Epidemiology

Schedule:

Friday, 25 May

9:30-11:00 — Session 1
Basic models and in epidemiology

11:30-13:00 — Session 2
Tuberculosis, pertussis, malaria

15:00-16:30 — Session 3
Multi-strain dynamics: the case of influenza



Types of models

Mathematical models — simple and general:

Useful to explore general mechanisms, and to establish basic
principles. Further complexity can be incorporated gradually.
Traditional and common in biology.

Computational models — complex and specific:
Attempt to describe every detail of the real system as

accurately as possible. Weather prediction models are the
best examples. Recent and increasingly common in biology.
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SIS model

Ronald Ross demonstrated that the parasite of malaria is transmitted by
mosquitoes and in 1902, he received the Nobel Prize of Medicine. He
developed mathematical models for malaria transmission, and was a

pioneer in mathematical epidemiology.
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SIS model

Appropriate for infections that induce no effective immunity (e.g. malaria).
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SIS model

As § + I =1, the model is one dimensional and represented by the equation

dl _ pei_
A= p-D1~1l

This is a type of growth law known as logistic growth, and it appears
commonly in population dynamics models in the form

dl _p_~1_. 1
dl_(p-7)1 I

-7/

The solution can be calculated to give
I (Oj(l —7/f3 j
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SIS model

Given an initial condition, I(0) = 10_6, the proportion of infectious individuals
grows as

Logistic growth
1 Steady states:
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g =0, §=1
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The Basic Reproduction Number, R,

The basic reproduction number is defined as

The average number of secondary cases produced by an average
infectious individual in a totally susceptible population.

The basic reproduction number is calculated as
R, = (rate of transmission from an infectious individual) x (infectious period)

=Bx(1/t)=p/r
Disease
Smallpox

Measles
R,is a nondimensional
number, and depends on
both the environment and Rubella (Gambia)
the disease.

Rubella (England and Wales)




Nondimensional SIS model

If time is measured in units of infectious period, D = 1/ 7, then the SIS model
becomes

dl. =R (1-I)I-1

dt
=Ry1- 1 11
R
0
The endemic equilibrium is rewritten as Endemic equilibrium
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Stability of the SIS steady states

The SIS model is expanded as

%:[Ro—lJl—Rolz

The stability of a steady state, /*, is given by the sign of the linearisation
J(I*)=Ry—~1-2RI*
1. Disease free equilibrium, S =1, 1=0:
J=J(0)=Ry—1 —— stableif RO<1

2. Endemic equilibrium, S=1/R,I1=1-1/R,: — Possible if R0 > 1

J, :J[I—I/ROJz(RO —1)2 /Ro — Stable



Vector field for the SIS model
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S/IR model

Appropriate for infections that induce a highly effective immunity (e.g.
measles, mumps, rubella).
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Epidemic threshold

In 1927, Kermack e McKendrick fitted the model to various epidemic curves
(in particular, the Bubonic plague). They established the theory of the
epidemic threshold: the growth of an epidemic requires that, on average, an
infected individual infects at least one susceptible. An epidemic falls when
the density of susceptibles is below a threshold: S <1/R,.
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Another example - Cholera

Cholera outbreak in London, 1854: Distribution of cases in a residential area.
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Epidemic fad-out

The epidemic curve of cholera is typical of an infectious disease that induces
protective immunity.
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Nondimensional SIR model

If time is measured in units of infectious period, D = 1/ 7, then the SIR model
becomes

a5 —_R IS and IR =g

dt 0 dt
dl _p IS—1
d 0 S

As individuals become immune, this system always approaches the disease
free steady state, I = 0. As the epidemic progresses, the level of
susceptibles decreases, and the level of recovered individuals increases.
The important question is the final balance between these two classes —
does the disease die out before all the susceptibles are exhausted?

Z}%——R S = S= exp( RORJ

Using the factthat § =1-1- R, and at equilibrium 7 =0, we get
R*:l—exp[—RoR*j



After epidemic — SIR steady state

Final state

Recovered

Proportions
-
on

Susceptible

0 1 2 3 4
Basic reproduction number, H’D



Long-term SIR dynamics

In the long term, the susceptibility pool is replenished by births generating the
conditions for new epidemics to occur.

proportion infectious

=8 l=—3
S S

Simulation (R0 =3) Steady States
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SIR steady states

The new steady states are obtained from the model

ds — o R[S eS
dt

al _p 157
dt o>

Steady states:

1. Disease free equilibrium: 7=0, S=I

11—

R,

2. Endemic equilibrium: I=e , S=

1
Ry

The new parameter, e, represents the birth and death rate in units of
infectious period. This is equivalentto D /L , where D is the average
duration of infection and L is the life expectancy at birth. Assuming that
D =1 month, and L = 70 years, we get e = 0.0012.



Stability of the SIR steady states

The linearisation of the SIR model is the Jacobian matrix
—R [*~e —R S§*
0 0

JOEI)=1 B e R ogr_
0 0

The stability of a steady state, (S* %), is given by the eigenvalues of the
corresponding Jacobian matrix.

1. Disease free equilibrium, § =1, I = 0, eigenvalues:

—e and Ro—l — Stable if R0 < 1

2. Endemic equilibrium,S=1/R,,I=1-1/R,, eigenvalues:

eR
__Oil\/e2R2—4e(R —1) — Stable if RO > 1
o o 0 0




Vector field and simulation of the SIR model

Ry=3, e=0.0012

Proportion infectious
=
&n

0
0

The inter-epidemic period near equilibriumis T = 27/ @ , where w is the
imaginary part of the eigenvalues of J,, and this is

1
Q) = —

2

0.5
Proportion susceptible

1

0.05

50

100 150

Time (in years)

\/4e(RO—1)_ezR§ <~ JR,-T) = TZZ”\/D(Ri—lj

200



Intermediate models

SIS and SIR steady states

Temporary immunity
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Temporary immunity and Partial immunity

Temporary immunity: Decay of immunity over time appears to be an
important factor in many diseases — for example, pertussis. In the extreme
case, when immune efficacy drops from full protection to nothing at a given

rate (parameterized by ), the model is

dS _
d—t—e—ROIS—eS +a(l-e)(1-25)

al _p 1§57
dt o>

Partial immunity: Even more common is that immunity is not fully protective,

but rather reduces the risk of further infections by some factor (o) — for
example, tuberculosis. This is represented by the model

as — o R[S eS
dt

dl _
d_é—RO](S+a(1—S—I)j—



Steady states and inter-epidemic period
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Temporary-Partial immunity

When immunity is not fully protective, it is likely to accommodate a specific
combination of both temporary (&) and partial (o) factors.
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Temporary-Partial immunity model

The combined model is represented as

ds _
dl _ _CS_T))—

Having both &z and o allows better fitting to data sets.

West Midlands RSV Incidence

Incidence (Week'l)

1995 1996 1997 1998 1999 2000 2001 2002 2003
Date (year)



Vaccination

Smallpox: Immunity is a very old popular concept — people who survive
certain diseases, acquire protection, and will not get the disease again.

It was realised how the same protection could be induced — variolation
protected against smallpox. In 1760, Daniel Bernoulli initiated the
development of mathematical techniques to assess the efficacy of such
interventions.

In 1796, Edward Jenner noticed that cowpox caused a less severe disease
on people, and also resulted in protection against smallpox. In few years, the
new technique of vaccination became very popular.

Smallpox was declared eradicated from the world in 1979.



Vaccination

Measles:

Measles global annual reported incidence
and MCV coverage, 1980-2000
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Vaccination

Many diseases preventable by vaccination:

» Smallpox

* Measles

* Mumps

* Rubella
 Diphtheria

* Whopping cough

* Meningitis (Hib)

* Meningitis (Neisseria meningitidis)
» Tetanus

* Poliomyelitis

» Hepatitis B

* Yellow fever

* Tuberculosis (BCG)
* Influenza

And many more are in development.



Vaccination — SIR model

The collective effect of a vaccination programme is to reduce the pool of
susceptible individuals.

Hiwd | had R




Vaccination — SIR model

The collective effect of a vaccination programme is to reduce the pool of
susceptible individuals.
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Vaccination — Temporary immunity model

Waning of immunity poses a major obstacle on disease eradication.
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Vaccination — Partial immunity model

Partial immunity creates a reinfection threshold, R, = 71/ &, above which
the prevalence of infection is insensitive to vaccination.
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Vaccine more protective than natural immunity

No existing vaccine confers a level protection that is superior than that
induced by natural infection. However, this is a prime goal in vaccine
development research. In order to predict the epidemiological impact of such
vaccine we need an extention to the partial immunity model.
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Back to Grassberger et al.
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Grassberger, Chaté, Rousseau (1997)
Spreading in media with long-time memory.
Phys. Rev. E 55, 2488-2495.

Stollenwerk N, Gokaydin D, Hilker FM, van
Noort SP, Gomes MGM 2007 The reinfection
threshold is the mean field version of the
transition between annular and compact
growth in spatial models (submitted).
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Breban R, Blower S (2005) The reinfection threshold does not
exist. J. Theor. Biol. 235, 151-152.

Gomes MGM, White LJ, Medley GF (2005) The reinfection
threshold. J. Theor. Biol. 236, 111-113.
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Tuberculosis




Estimated TB incidence rate, 2003

Rates per 100 000, all
forms of TB
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The BCG paradox — variable efficacy

BCG was introduced in the global immunisation programme in 1973, and it is
today one of the mostly widely used vaccines.

Estimates of its efficacy vary from 0% to 80%, generating great controversy.

TB incidence BCG efficacy




A mathematical model
Paula Rodrigues, IGC
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A mathematical model
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Model predicts variable efficacy

Simulation of a vaccination programme in 3 regions: A, B, C.

Endemic equilibrium Simulations
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The vaccine is highly effective where incidence is low, but it has no effect
where incidence is high.



Perspectives for control

A major focus of TB research is the development of more potent vaccines.
Mathematical models play an important role in the definition of a “good
vaccine” and a “good intervention”, from the view point of global control.
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Alternative control measures are detection and treatment of both active and
latent TB cases, but variable efficacy is also expected. The globalisation of
planning is essential.



The potential of post-exposure interventions

» 1/3 of the world population (~10? individuals) is infected, the majority in
latent form;

* It is estimated that 10% (~108 individuals) will develop pulmonary
tuberculosis;

* This immense reservoir can only be controlled by post-exposure
interventions: chemoprophylaxis or prophylactic vaccines.



Treatment of latent infection
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Widespread treatment of latents does not benefit all populations
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Altered susceptibility after treatment
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Summary

susceptibility ratio, Iogz{ c, ’bo)
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Intervention planning

proportion with active TB
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Summary

Partial immmunity induces a threshold in transmission above which
reinfection is high enough to overcome natural immunity;

A vaccine will be ineffective above the reinfection threshold unless it
does better than naturally acquired immunity;

Post-exposure interventions can have a wide range of outcomes,
making it very important to characterise their mode of action;

Post-exposure interventions that reduce both the risk of reactivation
and the risk of reinfection can have minor of major effects depending
on the design of the control programme.






Pertussis — resurgence
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Increasing age at infection

Percentage

Incidence per 100,000 population
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Basic model

Ricardo Aguas, IGC
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Basic model

Ricardo Aguas, IGC
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Pertussis — Endemic stability
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Increasing disease with decreasing transmission
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Model equations

L0 (1- v+ aR=Sy(2+ )
dR
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Age and time — equations
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Boundary conditions:
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Malaria:
Data from

Sub-Saharan
Africa
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Malaria — endemic stability
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Malaria — sensitivity to reporting rate
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Malaria — sensitivity to reduced infectivity




Malaria — intervention design
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Multi-strain dynamics: the case of influenza

S I S Susceptible — Infected - Susceptible S I S

SI R Susceptible — Infected - Resistant SI R




SIS model

S/IR model

Appropriate for infections that
induce no effective immunity (e.g.
malaria).
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Intermediate models

Temporary immunity
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Partial immmunity and Polarised immunity

Partial immunity:

S=e—ROIS—eS
=R I(S+o(1-S~1)-1

Polarised immunity:
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]:ROIS—]



Steady states
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Pathogen diversity and disease epidemiology
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Why flu is a favourite model system

1) Evolutionary and Epidemic time scales coincide.

HIV Flu Measles

- 0 + o [evolutionary change}

»
»

epidemic change

2) Global surveillance provides both epidemic and evolutionary data.

3) Important recurrent disease — major cause of morbidity and mortality.



2 strains with partial cross-immunity

Viggo Andreasen, Roskilde Force of infection:
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2 strains with partial cross-immunity
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2 strains with partial cross-immunity and coinfection

without
coinfection
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2 strains with partial cross-immunity and coinfection
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2 strains with partial cross-immunity and coinfection

\
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n strains with partial cross-immunity and coinfection

Variants indexed by the set N = {1, 2, ..., n} and ordered by similarity.
Variants compete for hosts and interact through cross-reactive immunity.

The dynamics of 7 strains are described by a system of 2” + n equations.

S, =e— ZagAiS@ —eS,,
ieN
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1-D strain space




1-D strain space
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2 strains with polarised cross-immunity and coinfection

... and reduced transmission Julia Gog, Cambridge
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2 strains with polarised cross-immunity and coinfection

> N susceptible classes

A* = RyA°6, — \°

> n infected classes




More tractable, but different...
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Polarised cross-immunity and mutation

aij = E*{iii}ﬂ

i J

Cross-immunity to nearby strains
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Mutation to adjacent strains



Polarised cross-immunity and mutation
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2-D strain space f
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Cluster as the modelling unit

But despite all differences between models, the cluster appears as a natural
modelling unit...

R— shift

L L /:jrift



Mean cluster size

Clusters of influenza A virus

Plotkin, Dushoff, Levin, Princeton
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Clusters of influenza A virus

Derek Smith, Cambridge
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Model structure

Dinis Gékaydin, IGC
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log(proportion infected)
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EPIDEMIOLOGY

ORGANISM-centered biology

MOLECULAR and CELL biology




FluSpread

A tool for public health policy making

José Lourenco, IGC
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FluSpread
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Human resources
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