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Portfolio optimization.
Traditional Markowitz model.

Markowitz framework.

Set of feasible portfolios X ⊂ Rn (convex, compact), i.e. xT111 = 1 for x ∈ X.

Expected asset returns r = E[R].

Covariance matrix of asset returns C = Var[R].

Expected portfolio return xT r.

Volatility (= risk) of portfolio
√
xTCx.

Markowitz portfolio optimization problem.

min
x∈X

(1− λ)
√
xTCx + λ(−xT r) (PO)

Risk-return trade-o� parameter λ (with 0 ≤ λ ≤ 1).

Optimal portfolio x∗ depends on r and C, i.e. x∗ = x∗
r,C.
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Portfolio optimization.
Traditional Markowitz model.

Illustration.

The trade-o� parameter λ is used to
trace the e�cient frontier.

For λ = 0 we get the
minimum variance portfolio.

For λ = 1 we get the
maximum return portfolio.

Remark.

The calculation of the e�cient fron-
tier can also be formulated as a vector
optimization problem.
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Portfolio optimization.
Traditional Markowitz model.

Market model.

Elliptical model for asset returns R ∼ E(r, C, ϕ) with density generator ϕ.

Elliptical models contain the multivariate normal distribution as a special case.

Elliptical models are still compatible with preference/utility theory.

Estimation of the input parameters r and C.

We assume that S historical return realizations R1, . . . , RS (iid) are given.

In the traditional Markowitz framework, maximum likelihood estimators for r and
C are used to get the input data for (PO)

µ̂ML
S =

1

S

S∑
s=1

Rs, Σ̂ML
S =

1

S

S∑
s=1

(Rs − µ̂ML
S )(Rs − µ̂ML

S )T

Other approaches like Bayes estimator, Black-Litterman estimators or robust
estimators are also used frequently.
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Portfolio optimization.
Estimation risk.

True and actual e�cient portfolio.

For market parameters (r, C), the true e�cient portfolio is x∗r,C .

As only estimators (µ,Σ) are available, the actual e�cient portfolio is x∗µ,Σ.

The actual portfolio can be seen as an estimator for the true e�cient portfolio.

True, actual and predicted risk and return.

true actual predicted

expected return x∗r,C
T r x∗µ,Σ

T r x∗µ,Σ
Tµ

risk
√
x∗r,C

TCx∗r,C

√
x∗µ,Σ

TCx∗µ,Σ

√
x∗µ,Σ

TΣx∗µ,Σ

Estimation risk.

Estimation risk = true quantity � predicted quantity.

How big is this estimation risk?
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Portfolio optimization.
Estimation risk.

Example.

The actual risk and return �gures deviate from the optimal ones.

The predicted return �gures show signi�cant deviations.
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Portfolio optimization.
Estimation risk.

Example (cont'd).

The weights vary strongly, sometimes even dramatically (i.e. the outliers).
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Portfolio optimization.
Estimation risk.

Brief summary of known results.

Estimation risk was an active research topic from late 70's until early 90's.

Most popular papers: Barry, Jobson/Korkie, Bawa/Brown/Klein, . . .

Main (empirical) result: optimal portfolios strongly depend on input r and C.

Is estimation risk vanishing with increasing sample size S?

Jobson/Korkie: if S > 200, estimation risk can be neglected.

Random matrix theory: the ratio of S to n must be large.

The appropriate notion from statistics is consistency.

An even better property allowing for some quantitative estimate is asymptotic
normality.
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Portfolio optimization.
Consistency.

De�nition.

A point estimator Qp,S for a parameter p based on a sample of size S is called

unbiased, if E[Qp,S ] = p,

strongly consistent, if P
[

lim
S→∞

Qp,S = p
]

= 1

(convergence almost surely),

(weakly) consistent, if lim
S→∞

P
[
|Qp,S − p| > ε

]
= 0

(convergence in probability).

Remarks.

Almost sure convergence and convergence in probability remain valid after
continuous transformations.

The portfolio estimator is in general biased, even if unbiased estimators for the
input data are applied.
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Portfolio optimization.
Consistency.

Main results concerning consistency and asymptotic normality.

Jobson/Korkie (1980): The optimal solution x∗ is consistent and asymptotically
normal, if R is normal. This result is derived from an analytical solution for x∗

based on a special structure of X.

Mori (2004): Extension to the case that X includes linear equalities.

Lauprete (2002): Similar results to Mori, but with R being elliptic and a slightly
di�erent optimization problem.

Jobson/Korkie (1980s) also characterized the distribution of x∗ for small S.

Okhrin/Schmid (2006): Extension of the Jobson/Korkie results to elliptical
distributions.

Consistency for a general set X and R elliptic is still missing!
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Portfolio optimization.
Consistency.

Theorem.

Assume that the following convex optimization problem (with convex, compact X)

min
x∈X

f (x, u)

s.t. g(x, u) ≤ 0

has an unique optimal solution x∗(u) in a neighborhood of û. Then x∗ is continuous at
û, if

the objective f and the constraint g are continuous, and either

the constraint g is not depending on u, or

there exists a Slater point for û, i.e. ∃ x̂ ∈ X such that g(x̂, û) < 0.

Corollary.

The optimal portfolio x∗r,C is continuously depending on (r, C).
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Portfolio optimization.
Consistency.

Theorem (Schöttle, Werner � 2006).

Let µ and Σ be consistent estimators for r and C. Then the optimal solution x∗µ,Σ is

also a consistent estimator for x∗r,C .

Remarks.

The above result generalizes all existing results.

The key to consistency is continuity of the solution of (PO) with respect to the
parameters.

Thus, the result can easily be generalized to the case that X depends (Hausdor�)
continuously on r and C.

Uniqueness of x∗ follows from the strict convexity of x 7→
√
xTCx on X.

For asymptotic normality, we need di�erentiability of x∗ with respect to the input
parameters r and C.
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Robust portfolio optimization.
Robust counterpart.

The need for robusti�cation.

Although stability is given from a mathematical point of view, dependence on the
parameters is still unsatisfactorily high.

In the last 15 years, several approaches were introduced to reduce the estimation
error while keeping e�ciency as high as possible.

� Usage of more robust estimators (shrinkage, M-estimators, . . . )

� Michaud's resampling,

� Stochastic optimization and scenario optimization,

� Robust counterpart.

Several empirical studies support the usage of robust approaches for small sample
sizes S.

Robusti�cation usually decreases the estimation variance, but at the same time
introduces a bias in the estimation.
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Robust portfolio optimization.
Robust counterpart.

The robust counterpart.

Based on an uncertainty set U the robust counterpart is de�ned as

min
x∈X

f (x, u) min
x∈X

max
u∈U

f (x, u)

s.t. g(x, u) ≤ 0 s.t. max
u∈U

g(x, u) ≤ 0.

Setting F (x, U) := max
u∈U

f (x, u) and G(x, U) := max
u∈U

g(x, u) this becomes

min
x∈X

F (x, U)

s.t. G(x, U) ≤ 0

Robust portfolio optimization

min
x∈X

max
(µ,Σ)∈U

(1− λ)
√
xTΣx + λ(−xTµ) (RO)
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Robust portfolio optimization.
Robust counterpart.

Important facts about the robust counterpart (Schöttle, Werner �
2006).

It holds: f , g convex in x =⇒ F , G convex in x.

It holds: f , g strictly convex on X =⇒ F , G strictly convex on X.

It holds: f , g continuous in u =⇒ F , G continuous in U .

Continuity in U is always understood in the Hausdor� sense.

If the original problem has a Slater point and U is small enough, then the robust
counterpart also possesses a Slater point.

Interpretation.

The robust counterpart inherits all nice properties from the original problem.

Instead of a real parameter u ∈ Rd a set U ∈ 2Rd

becomes the parameter.
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Robust portfolio optimization.
Robust counterpart.

Choice of the uncertainty set U .

Most obvious choice for U is the (joint) con�dence ellipsoid centered at the
estimates µ̂ and Σ̂.

In the special case of normally distributed returns and maximum likelihood
estimators, the uncertainty set can be explicitely described by

U = {(µ,Σ) | S(µ− µ̂)T Σ̂−1(µ− µ̂) +
S − 1

2
‖Σ̂−

1
2(Σ− Σ̂)Σ̂−

1
2‖2

tr
≤ δ2}.

Generalizations to elliptical distributions and other estimators are in general
possible, but may involve numerical procedures (i.e. numerical integration, etc.).

Other � mainly polyhedral � uncertainty sets have also been investigated in the
literature.

For small S the shape of U plays an important role, but for large S, only the size
of U matters.
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Robust portfolio optimization.
Estimation risk.

Robustifcation reduces estimation risk.
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Robust portfolio optimization.
Estimation risk.

Robusti�ed portfolios are more stable.

Stability in weights comes with a small bias in portfolio weights.
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Robust portfolio optimization.
Consistent uncertainty sets.

De�nition.

An uncertainty set U is called strongly consistent for the pair (r, C) if

Hd
(
U, {(r, C)}

)
→ 0 almost surely for S →∞,

with Hd(A,B) denoting the Hausdor� distance between the sets A and B.

Remarks.

(Weak) consistency can be de�ned analogously (by convergence in probability).

Consistent uncertainty sets are the natural analogon to consistent point estimates.

Consistent uncertainty sets shrink to the real data.

The uncertainty set from the previous example is strongly consistent.
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Portfolio optimization.
Consistency.

Theorem.

Assume that the robust counterpart

min
x∈X

F (x, U)

s.t. G(x, U) ≤ 0

has an unique optimal solution x∗(Û) in a neighborhood of Û . Then x∗ is continuous at
Û , if

the objective F and the constraint G are continuous, and either

the constraint G is not depending on U , or

there exists a Slater point for Û .

Remark.

Not surprisingly, this is the same result as for the original problem.
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Robust portfolio optimization.
Consistency.

Theorem (Schöttle, Werner � 2006).

Let U be a consistent uncertainty set for (r, C). Then the optimal solution x∗U is a
consistent estimator for x∗r,C .

Remarks.

The above result generalizes the result of the traditional framework.

The key to consistency is continuity of the solution with respect to the uncertainty
set.

Thus, the result can be easily generalized to the case that X depends (Hausdor�)
continuously on r and C.

Uniqueness of x∗ follows from the strict convexity of x 7→
√
xTCx on X.

What about asymptotic normality?

071026 Coimbra 2007 Consistency of robust portfolio estimates RW 23



Outline.

1. Traditional portfolio optimization.

1.1 Markowitz optimization

1.2 Estimation risk

1.3 Consistency

2. Resampled portfolio optimization.

2.1 Resampled portfolios

2.2 Estimation risk

2.3 Consistency

071026 Coimbra 2007 Consistency of robust portfolio estimates RW 24



Resampled portfolio optimization.
Resampled asset returns and bootstrapped estimators.

Resampled asset returns.

Fix resampling parameters (rres, Cres, ψres) for resampled asset returns

Rres ∼ E(rres, Cres, ψres).

The bootstrapped estimator distribution.

Take S samples of Rres and use any continuous and consistent estimator
to obtain µres and Σres.

This induces the bootstrapped distribution BS for µres and Σres:

(µres,Σres) ∼ BS(rres, Cres, ψres).

Example.

In Michaud's original setting: Rres ∼ N (rres, Cres).

Using the maximum likelihood estimators, the bootstrapped distribution is
analytically given: BS(rres, Cres, ψres) = N (rres,

1
SCres)⊗W( 1

SCres, S − 1).

071026 Coimbra 2007 Consistency of robust portfolio estimates RW 25



Resampled portfolio optimization.
Resampled portfolios.

Resampled portfolios.

Plug in µres and Σres in (PO) to obtain x∗µres,Σres
.

Based on the distribution of the bootstrapped x∗ the resampled portfolio is
de�ned as:

y∗rres,Cres
:= y∗rres,Cres,S,ψres

:= E[x∗µres,Σres
] with (µres,Σres) ∼ BS(rres, Cres, ψres)

Resampled portfolios � algorithmic view.

1. Fix resampling parameters and resample S asset returns.

2. Calculate estimators for risk and return.

3. Plug them into the portfolio problem and compute optimal portfolios.

4. Repeat the above K times and take the average of all these portfolios.

Where do the resampling parameters (rres ,Cres) come from?
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Resampled portfolio optimization.
Resampled portfolios.

Important facts about resampled portfolios.

For small S, the choice of ψres is important. For large S, the density generator can
be chosen arbitrarily.

The resampling parameters rres and Cres are estimated from the historical sample
R1, . . . , RS.

The estimators which are used to derive rres and Cres are used for the estimation
of the bootstrapped estimators µres and Σres as well.

Continuity properties.

For �xed S, the resampled portfolio is continuous in the resampling parameters:

y∗rk,Ck,S,ψres
→ y∗

r̄,C̄,S,ψres
for rk → r̄, Ck → C̄.

For �xed resampling parameters, it holds independent of ψres:

y∗rres,Cres,S,ψres
→ x∗rres,Cres

for S →∞.
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Resampled portfolio optimization.
Consistency.

Theorem (Schöttle, Werner � 2006).

Let rres and Cres be derived by continuous and consistent estimators for r and C.
Then the resampled portfolio y∗rres,Cres

is a consistent estimator for x∗r,C , independent of
the choice of ψres.

Remarks.

The key to consistency is again continuity of the solution of (PO) with respect to
the uncertain parameters.

Thus, the result can be easily generalized to the case that X depends (Hausdor�)
continuously on r and C.

Compactness of X is crucial for the above continuity result.

What about asymptotic normality?
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Resampled portfolio optimization.
Costs and bene�ts of resampling.

Observations.

The resampled frontier is close to the
original frontier.

The resampled frontier is shorter than
the original frontier.

The resampled portfolio allocations
look more reasonable.
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