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Mathematical models – simple  and general:

Useful to explore general mechanisms, and to establish basic 
principles. Further complexity can be incorporated gradually. 
Traditional and common in biology.

Computational models – complex  and specific:

Attempt to describe every detail of the real system as 
accurately as possible. Weather prediction models are the 
best examples. Recent and increasingly common in biology.

Types of models



Host classification

Susceptible Infectious Recovered
(with immunity)



Host population



SIS model

Ronald Ross demonstrated that the parasite of malaria is transmitted by 
mosquitoes and in 1902, he received the Nobel Prize of Medicine. He 
developed mathematical models for malaria transmission, and was a 
pioneer in mathematical epidemiology.

infection

recovery



SIS model

IIS
dt
dI

IIS
dt
dS

τβ

τβ

−=

+−=

S I
β Ι

τ

β – transmission coefficient
τ – recovery rate

Appropriate for infections that induce no effective immunity (e.g. malaria).



SIS model
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As S + I = 1, the model is one dimensional and represented by the equation

This is a type of growth law known as logistic growth, and it appears 
commonly in population dynamics models in the form
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Steady states:

1. Disease free equilibrium

2. Endemic equilibrium

SIS model
Given an initial condition, I(0) = 10−6, the proportion of infectious individuals 
grows as

Parameters: β = 3 , τ = 1
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The Basic Reproduction Number, R0

The basic reproduction number is defined as

The average number of secondary cases produced by an average 
infectious individual in a totally susceptible population.

The basic reproduction number is calculated as

R0 = (rate of transmission from an infectious individual) x (infectious period)

= β x (1 / τ) = β / τ

6Rubella (England and Wales)

15Rubella (Gambia)

17Measles

4Smallpox
R0Disease

R0 is a nondimensional
number, and depends on 
both the environment and 
the disease.



Nondimensional SIS model
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If time is measured in units of infectious period, D = 1 / τ, then the SIS model 
becomes

The endemic equilibrium is rewritten as
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Epidemic threshold: Infection can 
invade a susceptible population iff
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1. Disease free equilibrium, S = 1, I = 0: 

2. Endemic equilibrium, S = 1 / R0, I = 1 – 1 / R0: 

Stability of the SIS steady states
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The stability of a steady state, I* , is given by the sign of the linearisation
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Vector field for the SIS model



SIR model

I
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β – transmission coefficient
τ - recovery rate

Appropriate for infections that induce a highly effective immunity (e.g. 
measles, mumps, rubella).



Epidemic threshold
In 1927, Kermack e McKendrick fitted the model to various epidemic curves 
(in particular, the Bubonic plague). They established the theory of the 
epidemic threshold: the growth of an epidemic requires that, on average, an 
infected individual infects at least one susceptible. An epidemic falls when 
the density of susceptibles is below a threshold: S < 1 / R0.
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Plague epidemic

IISdt
dI

ISdt
dS

τβ

β

−=

−=

β = 3
τ = 1



Another example - Cholera

Cholera outbreak in London, 1854: Distribution of cases in a residential area.

Contaminated
pump



Epidemic fad-out

The epidemic curve of cholera is typical of an infectious disease that induces 
protective immunity.

Closure of 
contaminated 

pump



Nondimensional SIR model

If time is measured in units of infectious period, D = 1 / τ, then the SIR model 
becomes

As individuals become immune, this system always approaches the disease 
free steady state, I = 0. As the epidemic progresses, the level of 
susceptibles decreases, and the level of recovered individuals increases. 
The important question is the final balance between these two classes –
does the disease die out before all the susceptibles are exhausted?
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After epidemic – SIR steady state



Long-term SIR dynamics
In the long term, the susceptibility pool is replenished by births generating the 
conditions for new epidemics to occur.
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Steady states:

1. Disease free equilibrium:

2. Endemic equilibrium:

SIR steady states
The new steady states are obtained from the model
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The new parameter, e, represents the birth and death rate in units of 
infectious period. This is equivalent to D / L , where D is the average 
duration of infection and L is the life expectancy at birth. Assuming that
D = 1 month, and L = 70 years, we get e = 0.0012.



1. Disease free equilibrium, S = 1, I = 0, eigenvalues: 

2. Endemic equilibrium, S = 1 / R0, I = 1 – 1 / R0 , eigenvalues:

Stability of the SIR steady states
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The linearisation of the SIR model is the Jacobian matrix

The stability of a steady state, (S*, I*), is given by the eigenvalues of the 
corresponding Jacobian matrix.
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Vector field and simulation of the SIR model

0012.0,30 == eR

The inter-epidemic period near equilibrium is T = 2π / ω , where ω is the 
imaginary part of the eigenvalues of J2, and this is
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Intermediate models

Temporary immunity

Partial immunity

Temporary-partial immunity

SIS and SIR steady states
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Temporary immunity and Partial immunity

Temporary immunity: Decay of immunity over time appears to be an 
important factor in many diseases – for example, pertussis. In the extreme 
case, when immune efficacy drops from full protection to nothing at a given 
rate (parameterized by α), the model is
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Partial immunity: Even more common is that immunity is not fully protective, 
but rather reduces the risk of further infections by some factor (σ) – for 
example, tuberculosis. This is represented by the model
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Steady states and inter-epidemic period
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Temporary-Partial immunity

When immunity is not fully protective, it is likely to accommodate a specific 
combination of both temporary (α) and partial (σ) factors.
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Temporary-Partial immunity model

The combined model is represented as

IISSIRdt
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Having both α and σ allows better fitting to data sets.
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Vaccination

Smallpox: Immunity is a very old popular concept – people who survive 
certain diseases, acquire protection, and will not get the disease again.

It was realised how the same protection could be induced – variolation
protected against smallpox. In 1760, Daniel Bernoulli initiated the 
development of mathematical techniques to assess the efficacy of such 
interventions.

In 1796, Edward Jenner noticed that cowpox caused a less severe disease 
on people, and also resulted in protection against smallpox. In few years, the 
new technique of vaccination became very popular.

Smallpox was declared eradicated from the world in 1979.



Vaccination

Measles:



Vaccination

Many diseases preventable by vaccination:

• Smallpox
• Measles
• Mumps
• Rubella
• Diphtheria
• Whopping cough
• Meningitis (Hib)
• Meningitis (Neisseria meningitidis)
• Tetanus
• Poliomyelitis
• Hepatitis B
• Yellow fever
• Tuberculosis (BCG)
• Influenza

And many more are in development.



The collective effect of a vaccination programme is to reduce the pool of 
susceptible individuals.

S I RR0I

Vaccination – SIR model



The collective effect of a vaccination programme is to reduce the pool of 
susceptible individuals.
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v: vaccination coverage

Vaccination – SIR model
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Vaccination – Temporary immunity model
Waning of immunity poses a major obstacle on disease eradication.
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σ : susceptibility reduction factor
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Vaccination – Partial immunity model
Partial immunity creates a reinfection threshold, R0 = 1 / σ, above which 
the prevalence of infection is insensitive to vaccination.

S I R

σ : susceptibility reduction factor

R0I

σ R0I ve(1-v)e



Reinfection threshold

uncontrollablecontrollable



Vaccine more protective than natural immunity
No existing vaccine confers a level protection that is superior than that 
induced by natural infection. However, this is a prime goal in vaccine 
development research. In order to predict the epidemiological impact of such 
vaccine we need an extention to the partial immunity model.

The vaccine is more potent than natural infection iff σV < σ.



Vaccine more protective than natural immunity



Back to Grassberger et al.
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Grassberger, Chaté, Rousseau (1997) 
Spreading in media with long-time memory. 
Phys. Rev. E 55, 2488-2495.

Stollenwerk N, Gökaydin D, Hilker FM, van 
Noort SP, Gomes MGM 2007 The reinfection
threshold is the mean field version of the 
transition between annular and compact 
growth in spatial models (submitted).
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Tuberculosis
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The BCG paradox – variable efficacy

BCG efficacyTB incidence

BCG was introduced in the global immunisation programme in 1973, and it is 
today one of the mostly widely used vaccines.

Estimates of its efficacy vary from 0% to 80%, generating great controversy.



A mathematical model
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ω : rate of reactivation of latent TB
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Paula Rodrigues, IGC



Non vaccinated
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Model predicts variable efficacy

The vaccine is highly effective where incidence is low, but it has no effect 
where incidence is high.

Simulation of a vaccination programme in 3 regions: A, B, C.

Simulations

Effectiveness of the same 
vaccination programme in the 
3 regions

Endemic equilibrium
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Perspectives for control

A major focus of TB research is the development of more potent vaccines. 
Mathematical models play an important role in the definition of a “good 
vaccine” and a “good intervention”, from the view point of global control.

Alternative control measures are detection and treatment of both active and 
latent TB cases, but variable efficacy is also expected. The globalisation of 
planning is essential.

Vaccine more 
potent than 
natural infection
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• 1/3 of the world population (~109 individuals) is infected, the majority in 
latent form;

• It is estimated that 10% (~108 individuals) will develop pulmonary 
tuberculosis;

• This immense reservoir can only be controlled by post-exposure 
interventions: chemoprophylaxis or prophylactic vaccines.

The potential of post-exposure interventions



Treatment of latent infection
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Widespread treatment of latents does not benefit all populations 



Altered susceptibility after treatment



Summary



Intervention planning



Summary

1. Partial immunity induces a threshold in transmission above which 
reinfection is high enough to overcome natural immunity;

2. A vaccine will be ineffective above the reinfection threshold unless it 
does better than naturally acquired immunity;

3. Post-exposure interventions can have a wide range of outcomes, 
making it very important to characterise their mode of action;

4. Post-exposure interventions that reduce both the risk of reactivation
and the risk of reinfection can have minor of major effects depending 
on the design of the control programme. 



Pertussis



Pertussis – resurgence



Increasing age at infection



Basic model
Ricardo Águas, IGC
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Basic model
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Ricardo Águas, IGC



Pertussis – Endemic stability

0      2     4     6     8    10   12   14   16      
Basic reproduction number, R0



Increasing disease with decreasing transmission



Model equations
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Age and time – equations 
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Malaria
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Malaria – endemic stability 



Malaria – sensitivity to reporting rate 



Malaria – sensitivity to reduced infectivity 



Malaria – intervention design 





SIS               SIS

SIR               SIR

Susceptible – Infected - Susceptible

Susceptible – Infected - Resistant

Multi-strain dynamics: the case of influenza



SIS model

S I
R0 Ι

Appropriate for infections that 
induce no effective immunity (e.g. 
malaria).

SIR model

Appropriate for infections that 
induce a highly effective immunity 
(e.g. measles, mumps, rubella).
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Intermediate models

Temporary immunity

Partial immunity
SIS and SIR steady states
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Partial immunity and Polarised immunity

Partial immunity:
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Steady states

Partial immunity

Polarised immunity



Pathogen diversity and disease epidemiology

1975      1980      1985      1990      1995      2000

A H3N2

Proportion of H3N2
in the total flu incidence (%)
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Combining the epidemiology and  
evolution of infectious diseases.



1) Evolutionary and Epidemic time scales coincide.

0
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2) Global surveillance provides both epidemic and evolutionary data.

3) Important recurrent disease – major cause of morbidity and mortality.

Why flu is a favourite model system
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2 strains with partial cross-immunity
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S12
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2 strains with partial cross-immunity and coinfection
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with Graham Medley & James Nokes
Warwick
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2 strains with partial cross-immunity and coinfection
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n strains with partial cross-immunity and coinfection
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Variants indexed by the set  N = {1, 2, …, n} and ordered by similarity. 
Variants compete for hosts and interact through cross-reactive immunity. 
The dynamics of n strains are described by a system of 2n + n equations.



1-D strain space
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2 strains with polarised cross-immunity and coinfection
... and reduced transmission
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2 strains with polarised cross-immunity and coinfection

1Ø22Ø1 , SSSS +=+= θθ

n susceptible classes

n infected classes



More tractable, but different…

no
waves

R0

σ

no reinfection
threshold?



Polarised cross-immunity and mutation



Polarised cross-immunity and mutation



2-D strain space



Cluster as the modelling unit

drift

shift

But despite all differences between models, the cluster appears as a natural 
modelling unit...



Clusters of influenza A virus

Plotkin, Dushoff, Levin, Princeton



Clusters of influenza A virus
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Antigenic map of influenza



Model structure
Dinis Gökaydin, IGC
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Demographic and
Geographical
Information

José Lourenço, IGC

FluSpread
A tool for public health policy making
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