
For me, a real book is better. Maybe you like what you 
grow up with! When I first had an e-reader, I tried using 
it for keeping slides of my talks, so I would know what 
was coming next; but I found I was never using it. The 
advantage of an e-reader is that you can get classics free 
or very cheaply. I am currently reading Gibbon’s “De-
cline and Fall of the Roman Empire”.

I would say that you are a free spirit; would that have its 
deep roots in your upbringing in Australia?
A hard question. Australians are, in fact, very convention-
al people. We introduced the term “tall poppy”, meaning 
someone who is better than others at something and has 
to be cut down to size. I suppose this means that I learned 
to do what I wanted to do without making a song and 
dance about it. But it was also true that, growing up in 
the country, I learned that if nobody else could be found 
to do something, I could always simply do it myself.
Travelling to the other side of the world to study and 
making a new life there must also have helped make me 
more independent.

Thank you Peter, it was a pleasure to interview you.

Lisboa, April 18, 2012

The 86th European Study Group with Industry took 
place from May 7 to May 11, 2012 at ISEP, the School 
of Engineering of Porto’s Polytechnic, organized by the 
Laboratory of Engineering Mathematics (LEMA) (see:  
http://www.lema.isep.ipp.pt/esgi86/). This meeting has counted 
with the participation of several experts with a large 

The 86th European Study Group with Industry
by Manuel B. Cruz [LEMA, Laboratory of Engineering Mathematics, 
School of Engineering of Porto’s Polytechnic]

experience in this type of events. By the 5th consecu-
tive year, Portuguese researchers and academics tried 
to strength the links between Mathematics and Indus-
try by using Mathematics to tackle industrial problems 
that were proposed by industrial partners (see: http://www.

ciul.ul.pt/~freitas/esgip.html).
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 In this edition there were selected 5 problems pro-
posed by different companies namely, Neoturf (http://

www.neoturf.pt/en), TAP Maintenance and Engineering (http://

www.staralliance.com/en/ about/airlines/tap-Portugal_airlines/#), INESC 
(http://www2.inescporto.pt/ip-en/), Sonae Indústria – Produção e 
Comercialização de Derivados de Madeira, S.A and Eu-
roresinas – Indústrias Quimicas Euroresinas, S.A., also 
a Sonae Group company (http://www.sonaeindustria.com/). For 
us, these problems were mathematically interesting chal-
lenges. For the companies, those were open-problems 
that had not been solved with their own (and/or con-
sulting) resources, some of them for several years. This 
bouquet of problems was “multicharacteristic” in sev-
eral ways. First of all due to different origin companies, 
second, due to the “multi-scope” of the problems. And 
last, the multitude of mathematical subjects used during 
the event which comprehended statistics, classification, 
optimization, numerical analysis or partial differential 
equations, just to name a few.
 In this year’s Portuguese ESGI, the results over-
whelmed the organizers (and the companies’) best expec-
tations. For the organizers, some of them involved since 
2007 when the first Portuguese ESGI edition took place, 
the objective is to spread mathematical knowledge and 
use it to help the industrial tissue. According to them, 
the success of ESGI’s in Portugal may be measured by 
the growing number of participants, proposed problems, 
and by the fact that some companies are submitting new 
problems after their first participation. The comments 
from the companies’ representatives were very posi-
tive. Pedro Mena and Fernando Guimarães (Euroresinas 

representatives), told at the end of the Study Group: 
“ESGI’86 was the first Sonae Industria participation on 
ESGI events. This format and analysis is, as such, newer 
to the company and is being addressed with great  ex-
pectation and curiosity. After this initial experience, we 
consider of great significance this Mathematics-Industry 
partnership in the approach of subjects with most rel-
evance to the national industry.”
 Telmo Rodrigues, from Sonae Indústria, said in the 
last day: “This meeting was very important, as it allows 
us to understand some phenomena of processes that 
weren’t perfectly characterized”. Neoturf CEO, Paulo 
Palha, went a little bit further in a post-ESGI interview. 
In the context of the workshop when asked about if the 
workshop fulfilled Neoturf expectations, he stated: “Un-
doubtedly! It certainly exceeded our best expectations as 
the problem proposed was identified more than 10 years 
ago but remained unsolved since then. We had consulted 
several software companies, tried some of their propos-
als, but nothing got even closer to the result achieved by 
the ESGI study group.” The organizers, as mathema-
ticians who care about the relation between academia 
and industry, also asked him how this format could be 
improved. His answer enclosed an important clue: “I 
think it would be very important to spread extensively 
this event, as most of the Small and Medium Companies 
aren’t aware of the huge arsenal of techniques and re-
sources that mathematicians have to solve our problems. 
Another idea is to have workgroups that can be hired by 
industry.”

Kinetic approach to reactive mixtures: theory, 
modelling and applications
by Ana Jacinta Soares*

1. IntroductIon

The kinetic theory of gases is a branch of statistical me-
chanics which deals with non-equilibrium dilute gases, 
i.e. gas systems slightly removed from equilibrium. In-
stead of following the dynamics of each particle, the ki-
netic theory approach describes the evolution of the gas 
system in terms of certain statistical quantities, namely 
velocity distribution functions, which give information 
about the distribution of particles in the system as well 
as the distribution of particle’s velocities. One of the 
main tasks is then to deduce the macroscopic properties 
of the gas system from the knowledge of the molecular 
dynamics in terms of the distribution functions and, at 
the same time, to derive governing equations for these 
macroscopic  properties in the hydrodinamic limits.
 Historically, the modern kinetic theory starts with 
the contributions from August Krönig (1822–1879), Ru-
dolf Clausius (1822–1888), James Maxwell (1831–1879) 
and Ludwig Boltzmann (1844–1906) and the central re-
sult of this theory is attributed to the celebrated Boltz-
mann equation (BE), derived in 1872, see Ref. [1]. This is 
an integro-differential equation that describes the evolu-
tion of a gas as a system of particles (atoms or molecules)  
interacting through brief collisions in which momentum 
and kinetic energy of each particle are modified but the 
states of intramolecular excitation are not affected.
 The Boltzmann equation arises in the description 
of a wide range of physical problems in Fluid Mechan-

ics, Aerospace Engineering, Plasma Physics, Neutron 
Transport as well as other problems where chemical re-
actions, relativistic or quantum effects are relevant. From 
the mathematical point of view, the Boltzmann equation 
presents several difficulties, mainly associated to the inte-
gral form of the collisional term describing the molecular 
interactions. In particular a general method for solving 
the Boltzmann equation does not exist, and only equi-
librium (exact) solutions are know. Thus the mathemati-
cal analysis of the Boltzmann equation, in particular the 
properties of the collisonal terms, existence theory and 
approximate methods of solutions, constitute an inter-
esting research topic in Mathematical Physics.
 Available techniques for solving the Boltzmann 
equation and its variants are based on the approximate 
methods proposed by David Hilbert (1862–1943) in 1912
and by Sidney Chapman (1888–1970) and David Enskog 
(1884–1947) around 1916–17. The Hilbert method is a 
formal tool that obtains approximate solutions of the 
Boltzmann equation in the form of a power series of a 
small parameter inversely proportional to the gas density 
(the Knudsen number). Enskog generalized the Hilbert’s 
idea and introduced a systematic formalism for solving 
the Boltzmann equation by successive approximations, 
and Chapmann followed the method of Maxwell to de-
termine the transport coefficients of diffusion, viscos-
ity and thermal conductivity. The ideas of Enskog com-
bined with the method of Chapman led to the so called 
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Abstract.—Some recent studies arising in the kinetic theory of chemically reactive mixtures will be revisited 
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Chapman-Enskog method described in Ref. [2] and then 
followed by several authors and extended to more gen-
eral gas systems.
 In this paper, we present a general review of some 
recent studies arising in the kinetic theory of chemically 
reactive mixtures, mainly oriented to the modelling of 
reactive systems, mathematical structure and properties 
of the governing equations, application to detonation 
dynamics and existence results.
 The studies presented in this paper have been ob-
tained in collaboration with several researchers, cited 
here in chronological order, Miriam Pandolfi Bianchi 
(Politecnico di Torino, Italy), Gilberto Medeiros Kremer 
(Universidade Federal do Paraná, Curitiba, Brazil), Filipe 
Carvalho (CMAT-UM, Ph.D. Student), Jacek Polewczak 
(California State University, Northridge, LA, USA).
 The paper is organized as follows. The main basic 
aspects of the kinetic theory are introduced in Section 2,
with emphasis on the mathematical modelling, consist-
ency properties of the kinetic modelling and connection 
to hydrodynamics. A particular model for symmetric 
chemical reaction is introduced in Section 3 and then 
used in Section 4 to mimic detonation problems. The 
simple reacting spheres (SRS) model is briefly described 
in Section 5 and an existence result about the solution 
of the partial differential equations of the model is pre-
sented in Section 6.

2. KInetIc theory bacKground

In kinetic theory of gases, the state of a chemically reac-
tive mixture can be described by the Boltzmann equation. 
There exist several references on this topic and we quote 
here the relevant contributions presented in the books
[3,4,5,6].
 In this section, we introduce the background of the 
kinetic theory of chemically reactive mixtures necessary 
to follow the general ideas and results presented in the 
following sections. We have tried to be as concise as pos-
sible in this presentation and do not use so much special-
ized formalisms. However some notations and nomen-
clature are needed to introduce the topic and the results.

2.1 Mathematical modelling
The present work is restricted to a dilute reactive mix-
ture consisting of four constituents, say ,  , 
with molecular masses , diameter  and chemical 
binding energies . Internal degrees of freedom, like 
translational, rotational and vibrational molecular mo-
tions, are not taken into account. Besides elastic scatter-
ing, particles undergo reactive collisions with a reversible 
bimolecular chemical reaction which can be represented 
schematically by

.

The mass conservation associated to the chemical reac-
tion results in . We assume that col-
lisions take place when the particles are separated by a 
distance  or .
 A parameter of interest for the present mod-
elling is the heat of the chemical reaction defined as

. The chemical reaction is endother-
mic when  and it is exothermic when .
 At the molecular level, the thermodynamic state of 
the mixture can be described by the constituent distri-
bution functions , , that represent, 
at time , the number of particles of constituent  
with velocity  in the point . Function , 

, are governed, in the phase space, by general-
ized Boltzmann equations of type

where the differential term in the left-hand side repre-
sents the streaming operator that describes the motion 
of particles along their trajectories in the phase space, 
and the term in the right-hand side represents the colli-
sion part that describes the changes of particles result-
ing from collisions. More in detail,  is the 
elastic collision term describing the dynamics of inert 
molecular collisions among constituent  and all other 
constituents , and  is the reactive collision 
term describing the dynamics of chemical interactions. 
Terms  and  can be written in the following form, 
see Ref. [6],

where the primes denote post-collisional states,  is the 
relative velocity between the  and  particles,  and

 are elements of solid angles for elastic and reactive 
collisional processes,  and  the corresponding do-
mains of integration,  the elastic cross section and  
the reactive cross section. For what concerns the reactive 
terms, the indices  are from the set

.

The specification of the cross sections  and  com-
plete the definition of the kinetic model at the molecu-
lar level. In general, they satisfy symmetrical relations as 
those assumed here, of type

.

(1)

(2)

(3)

(4)

In many kinetic theories,  follows a hard-spheres 
model, which means that during elastic collisions, the 
particles behave as if they are rigid spheres, and  is 
defined in terms of the activation energy of the chemical 
reaction, which means that only those particles such that 
the kinetic energy of the relative motion is greater than  
the activation energy can collide with chemical reaction.
 A kinetic theory based on the statistical description 
in terms of Eqs.(2) and (3–4) can be of great importance 
in obtaining a detailed understanding of several processes
involving chemically reactive mixtures. The investiga-
tion of transport properties and evaluation of transport 
coefficients is a valuable example. In fact, the transport 
coefficients of viscosity, diffusion, thermal conductivity 
and others can not be obtained from macroscopic theo-
ries; they have been supplied by experiments and phe-
nomenological considerations. However the kinetic the-
ory can provide these coefficients from the knowledge 
of the solution of the Boltzmann equation, even if only 
approximate soloutions are available in general.

2.2 Consistency properties of the kinetic modelling
The kinetic modelling defined in terms of Eqs. (2) and 
(3–4) possesses the following properties consistent with 
the chemical kinetics of the reaction, macroscopic laws 
and equilibrium state.

2.2.1 Proposition [Elastic terms].—The elastic colli-
sion terms are such that

 

that is, elastic collisions do not modify the number of 
particles of each constituent.

2.2.2 Proposition [Reactive terms].—The reactive col-
lision terms are such that

   

        .

that is, reactive collisions assure the correct chemical ex-
change rates for the chemical reaction (1).

Motivated by the above Proposition 2.2.2, the reaction 
rate of the -constituent, that gives the production rate 
of -particles, is defined by

.

(5)

(6)

(7)

2.2.3 Proposition [Conservation laws].—Elastic and 
reactive collision terms are such that

   

   

where  is a function of the molecular ve-
locities  whose components are given alternatively by
   

    

   

Therefore elastic and reactive collision terms are con-
sistent with the physical conservation laws for mass, 
momentum components and total energy of the whole 
mixture.

2.2.4 Proposition [Equilibrium].—The following con-
ditions are equivalent

(a)  and , 

(b) 

(c)  is Maxwellian, , given by 

  

 for , where  is the Boltzmann 
constant, and , ,  are functions of , see 
Subsection 2.3, with

.

Proposition 2.2.4 characterizes Maxwellian distributions 
defining an equilibrium solution of the Boltzmann Eqs. 
(2). More in detail, Maxwellian distributions (11) with 
uncorrelated number densities  characterize a me-
chanical equilibrium only, in the sense that  but 

 in general. Conversely, Maxwellian distributions 
(11) with the number densities constrained to the mass 
action law (12) characterize a complete thermodynami-
cal equilibrium state (mechanical and chemical), since

 and .

2.2.5 Proposition [Entropy production].—Elastic 
and reactive collision terms are such that

 .

(8)

(9)

(10)

(11)

(12)
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 .

Moreover, the convex function

 

with  being a closed domain in  where the mixture 
evolves, is a Liapunov functional for the extended Boltz-
mann equations (2), that is

 , for ,

 , iff the distribution functions are 
      Maxwellian characterized by 
      Eqs. (11–12).

The first part of Proposition 2.2.5 means that both elas-
tic and reactive collisions contribute to increase the en-
tropy of the mixture. The second part indicates that the 

 -function drives the reactive mixture from the initial 
distribution to an equilibrium state.
 The proof of the second part of the proposition, see 
Ref. [7], indicates that function  splits into a mechan-
ical part and a reactive part, , such that both 

 and  show a time decreasing behaviour and that 
 iff  are Maxwellian given by (11), whereas 
 iff  are Maxwellian constrained by (12).

2.3 Connection to hydrodynamics
The kinetic model previously introduced provides a con-
sistent macroscopic theory in the hydrodynamic limit of 
Euler or Navier-Stokes level.

2.3.1 Macroscopic variables
The starting point foi the macroscopic description is the 
definition of certain average quantities, called macroscop-
ic variables, taken over the distributions  by integrating 
with respect to the velocities . The number density of 
each constituent and the one of the mixture are given by

and the corresponding mass densities are defined as

.

The mean velocity of the mixture is given by

and the diffusion velocity of each constituent is 

.

The components of the mixture stress tensor are

 

          .

The pressure of the mixture is defined by

so that the temperature is assumed as

.

The components of the heat flux of the mixture are

        .

2.3.2 Balance equations
To complete the connection, one can derive the balance 
equations and the conservation laws describing the bal-
ance of the constituent number densities, and conserva-
tion of both momentum components and total energy of 
the whole mixture. It is enough to consider the Boltz-
mann Eqs. (2), then multiply both sides by the elemen-
tary function  whose components are  and 
functions (10) of Proposition 2.2.3, and finally integrate 
with respect to . The resulting equations are

  

  

  

  .

Macroscopic Eqs. (16–18) constitute a system of 8 equa-
tions in 36 uknowns, namely , , , , ,  and  , 
where  and . To close the system 
one passes to the hydrodynamic limit and deduces the 
constitutive equations for the 28 unknowns , ,  
and .

(16)

(17)

(18)

2.3.3 Hydrodynamic limit
The passage of the kinetic level of Eqs. (2) to the hydro-
dynamic limit requires the solution of the Boltzmann Eqs. 
(2), that can be obtained resorting to a systematic expan-
sion technique, see Refs. [2,5,6,8] for a detailed descrip-
tion of the Chapaman-Enskog method, Hilbert method 
and moment method.
 In particular, concerning the Chapaman-Enskog 
(CE) method, one starts with an appropriate scalling 
of Eqs. (2) in terms of the so called elastic and reactive 
Knudsen numbers [3], consistent with the chemical re-
gime of validity of the resulting macroscopic equations.
This scalling defines a clear separation of the effects of the 
fast and slow processes, the former being some collisonal 
processes (elastic or reactive) that drive the distribution 
function towards a local equilibrium state, and the latter 
being the other processes that contribute to disturb the 
distribution function. Then one assumes that the ther-
modynamical state of the reactive mixture is close to the 
equilibrium and looks for a solution of Eqs. (2) of type

 

where  is a quasi-equilibrium distribution function,  
represents a formal expansion parameter related to the 
Knudsen numbers (then it is settled equal to one) and 

 is the disturbance induced by the slow 
processes, that is assumed to be small.
 Introducing expansion (19) into Eqs. (2), neglecting 
non-linear terms in the disturbances and equating equal 
terms in , one obtains linear integral equations for the  
zero-order term  as well as for the disturbances , 

, etc. The consistency properties introduced in Sub-
section 2.2 are fundamental to obtain the solution of 
these integral equations. After an involved analysis of 
the equations, the disturbances are obtained as functions 
of ,  ,  and both transport fluxes and transport coef-
ficients. Inserting the considered approximate solution 
into the definitions of the reaction rate , diffusion ve-
locities , stress tensor  and heat flux , one obtains 
the constitutive equations that allow to close the macro-
scopic Eqs. (16–18).
 In particular, it comes out that the zero-order approx-
imation  is the Maxwellian distribution (11) that leads 
to the reactive Euler equations without transport effects; 
the first-order perturbed distributions, , are 
governed by linearized Boltzmann equations and lead to 
the Navier-Stokes equations involving the transport ef-
fects of diffusion, viscosity, thermal conductivity and may-
be others; successive approximations lead to the Burnett 
and super Burnett complicated equations.

(19)

 According to Propositions 2.2.4 and 2.2.5, one con-
cludes that in a hydrodynamic limit of an Eulerian regime, 
the mechanical entropy of the mixture remains constant 
and slow reactive processes contribute to drive the mix-
ture from a mechanical to a complete thermodynamical 
equilibrium state. Conversely, in the hydrodynamic limit 
associated to the Navier-Stokes equations, both elastic 
and reactive collisions contribute to increase the entropy 
of the mixture, and the entropy flux is also due to diffu-
sion, heat transfer and sheat viscosity phenomenon.
 The Chapman-Enskog method converges asymp-
totically for small Knudsen number, and the Euler and 
Navier-Stokes equations have a good accuracy. 

3 Model for syMMetrIc reactIon

A very simple model corresponds to a binary mixture of 
constituents  and  undergoing the symmetric reaction 

. In this particular case, one has  , 
, so that , ,  , 
 , . Assuming hard sphere cross 

sections for elastic collisions and step cross sections with 
activation energy for reactive interactions, the collision 
terms are (see Ref. [9] for a complete description of the 
model)

   

   .

In expression (21), the primes are used to distinguish two 
identical particles that participate in the reactive event, 
and  is given by

 

where  represents the steric factor,  is the relative 
translational energy,  the forward ( ) and back-
ward ( ) activation energy, both expressed in units 
of the thermal energy of the mixture, ,

.

At the macroscopic scale, the mixture is described by the 
variables , , , , that are governed by balance equa-
tions and conservation laws of type (16) and (17–18). At 
the hydrodynamic Euler level, and for a chemical regime 
in which elastic collisions are more frequent than reac-
tive encounters, the Chapman-Enskog method has been 
used in [9] to obtain the following approximate solution 
for the distribution function

,

(20)

(21)

(22)

(23)
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where  is a Maxwellian distribution and

   

      

with  being the concentration of constituent , 
 the reactive molecular diameter and .

Expression (23) indicates that this solution characterizes 
a non-equilibrium state and expression (24) specifies the 
deviation from the equilibrium in terms of the activation 
energy  and reaction heat . The macroscopic equa-
tions associated to this hydrodynamic limit characteriz-
es a non-difusive, non-heat conducting and non-viscous 
reactive mixture, that is

and the reaction rate is explicitly given by

  

  

     .

The hydrodynamic equations are the reactive Euler equa-
tions corrected with the effects of the reaction heat. In 
one space dimension, they are given by

   

   

   

where  is now the -component of the mixture velocity.

4 applIcatIon to detonatIon phenoMenon

Detonation is a rapid and violent form of combustion 
accompanied by an important energy release. The prop-
agation of detonation waves in gaseous explosives is a 
problem of great practical importance, due to the eco-
nomic impact as well as several engineering applications, 
such as safety and military issues, propulsion devices and 
hard rock mining.
 A detonation is essentially a reacting wave consist-
ing in a leading shock that propagates into the explosive,
followed by a reaction zone where the reactants trans-
form into products. The shock heats the material by 
compressing it so that a rapid and violent chemical re-
action is triggered.

(24)

(25)

(26)

(27)

(28)

 On the other hand, experimental and computational 
investigations show that the detonation wave, specially 
in gaseous mixtures, tends to be unstable to small pertur-
bations and exhibit a significant unsteady structure. The 
first step of a formal study of the detonation instability 
is the analysis of the hydrodynamical stability, which 
consists in imposing small deviations in the steady so-
lution and studying the evolution of the state variables 
perturbations. The assumption of small deviations allows 
to linearize the equations and determine the instability 
modes and growth rate perturbations.
 The kinetic theory of chemically reactive mixtures 
can be used to study the detonation phenomenon and 
describe some of the physical and chemical aspects ob-
served in experiments. In particular the kinetic model-
ling of Section 3 has been used in Ref. [10] to investigate
the propagation and hydrodynamic stability of a steady 
detonation wave in a binary reactive mixture with a sym-
metric chemical reaction. In this section we present the 
main aspects of this study, with emphasis on the spatial 
structure of the steady detonation wave and the response 
of the steady solution to one-dimensional disturbances.

4.1 Dynamics of steady detonation waves
We consider a detonating binary mixture undergoing a 
reversible reaction of symmetric type, described by the 
kinetic modelling of Section 3. The mathematical ana-
logue for the detonation dynamics is the hyperbolic set 
of reactive Euler equations (26–28). Such equations admit 
steady traveling wave solutions that describe a combus-
tion regime in which a strong planar shock wave ignites 
the mixture and the burning keeps the shock advancing 
and proceeding to equilibrium behind the shock. The 
Zeldovich, von Neumann and Doering (ZND) idealized 
model [11,12] gives a good and accepted description of 
the detonation wave solution. The configuration of the 
ZND wave consists of a leading, planar, non-reactive 
shock wave propagating with constant velocity , fol-
lowed by a finite reaction zone where the chemical reac-
tion takes place. The spatial structure of the detonation 
wave is determined by means of the Rankine-Hugoniot 
conditions, connecting the fluxes of the macroscopic 
quantities ahead (superscrip ) and behind (plain sym-
bols) the shock front, together with the rate equation, de-
scribing the advancement of the chemical process in the 
reaction zone. They can be written in the form

   

   

(29)

(30)

   

   

        

       .

System (29–32), with detonation velocity , reaction heat 
 and activation energy  as parameters, characterize 

any arbitrary state within the reaction zone (plain sym-
bols) in dependence of the quiescent initial state (super-
scrip +). This system has been solved numerically with 
the following input data for kinetic and thermodynami-
cal reference parameters

Some numerical simulations have been performed in Ref. 
[10] to determine the structure of the detonation wave  
in both cases of exothermic ( ) and endothermic  
( ) chemical reactions. Figures 1 and 2 show rep-
resentative profiles for the mixture pressure  in both 
cases of exothermic and endothermic chemical reactions, 
respectively. The configuration of the solution consists 
in a reactive rarefaction wave (Figure 1) when the reac-
tion is exothermic and reproduces the typical structure 
of an idealized ZND wave arising in real explosive sys-
tem with exothermic chemical reaction [11,12]. Con-
versely, the configuration of the solution consists in a 
reactive compression wave (Figure 2) when the reaction 
is endothermic and reproduces the essential features of 

(31)

(32)

the endothermic stage of a typical chain-branching re-
active system with pathological-type detonation [11,12]. 
Such detonation occurs when further complexities are 
introduced in the reactive system and some dissipative 
effects are present.
 Other  numerical simulations have been considered 
in Ref. [10] to supplement the representation of the det-
onation dynamics.

4.2 Linear stability of steady detonation waves
The stability of the steady detonation solution described 
in Subsection 4.1 is formulated in terms of an initial-
boundary value problem describing the evolution of the 
state variables perturbations.
 We assume that a small rear boundary perturbation 
is assigned so that a distortion in the shock wave posi-
tion is observed; such distortion induces further pertur-
bations in the state variables and the steady detonation 
solution can degenerate into an oscillatory solution in 
the long-time limit.
 From the mathematical point of view, the stability 
problem requires the transformation to the perturbed 
shock attached frame, and then the linearization of the 
reactive Euler equations and Rankine-Hugoniot condi-
tions around the steady detonation solution. A normal 
mode approach with exponential time dependent pertur-
bations and complex growth rate parameter is adopted
and standard techniques are used to deduce the stabil-
ity equations as well as initial and boundary conditions.
The details are omitted here due to the space limitations. 
The reader is addressed to Ref. [10] and the references 
therein cited for the a comprehensive study on the det-
onation satbility.
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Figure 1.—Detonation wave profile (exothermic chemical 
reaction) for the mixture pressure p.

Figure 2.—Detonation wave profile (endothermic chemical 
reaction) for the mixture pressure p.
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 The initial boundary value problem describing the 
detonation stability has been numerically treated in Ref. 
[10], using a rather involved numerical scheme that com-
bines an iterative shooting technique  with the argument 
principle. For a given set of thermodynamical and chemi-
cal parameters describing the steady detonation solution, 
the disturbances of the state variables have been deter-
mined in a given rectangular domain of the growth rate 
parameter, and detailed information about the instability 
parameter regimes have been provided.
 Figure 3 represents the stability boundary in the pa-
rameter plane defined by  the reaction heat  and for-
ward activation energy .
 In this representation, a pair  in the stabil-
ity zone indicates that for the corresponding values of 
the reaction heat and activation energy, no instability 
modes have been found. Conversely, a pair in the insta-
bility zone indicates that for the corresponding values 
of the reaction heat and activation energy, one instabil-
ity mode, at least, has been found. Moreover, Figure 3 
reveals that for a fixed value of the activation energy, the 
detonation becomes stable for larger values of the reac-
tion heat, whereas for a fixed value of the reaction heat, 
the detonation becomes stable for smaller values of 
the activation energy. These results are consistent with 
known experimental works and numerical simulations 
[12], in the sense that increasing the reaction heat, or 
decreasing the activation energy, tends to stabilize the 
detonation.

5 sIMple reactIng spheres Model

The simple reacting spheres model considers hard-sphere 
cross sections for elastic collisions and reactive cross sec-
tions with activation energy, of hard-spheres type. The 
molecules behave as if they were single mass points with 

two internal states of excitation. Collisions may alter the 
internal states and this occurs when the kinetic energy as-
sociated with the reactive motion exceeds the activation
energy. 
 The kinetic theory of simple reacting spheres (SRS) 
has been developed in Ref. [13] for a quaternary mix-
ture  with the assumptions of no mass exchange 
( , ) and no alteration of particle diameters 
( , ). Further advances concerning essentially 
physical and mathematical properties of the SRS sytem 
and existence theory for the partial differential equations 
of the model have been considered in Refs. [14,15,16,17]. 
The SRS  theory has been extended in Ref. [18], with no 
restrictions on the molecular masses and diameters, and 
a global existence result has been stated.
 The SRS modelling refers to the reactive mixture 
introduced in Section 2, whose particles undergo the 
reversible bimolecular reaction (1). The reactive Boltz-
mann equations for this mixture have the general form 
of Eqs. (2) but the collisional terms are corrected for the 
occurrence of reactive encounters. More specifically, the 
elastic operator contains a correction term which sub-
tracts from the total number of collisions those events 
that lead to chemical reaction. As before, we assume that  
collisions take place when the particles are separated by 
a distance  or , but only 
those particles such that the kinetic energy of the rela-
tive motion is greater than the activation energy of the 
chemical reaction can collide with chemical reaction.
 The collision terms are given by (see Ref. [18] for a 
detailed derivation)

  

   

   

  

   .

Above, the primes indicate post collisional states, 
 is a reduced mass of the colliding 

pair,  is a threshold velocity for  the chemical 
reaction,  the Heaviside step function, and  the steric 
factor. The second term in the right-hand side of Eq. (33) 
is the correction term that excludes from the total num-
ber of collisions those events that lead to chemical reac-
tion when the kinetic energy of the colliding particles is 
greater than the activation energy.
 The SRS model possesses important mathematical 
properties. At the microscopic level, the model incor-
porates the correct detailed balance and microscopic re-

(33)

(34)

versibility principle, that is direct and reverse collisions 
of both elastic and reactive types occur with the same 
probability. At the macroscopic level, the SRS model has 
good consistency properties (Subsection 2.2) concerning 
correct chemical exchange rates, conservation laws, en-
tropy production, -function and trend to equilibrium.
 Both microscopic and macroscopic properties assert-
ing the consistency of the SRS model are crucial for the 
mathematical analysis of the system of partial differen-
tial equations of the SRS model. In particular, existence, 
uniqueness, and stability results can be investigated on 
the basis of such properties.

6 exIstence result for the srs Model

In this section, the global existence result of Ref. [18], for 
the extended Boltzmann equations (2), (33) and (34) of 
the SRS model, is revisited. The proof of the theorem is 
based on the renormalized theory proposed by DiPer-
na and Lions in Ref. [19] for the inert one-component 
Boltzmann equation, and then followed in Ref. [16] for a 
reactive mixture such that reactive collisions do not cause 
neither mass transfer nor molecular diameter alteration. 
The general idea of the proof is here sketched.
 We introduce the notation ,  to represent the 
gain and loss terms of the elastic collision operator, and 

,  with analogous meaning, so that

.

6.0.1 Definition [Mild solution].—Non-negative 
functions  define a mild solution 
of the system (2), (33–34) if, for each , the gain 
and loss terms , , ,  are in , a.e. in 

 and

 

        

where  and similarly for  
and .

6.0.1 Theorem [Global existence result].—Assume 
that for , the initial distributions  are 
such that

 

with . Then, there exists a non-neg-
ative mild solution  of the system (2), (33–34) 
with  , such that , 
for  .

The result expressed in Theorem 6.0.1 states the exist-
ence of a global in time, spatially inhomogeneous, and 

(35)

(36)

 solution for the SRS model, provided that the initial 
mass, momentum, total energy and entropy are finite, as 
assumed in hypothesis (36).

Sketch of the proof of Theorem 6.0.1.—The proof of 
Theorem 6.0.1 follows similar arguments as in Ref. [16]. 
It is based on the following tools [19,16].

(i) A priory estimations of type

 

that are obtained from the conservation laws of total 
mass, momentum and total energy, as well as from a suit-
able entropy identity (see Ref. [18]). Bounds (37) assure 
that there is no infinite concentration of densities in the 
system governed by Eqs. (2), (33–34).

(ii) Velocity averaging results that, in some sense, trans-
fer the regularity of functions  for velocity averaged 
quantities, such as the macroscopic variables, see Ref. 
[20]. Velocity averaging results compensate the lack of 
regularity of the non-linear collision terms.

(iii) Renormalized theory [19], that considers a suita-
ble notion of mild solution, see Definition 6.0.2 below. 
The method of renormalization introduces a nonlinear 
change of variable that reformulates the Boltzmann equa-
tions (2), (33–34) to an equivalent form, provided that 
certain bounds are satisfied, see Lemma 6.0.1.

6.0.2 Definition [Renormalized solution].—Non-
-negative functions  are renormal-
ized solutions of the system (2), (33–34) if

 

 

in the sense of distributions on .

6.0.1 Lemma.—
Non-negative functions  are 
renormalized solutions of the system (2), (33–34) if and 
only if they are mild solutions and

.

Then the central idea of the proof is to define suitable 
approximate collision terms  and , with , 
satisfying the main consistency properties of  and  , 
such that the approximate problems

  

  

(37)
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can be studied with known methods for PDE’s (semi-
group techniques have been used, see [16] for details). 
Then one takes the weak limit  and uses sta-
bility results to show that the sequence  
converges to a renormalized solution of the system (2), 
(33–34). A crucial part in this passage to the limit is the 
estimation of the renormalized collision terms, for which 
the velocity averaging results provide an important tool.

6.0.1 Remark [Relevance of Theorem 6.0.1].—The 
existence result stated in Theorem 6.0.1 has important 
implications at the level of approximation questions.

6.0.2 Remark [Future perspectives].—The spatially 
homogeneous theory of the SRS model, in which the dis-
tribution functions do not depend on the  variable, is a 
topic of great interest. Some advances have been made in 
view of studying existence of solutions, uniqueness and 
stability results for the homogeneous reactive equations.
 Another regime of interest corresponds to the case 
in which the distribution functions are assumed very 
close to the equilibrium. In this case, one considers the 
linearized version of the SRS model around an equilib-
rium solution and uses the spectral properties of the lin-
earized collision operators to prove existence and stabil-
ity of close to equilibrium solutions for the SRS system.
Some studies have been developed also in this direction. 
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On the Fourier-Stieltjes transform of 
Minkowski’s question mark function and 
the Riemann hypothesis: Salem’s type 
equivalences
by Semyon Yakubovich*

1 IntroductIon and auxIlIary results

In this presentation we pay tribute to the work in analysis 
and analytic number theory of the famous mathematician 
Raphaël Salem (1898–1963). Precisely, we will extend his 
approach to study Fourier-Stieltjes coefficients behavior 
at infinity with singular measures. In particular, we will 
prove an equivalent proposition related to the known 
and still unsolved question posed by Salem in [8], p. 439 
whether Fourier-Stieltjes coefficients of the Minkowski’s 
question mark function vanish at infinity. Furthermore, 
we establish a class of Salem’s type equivalences to the 
Riemann hypothesis, which is based on Wiener’s closure 
of translates problem.
 It is well known in the elementary theory of the 
Fourier-Stieltjes integrals that if  is absolutely con-
tinuous then

 

tends to zero as , because in this case the Fourier-
Stieltjes transform  is an ordinary Fourier transform 
of an integrable function. Thus  supports a meas-
ure whose Fourier transform vanishes at infinity. Such 
measures are called Rajchman measures (see details, for 
instance, in [4]). However, when  is continuous, the 
situation is quite different and the classical Riemann-
Lebesgue lemma for the class , in general, cannot be 
applied. The question is quite delicate when it concerns 
singular monotone functions (see [11], Ch. IV). For
such singular measures there are various examples and 

(1)

the Fourier-Stieltjes transform need not tend to zero, 
although there do exist measures for which it goes to 
zero. For instance, Salem [8,10] gave examples of sin-
gular functions, which are strictly increasing and whose 
Fourier coefficients still do not vanish at infinity. On the 
other hand, Menchoff in 1916 [5] gave a first example of 
a singular distribution whose coefficients vanish at in-
finity. Wiener and Wintner [17] (see also [2]) proved in 
1938 that for every  there exists a singular mono-
tone function such that its Fourier coefficients behave 
as .
 Our goal here is to construct some Rajchman’s meas-
ures, which are associated with continuous functions of 
bounded variation. In particular, we will prove  that the 
famous Minkowski’ s question mark function  [1] is 
a Rajchman measure if and only if its Fourier-Stieltjes 
transform has a limit at infinity, and then, of course, the 
limit should be zero. This probably can give an affirma-
tive answer on the question posed by Salem in 1943 [8}.
 The Minkowski question mark function 

 is defined by [1]

,

where  stands for the representation of 
 by a regular continued fraction. We will keep the no-

tation , which was used in the original Salem’s paper 
[8], mildly resisting the temptation of changing it and 
despite this symbol is quite odd to denote a function 
in such a way.  It is well known that  is continuous, 

(2)

* Department of Mathematics, Faculty of Sciences, University of Porto, 
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strictly increasing and singular with respect to Lebesgue 
measure. It can be extended on  by using the fol-
lowing  functional equations

,
,

. 

When , it decreases exponentially  . 
Key values are , , . For instance, 
from (3) and asymptotic behavior of the Minkowski 
function  near zero one can easily get the finiteness 
of the following integrals

,

.

Further, as was proved by Salem [8], the Minkowski 
question mark function satisfies the Hölder condition

,

of order

,

where  is an absolute constant. We will deal in the 
sequel with the following Fourier-Stieltjes transforms of 
the Minkowski question mark function

    ,

    ,

    ,

    ,

    ,

    ,

where all integrals converge absolutely and uniformly 
with respect to  because of straightforward estimates

,

,

(3)
(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

.

Further we observe that functional equation (3) easily im-
plies  and therefore . So, taking 
the imaginary part we obtain the equality

.

Hence, for instance, letting  it gives
 and . In 1943 Salem asked [8] 

whether , as .
 Further, by using functional equations (4), (5) for 
the Minkowski function we derive the following useful 
relations

 

   

    

      ,

which imply the functional equation

.

Taking real and imaginary parts in (14) and employing 
functional equation (3) it is not difficult to deduce the 
following important equalities for the Fourier-Stieltjes 
transforms (11), (12)

,

.

Indeed, we have, for instance

   

and this yields relation (15). Analogously we get (16). 
In particular, letting  in (15), (16) we find

(13)

(14)

(15)

(16)

accordingly

,

via (13). Generally, equalities (15), (16) yield

,

.

respectively. For instance,

,

 

for any , which are roots of the corresponding equa-
tions

   ,

   .

Further, since (see (14), (15), (16))

   ,

   ,

   ,

then Fourier-Stieltjes transforms of the Minkowski ques-
tion mark function over  tend to zero when  
if and only if the same property is guaranteed by Fouri-
er-Stieltjes transforms over .

2 soMe rajchMan Measures

In this section we prove several  theorems, characterizing 
Rajchman measures, which are associated with Fourier-
Stieltjes integrals over finite and infinite intervals.
 We begin with  the following general result.

Theorem 1.—Let  be a real-valued continuous integra-
ble function of bounded variation on  vanishing at 
infinity. Then  supports a Rajchman measure relatively 
its Fourier-Stieltjes transform

,

if and only if it has a limit at infinity .

Proof.—Without loss of generality we prove the theorem 
for positive . Evidently, the necessity is trivial and we 
will prove the sufficiency. Suppose that the limit of  

(17)

(18)

(19)

(20)

when  exists. Since , where

, 

,

we will treat these transforms separately. Taking (21) and 
integrating by parts we get

.

However, since , we appeal to the integrated 
form of the Fourier formula (cf. [12], Th. 22) to write 
for all 

.

But taking into account the previous equality after simple 
change of variable we come out with the relation

  

   .

Minding the value of elementary Feijer type integral

,

we establish an important equality

   

      .

Meanwhile, the left-hand side of (53) is evidently goes to 
zero when  via the continuity of  on  . Fur-
ther, since  is of bounded variation on  we obtain 
the uniform estimate

,

where  is a variation of  on  and  is a 
total variation of . This means that  is continuous 
and bounded on . Furthermore, the integral with re-
spect to  in the right-hand side of (53) converges ab-
solutely and uniformly by virtue of the Weierstrass test. 
Consequently, since  has a limit at infinity, which is 
finite, say , one can pass to the limit through equality 
(53) when . Hence we find

  

       .

(21)

(22)

(23)

(24)
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In order to complete the proof, we need to verify whether 
the Fourier sine transform (22) tends  to zero as well. To 
do this, we appeal to the corresponding integrated form 
of the Fourier formula for the Fourier cosine transform

,

where after integration by parts  turns to be repre-
sented as follows

.

Hence it is easily seen that  and since 
 we have that . This means that 

the integral in the right-hand side of (25) converges ab-
solutely and uniformly by . After simple change of 
variable we split the integral in the right-hand side of (25) 
on two integrals to obtain

 

          .

Considering again  sufficiently small and split-
ting the integral over  on two more integrals over 

 and , where , we 
derive the equality

  

         .

Minding the inequality (see (26)) , 
, the right-hand side of the latter equality has the 

straightforward estimate

   

         

.

On the other hand, via the first mean value theorem

             ,

(25)

(26)

(27)

where
.

Meanwhile, we have

          .

Consequently, combining with (27) we find

 

   .

Thus making  we get  and there-
fore there is a subsequence  such that

. But since the limit of  exists, 
when  it will be zero. So  supports a Rajchman 
measure and the theorem is proved. 

Corollary 1.—Under conditions of Theorem 1  sup-
ports a Rajchman measure if and only if two limits

    ,

    

exist simultaneously (if so,  they equal to  and 0, re-
spectively).

More general result deals with the smoothness of the 
Fourier-Stieltjes transform and a behavior at infinity of 
its derivatives.
 We have
Corollary 2.—Let  be a re-
al-valued continuous function such that  is of 
bounded variation on  for each . If 

 and , then the corre-
sponding Fourier-Stieltjes transform (20)  is  times 
differentiable on , its -th order derivative is equal to

 

and vanishes at infinity if and only if there exists a limit 
of the integral

when .

Proof—In fact, under conditions of the corollary one can 
differentiate  times under the integral sign in the Fouri-

(28)

(29)

er-Stieltjes transform (20)) via the absolute and uniform 
convergence. Precisely, this circumstance is guaranteed 
by the estimate

 

  

  ,

where the latter integral is finite since  
and  is continuous. Thus (29) holds and in order to 
complete the proof we write it as

   

      .

The second integral of this equality tends to zero when 
 via the Riemann-Lebesgue lemma. Therefore,

 if and only if the first inte-
gral has a limit at infinity and this limit is certainly zero. 

3 an equIvalent saleM’s probleM

In this section we will formulate a problem, which is 
equivalent to Salem’s question [8], having
Corollary 3.—The Fourier-Stieltjes transform

of the Minkowski question mark function vanishes at in-
finity, i.e. an answer on Salem’s question is affirmative, if 
and only if two limit equalities

,

take place simultaneously.

Proof.—It follows immediately from double inequality 
(17), simple equality due to functional equation (5)

and Corollary 1, where we put
. 

Finally, we generalize Salem’s problem, proving

Theorem 2.—Let . If an answer on Salem’s ques-
tion is affirmative, then

.

Proof.—It is easily seen that the Fourier-Stieltjes trans-

(30)

form of the Minkowski question mark function over  
is infinitely differentiable and so for any  we have 
(30). Suppose that  does not tend to zero as  . 
Then we can find a sequene  such that

.

Let , where  is an integer and 
. One can suppose that  tends to a limit  , 

we can always do it choosing again subsequence from 
 if necessary. Hence

.

But this contradicts to Salem’s lemma [11], p. 38, because 
 via assumption of the theorem and 

the Riemann-Stieltjes integral

converges for any . 

4—a class of saleM’s type equIvalences to 
the rIeMann hypothesIs

As it is widely known, Riemann zeta function  [13] 
satisfies the functional equation

,

where  is Euler’s gamma-function. Moreover, in the 
half-plane  it is represented by the abso-
lutely and uniformly convergent series with respect to 

 

and by the uniformly convergent series

in the half-plane . We also note the useful for-
mula

,

where  is the Möbius function [7].
 In 1953 Salem [9] proved that the Riemann hypoth-
esis is true, i.e. the Riemann zeta-function  is free of 
zeros in the strip  is equivalent to the fact, 
that the homogeneous integral equation

 

has no nontrivial solutions in the space of bounded meas-

(31)

(32)

(33)

(34)



CIM :: InternatIonal Center for MatheMatICs Bulletin #32 Jully 2012 31 30 

urable functions on . Our goal is to extend  this fact 
to the entire class of equivalent propositions, involving 
integral equations with the Widder-Lambert type ker-
nels (cf. [3], [15]). However, our starting point will be 
a characterization of mapping properties of the corre-
sponding integral transformations in a special functional 
space  (see in [14]).

Definition 1.—Denote by  the space of func-
tions , representable by inverse Mellin trans-
form of integrable functions  on the vertical 
line :

.

The space  with the usual operations of addition 
and multiplication by scalar is a linear vector space. If the 
norm in  is introduced by the formula

,

then it becomes a Banach space. Simple properties of the 
space  follow immediately from Definition 1 and 
the basic properties of the Fourier and Mellin transforms 
of integrable functions. For instance, the Riemann-Leb-
esgue lemma yields that  is uniformly bounded, 
continuous on  and , when  and 

. Moreover, if , where  is the 
inverse Mellin transform (35) of the function  , then 

 because the product  is 
the inverse Mellin transform of the function

,

which belongs to  by Fubini’s theorem. Finally we 
note that if  and , then 
the Mellin convolution

.

In fact, the latter integral is an inverse Mellin transform 
of the function  and since  and  
is essentially bounded on , we have .
 A more general space , which will be in-
volved as well is defined similarly to the one in [14].

Definition 2.—Let  be such that 
. By  we denote the space 

of functions , representable in the form (35), 
where .

It is a Banach space with the norm

, .

(35)

(36)

Theorem 3.—Let . Then for all  recip-
rocal transformations

 

           

 

          ,

where $ are automorphisms of 
the space  and satisfy the norm estimates

  

    .

Proof.—In fact, since  (see [7], [13]),

 

           ,

 

      ,

and , all changes of the order of integration 
and summation are allowed. Hence via (32), (33) and 
elementary sum of geometric progression we establish 
reciprocal relations (37), (38) involving the uniqueness 
theorem for the Mellin transform of integrable functions. 
Moreover, it guarantees the automorphism of the space 

 under these transformations and the equivalence 
of norms, which immediately follows from estimates

   

           ,

   

           ,

yielding (39). 

Further, the Parseval equality for the Mellin transform 
[12] and Fubini’s theorem allow to write the modified 
Laplace transform [3] of $ in the form

.

(37)

(38)

(39)

(40)

Moreover, due to Definition 2 and Stirling’s asymptotic 
formula for gamma-functions [12] it forms a bijective 
map of the space  onto its subspace . 
Thus appealing to Theorem 3 we will derive the Widder 
type inversion formulas [15] for the Widder-Lambert 
type transforms. Precisely, we prove

Theorem 4.—Let  and . Then the Wid-
der-Lambert type transformation

.

is a bijective map between spaces ,  
and for all  the following inversion formula takes 
place

  

        .

Proof.—In fact, the proof is based on Theorem 3, equality 
(40), a familiar infinite product for the gamma-function

,

and the asymptotic behavior , 
,  via Stirling formula. So employing 

again (32), Theorem 3 and Fubini’s theorem, we deduce 
the following representation of the Widder-Lambert type 
transform (see (37))

 

   

    .

Finally, calling (43) and an elementary series we derive, 
reciprocally, the equalities

 

   

          

   

          ,

which yield (42). 

(41)

(42)

(43)

Returning to (34) and making a simple change of vari-
ables and functions it becomes (41) with  and 

. Thus Theorem 4 leads to

Corollary 4.—Let  be a solution of homogeneous 
equation (34) such that  . 
Then .

Proof.—Indeed, there exists a function  such 
that

.

Hence

and since , we have that  is continuous on  
and . Applying inversion formula (42) 
with  we get the result. 

Let us prove the following equivalence to the Riemann 
hypothesis of the Salem type.
Theorem 5.—The Riemann hypothesis is true, if and 
only if for any bounded measurable function  on  
satisfying integral equation

,

,

for all  it follows that  is zero almost everywhere.

Proof.—Calling again (32) and properties of the Mellin 
transform and its convolution [12] it is not difficult to 
derive the equality

×

.

On the other hand, the reciprocal inversion of the Mel-
lin transform yields

.

The left-hand side of (46) is positive and via (45)

       ,
which after a simple change of variables is equivalent to 
the condition

.

(44)

(45)

(46)
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Hence following as in [9] Wiener’s ideas [16] about an 
equivalence of the completeness in  of translations

and the absence of zeros of , i.e. zeros 
of  in the critical strip , we complete 
the proof. 

Remark 1.—Reminding integral representation of the 
modified Bessel function in terms of the inverse Mellin 
transform [12]

,

,

invoking (31) and identity (see [13])

,

where  is the divisor function, we write equality (46) 
in the form

.

Hence substituting (47) into (53) and changing the order 
of integration and summation via absolute and uniform 
convergence (we note that , , 
see [13]), Theorem 5 can be reformulated as

Theorem 6.—The Riemann hypothesis is true, if and 
only if for any bounded measurable function  on  
and all  the equation

,

where

,

,

is the Meijer type convolution transform [3], has no non-
trivial solutions.

Transformation (41) can be generalized considering the 
following two-parametric family of functions

 ,

        .

The case  we denote by . The case 

(47)

(48)

gives . One can express the kernel (48) in
terms of the iterated Mellin convolution. Indeed, via (32) 
and simple calculations we obtain

  

            ,

     ,

.

     .

Meanwhile, an analog of Theorem 4 will be
Theorem 7.—Let  and . Then the in-
tegral transformation

 

is a bijective map between the spaces  and  
 and for all  the following in-

version formula takes place

 

   .

Finally, we will prove an analog of Theorem 5. In fact, 
we have
Theorem 8.—Let  and the kernel 

 is defined by formulas (50), (51), corre-
spondingly. The Riemann hypothesis is true, if and only 
if for any bounded measurable function  on  satis-
fying integral equation

,

,

(49)

(50)

(51)

(52)

(53)

for all  it follows that  is zero almost everywhere.
Proof.—Employing  inversion formula (35) for the Mel-
lin transform, we derive, reciprocally, from (48)

  ,

             .

Moreover,  is positive (see (50), (51)) and 
for 

.

This yields

.

Hence as in Theorem 5 the completeness in  of 
translations

is equivalent to the absence of zeros of
, i.e. zeros of  in the critical 

strip . 
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