Consistency of robust portfolio estimates.
Outline.

1. Traditional portfolio optimization.
 1.1 Markowitz optimization
 1.2 Estimation risk
 1.3 Consistency

2. Robust portfolio optimization.
 2.1 Robust counterparts
 2.2 Estimation risk
 2.3 Consistency
Portfolio optimization.
Traditional Markowitz model.

Markowitz framework.

- Set of feasible portfolios $X \subset \mathbb{R}^n$ (convex, compact), i.e. $x^T 1 = 1$ for $x \in X$.
- Expected asset returns $r = \mathbb{E}[R]$.
- Covariance matrix of asset returns $C = \mathbb{V}ar[R]$.
- Expected portfolio return $x^T r$.
- Volatility (= risk) of portfolio $\sqrt{x^T C x}$.

Markowitz portfolio optimization problem.

$$\min_{x \in X} (1 - \lambda) \sqrt{x^T C x} + \lambda (-x^T r) \quad \text{(PO)}$$

- Risk-return trade-off parameter λ (with $0 \leq \lambda \leq 1$).
- Optimal portfolio x^* depends on r and C, i.e. $x^* = x^*_{r, C}$.
Portfolio optimization.
Traditional Markowitz model.

Illustration.

- The trade-off parameter λ is used to trace the **efficient frontier**.
- For $\lambda = 0$ we get the **minimum variance portfolio**.
- For $\lambda = 1$ we get the **maximum return portfolio**.

Remark.

- The calculation of the efficient frontier can also be formulated as a vector optimization problem.
Portfolio optimization.
Traditional Markowitz model.

Market model.

- Elliptical model for asset returns $R \sim \mathcal{E}(r, C, \varphi)$ with density generator φ.
- Elliptical models contain the multivariate normal distribution as a special case.
- Elliptical models are still compatible with preference/utility theory.

Estimation of the input parameters r and C.

- We assume that S historical return realizations R_1, \ldots, R_S (iid) are given.
- In the traditional Markowitz framework, maximum likelihood estimators for r and C are used to get the input data for (PO)

$$
\hat{\mu}_S^{ML} = \frac{1}{S} \sum_{s=1}^{S} R_s, \quad \hat{\Sigma}_S^{ML} = \frac{1}{S} \sum_{s=1}^{S} (R_s - \hat{\mu}_S^{ML})(R_s - \hat{\mu}_S^{ML})^T
$$

- Other approaches like Bayes estimator, Black-Litterman estimators or robust estimators are also used frequently.
Portfolio optimization.
Estimation risk.

True and actual efficient portfolio.

- For market parameters \((r, C)\), the **true efficient portfolio** is \(x_{r,C}^*\).
- As only estimators \((\mu, \Sigma)\) are available, the **actual efficient portfolio** is \(x_{\mu,\Sigma}^*\).
- The actual portfolio can be seen as an estimator for the true efficient portfolio.

True, actual and predicted risk and return.

<table>
<thead>
<tr>
<th></th>
<th>true</th>
<th>actual</th>
<th>predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>expected return</td>
<td>(x_{r,C}^* T r)</td>
<td>(x_{\mu,\Sigma}^* T \mu)</td>
<td></td>
</tr>
<tr>
<td>risk</td>
<td>(\sqrt{x_{r,C}^* T C x_{r,C}^*})</td>
<td>(\sqrt{x_{\mu,\Sigma}^* T C x_{\mu,\Sigma}^*})</td>
<td>(\sqrt{x_{\mu,\Sigma}^* T \Sigma x_{\mu,\Sigma}^*})</td>
</tr>
</tbody>
</table>

Estimation risk.

- Estimation risk = true quantity - predicted quantity.

How big is this estimation risk?
Portfolio optimization.
Estimation risk.

Example.

- The actual risk and return figures deviate from the optimal ones.
- The predicted return figures show significant deviations.
Portfolio optimization.
Estimation risk.

Example (cont’d).
- The weights vary strongly, sometimes even dramatically (i.e. the outliers).
Portfolio optimization.
Estimation risk.

Brief summary of known results.

- Estimation risk was an active research topic from late 70’s until early 90’s.
- Most popular papers: Barry, Jobson/Korkie, Bawa/Brown/Klein, ...
- Main (empirical) result: optimal portfolios strongly depend on input r and C.

Is estimation risk vanishing with increasing sample size S?

- Jobson/Korkie: if $S > 200$, estimation risk can be neglected.
- Random matrix theory: the ratio of S to n must be large.
- The appropriate notion from statistics is **consistency**.
- An even better property allowing for some quantitative estimate is **asymptotic normality**.
Portfolio optimization.
Consistency.

Definition.

A point estimator $Q_{p,S}$ for a parameter p based on a sample of size S is called

- **unbiased**, if $\mathbb{E}[Q_{p,S}] = p$,
- **strongly consistent**, if $\mathbb{P}\left[\lim_{S \to \infty} Q_{p,S} = p\right] = 1$ (convergence almost surely),
- **(weakly) consistent**, if $\lim_{S \to \infty} \mathbb{P}\left[|Q_{p,S} - p| > \varepsilon\right] = 0$ (convergence in probability).

Remarks.

- Almost sure convergence and convergence in probability remain valid after continuous transformations.
- The portfolio estimator is in general biased, even if unbiased estimators for the input data are applied.
Portfolio optimization.
Consistency.

Main results concerning consistency and asymptotic normality.

- Jobson/Korkie (1980): The optimal solution x^* is consistent and asymptotically normal, if R is normal. This result is derived from an analytical solution for x^* based on a special structure of X.

- Mori (2004): Extension to the case that X includes linear equalities.

- Jobson/Korkie (1980s) also characterized the distribution of x^* for small S.

 Consistency for a general set X and R elliptic is still missing!
Portfolio optimization.
Consistency.

Theorem.

Assume that the following convex optimization problem (with convex, compact X)

$$\min_{x \in X} f(x, u)$$

s.t. $g(x, u) \leq 0$

has an unique optimal solution $x^*(u)$ in a neighborhood of \hat{u}. Then x^* is continuous at \hat{u}, if

- the objective f and the constraint g are continuous, and either
- the constraint g is not depending on u, or
- there exists a Slater point for \hat{u}, i.e. $\exists \hat{x} \in X$ such that $g(\hat{x}, \hat{u}) < 0$.

Corollary.

The optimal portfolio $x^*_{r,C}$ is continuously depending on (r, C).
Portfolio optimization.
Consistency.

Theorem (Schöttle, Werner – 2006).

Let μ and Σ be consistent estimators for r and C. Then the optimal solution $x^*_{\mu,\Sigma}$ is also a consistent estimator for $x^*_{r,C}$.

Remarks.

- The above result generalizes all existing results.
- The key to consistency is continuity of the solution of (PO) with respect to the parameters.
- Thus, the result can easily be generalized to the case that X depends (Hausdorff) continuously on r and C.
- Uniqueness of x^* follows from the strict convexity of $x \mapsto \sqrt{x^T C x}$ on X.
- For asymptotic normality, we need differentiability of x^* with respect to the input parameters r and C.

Outline.

1. Traditional portfolio optimization.
 1.1 Markowitz optimization
 1.2 Estimation risk
 1.3 Consistency

2. Robust portfolio optimization.
 2.1 Robust counterparts
 2.2 Estimation risk
 2.3 Consistency
Robust portfolio optimization.
Robust counterpart.

The need for robustification.

- Although stability is given from a mathematical point of view, dependence on the parameters is still unsatisfactorily high.
- In the last 15 years, several approaches were introduced to reduce the estimation error while keeping efficiency as high as possible.
 - Usage of more robust estimators (shrinkage, M-estimators, ...)
 - Michaud’s resampling,
 - Stochastic optimization and scenario optimization,
 - Robust counterpart.
- Several empirical studies support the usage of robust approaches for small sample sizes S.
- Robustification usually decreases the estimation variance, but at the same time introduces a bias in the estimation.
Robust portfolio optimization.
Robust counterpart.

The robust counterpart.

Based on an uncertainty set U the robust counterpart is defined as

$$
\min_{x \in X} f(x, u) \quad \text{s.t.} \quad g(x, u) \leq 0
$$

$$
\max_{u \in U} f(x, u)
$$

$$
\min_{x \in X} \max_{u \in U} f(x, u) \quad \text{s.t.} \quad \max_{u \in U} g(x, u) \leq 0.
$$

Setting $F(x, U) := \max_{u \in U} f(x, u)$ and $G(x, U) := \max_{u \in U} g(x, u)$ this becomes

$$
\min_{x \in X} F(x, U) \quad \text{s.t.} \quad G(x, U) \leq 0
$$

Robust portfolio optimization

$$
\min_{x \in X} \max_{(\mu, \Sigma) \in U} \quad (1 - \lambda) \sqrt{x^T \Sigma x} + \lambda(-x^T \mu)
$$

(RO)
Robust portfolio optimization.
Robust counterpart.

Important facts about the robust counterpart (Schöttle, Werner – 2006).

- It holds: f, g convex in $x \implies F, G$ convex in x.
- It holds: f, g strictly convex on $X \implies F, G$ strictly convex on X.
- It holds: f, g continuous in $u \implies F, G$ continuous in U.
- Continuity in U is always understood in the Hausdorff sense.
- If the original problem has a Slater point and U is small enough, then the robust counterpart also possesses a Slater point.

Interpretation.

- The robust counterpart inherits all nice properties from the original problem.
- Instead of a real parameter $u \in \mathbb{R}^d$ a set $U \in 2\mathbb{R}^d$ becomes the parameter.
Robust portfolio optimization.
Robust counterpart.

Choice of the uncertainty set U.

- Most obvious choice for U is the (joint) confidence ellipsoid centered at the estimates $\hat{\mu}$ and $\hat{\Sigma}$.

- In the special case of normally distributed returns and maximum likelihood estimators, the uncertainty set can be explicitly described by

$$U = \{ (\mu, \Sigma) \mid S(\mu - \hat{\mu})^T \hat{\Sigma}^{-1}(\mu - \hat{\mu}) + \frac{S - 1}{2} \| \hat{\Sigma}^{-\frac{1}{2}}(\Sigma - \hat{\Sigma})\hat{\Sigma}^{-\frac{1}{2}} \|_F^2 \leq \delta^2 \}.$$

- Generalizations to elliptical distributions and other estimators are in general possible, but may involve numerical procedures (i.e. numerical integration, etc.).

- Other – mainly polyhedral – uncertainty sets have also been investigated in the literature.

- For small S the shape of U plays an important role, but for large S, only the size of U matters.
Robust portfolio optimization.
Estimation risk.

Robustification reduces estimation risk.
Robust portfolio optimization. Estimation risk.

Robustified portfolios are more stable.

- Stability in weights comes with a small bias in portfolio weights.
Robust portfolio optimization.
Consistent uncertainty sets.

Definition.

An uncertainty set U is called strongly consistent for the pair (r, C) if

$$H_d(U, \{(r, C)\}) \to 0 \quad \text{almost surely for } S \to \infty,$$

with $H_d(A, B)$ denoting the Hausdorff distance between the sets A and B.

Remarks.

- (Weak) consistency can be defined analogously (by convergence in probability).
- Consistent uncertainty sets are the natural analogon to consistent point estimates.
- Consistent uncertainty sets shrink to the real data.
- The uncertainty set from the previous example is strongly consistent.
Portfolio optimization.
Consistency.

Theorem.

Assume that the robust counterpart

$$\min_{x \in X} F(x, U)$$

$$\text{s.t.} \quad G(x, U) \leq 0$$

has an unique optimal solution $x^*(\hat{U})$ in a neighborhood of \hat{U}. Then x^* is continuous at \hat{U}, if

- the objective F and the constraint G are continuous, and either
- the constraint G is not depending on U, or
- there exists a Slater point for \hat{U}.

Remark.

Not surprisingly, this is the same result as for the original problem.
Robust portfolio optimization.
Consistency.

Theorem (Schöttle, Werner – 2006).

Let U be a consistent uncertainty set for (r, C). Then the optimal solution x^*_U is a consistent estimator for $x^*_{r,C}$.

Remarks.

- The above result generalizes the result of the traditional framework.
- The key to consistency is continuity of the solution with respect to the uncertainty set.
- Thus, the result can be easily generalized to the case that X depends (Hausdorff) continuously on r and C.
- Uniqueness of x^* follows from the strict convexity of $x \mapsto \sqrt{x^TCx}$ on X.
- What about asymptotic normality?
Outline.

1. Traditional portfolio optimization.
 1.1 Markowitz optimization
 1.2 Estimation risk
 1.3 Consistency

2. Resampled portfolio optimization.
 2.1 Resampled portfolios
 2.2 Estimation risk
 2.3 Consistency
Resampled portfolio optimization.
Resampled asset returns and bootstrapped estimators.

Resampled asset returns.

- Fix resampling parameters \((r_{\text{res}}, C_{\text{res}}, \psi_{\text{res}})\) for resampled asset returns

 \[R_{\text{res}} \sim \mathcal{E}(r_{\text{res}}, C_{\text{res}}, \psi_{\text{res}}). \]

The bootstrapped estimator distribution.

- Take \(S\) samples of \(R_{\text{res}}\) and use any continuous and consistent estimator to obtain \(\mu_{\text{res}}\) and \(\Sigma_{\text{res}}\).

- This induces the bootstrapped distribution \(\mathcal{B}_S\) for \(\mu_{\text{res}}\) and \(\Sigma_{\text{res}}\):

 \[(\mu_{\text{res}}, \Sigma_{\text{res}}) \sim \mathcal{B}_S(r_{\text{res}}, C_{\text{res}}, \psi_{\text{res}}). \]

Example.

- In Michaud’s original setting: \(R_{\text{res}} \sim \mathcal{N}(r_{\text{res}}, C_{\text{res}})\).

- Using the maximum likelihood estimators, the bootstrapped distribution is analytically given: \(\mathcal{B}_S(r_{\text{res}}, C_{\text{res}}, \psi_{\text{res}}) = \mathcal{N}(r_{\text{res}}, \frac{1}{S}C_{\text{res}}) \otimes \mathcal{W}(\frac{1}{S}C_{\text{res}}, S - 1)\).
Resampled portfolio optimization.
Resampled portfolios.

Resampled portfolios.

- Plug in μ_{res} and Σ_{res} in (PO) to obtain $x^*_{\mu_{res},\Sigma_{res}}$.
- Based on the distribution of the bootstrapped x^* the resampled portfolio is defined as:

$$y^*_{r_{res},C_{res}} := y^*_{r_{res},C_{res},S,\psi_{res}} := \mathbb{E}[x^*_{\mu_{res},\Sigma_{res}}] \quad \text{with} \quad (\mu_{res}, \Sigma_{res}) \sim B_S(r_{res}, C_{res}, \psi_{res})$$

Resampled portfolios – algorithmic view.

1. Fix resampling parameters and resample S asset returns.
2. Calculate estimators for risk and return.
3. Plug them into the portfolio problem and compute optimal portfolios.
4. Repeat the above K times and take the average of all these portfolios.

Where do the resampling parameters (r_{res}, C_{res}) come from?
Resampled portfolio optimization.
Resampled portfolios.

Important facts about resampled portfolios.

- For small S, the choice of ψ_{res} is important. For large S, the density generator can be chosen arbitrarily.
- The resampling parameters r_{res} and C_{res} are estimated from the historical sample R_1, \ldots, R_S.
- The estimators which are used to derive r_{res} and C_{res} are used for the estimation of the bootstrapped estimators μ_{res} and Σ_{res} as well.

Continuity properties.

- For fixed S, the resampled portfolio is continuous in the resampling parameters:
 \[y^*_{r_k, C_k, S, \psi_{res}} \rightarrow y^*_{\bar{r}, \bar{C}, S, \psi_{res}} \quad \text{for} \quad r_k \rightarrow \bar{r}, C_k \rightarrow \bar{C}. \]

- For fixed resampling parameters, it holds independent of ψ_{res}:
 \[y^*_{r_{res}, C_{res}, S, \psi_{res}} \rightarrow z^*_{r_{res}, C_{res}} \quad \text{for} \quad S \rightarrow \infty. \]
Resampled portfolio optimization.
Consistency.

Theorem (Schöttle, Werner – 2006).

Let r_{res} and C_{res} be derived by continuous and consistent estimators for r and C'. Then the resampled portfolio $y_{r, C_{\text{res}}}$ is a consistent estimator for $x_{r, C}$, independent of the choice of ψ_{res}.

Remarks.

- The key to consistency is again continuity of the solution of (PO) with respect to the uncertain parameters.
- Thus, the result can be easily generalized to the case that X depends (Hausdorff) continuously on r and C'.
- Compactness of X is crucial for the above continuity result.
- What about asymptotic normality?
Resampled portfolio optimization.
Costs and benefits of resampling.

Observations.

- The resampled frontier is close to the original frontier.
- The resampled frontier is shorter than the original frontier.
- The resampled portfolio allocations look more reasonable.