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Notation

X denotes a |I.c. Hausdorff t.v.s and X* its topological dual endowed with
the weak*-topology.

IR%S_T) = {A T — Ry | [supp M| < —I—oo}, with supp A = {t € T | A+ # 0}

The asymptotic (or recession) cone of C C X is

C*={zeX|C+2zC(C}

o Jec € C such that

—{ZEX c—l—AzECVAZO}
={ze€Xc+Aze(C Vce C and VA > 0}
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For a set D C X, the normal cone of D at x is

{ue X*|u(y—x) <0 forallye D}, ifx € D,

ND(QZ):{ Np (z) = 9, if x ¢ D.

The effective domain, the graph, and the epigraph of h: X — RU {40}
are denoted by

domh, gphh and epih

The subdifferential of h at a point £ € domh#h is

Oh () ={ue€ X" |h(y) > h(z)+uly—=) Yy € X}
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The conjugate of h is

h*(v) = sup{v(z) — h(x) | z € dom h}

h* is also a proper |l.s.c. convex function and its conjugate (biconjugate
of h) is h** = h.

In particular, if f(z) = dz+ b, then

£ (u) = sup {(u —a) z— b} = 0yqy (u) — b,

T ERM™

i.e., f* = 5{a} — b.
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The asymptotic function of h is h°° such that

epi h>° = (epih)*".

The indicator function of D C X is

] 0, if x e D
op(x) _{ +o00, if z ¢ D.

If D # () is closed and convex, then §p is a proper I.s.c. convex function.

The support function of D is

op (u) = 5él(convD) (u) = ilejlp)u(a:), u e X .

In particular,

Spn (u) = sup u'z = 9£0,,} (u) = dpn = 040,,}-
xeR"
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LINEARIZING CONVEX SYSTEMS

We consider

o ={fi(x) <0,teT,; z e C},

where

¢ T is an arbitrary (possibly infinite) index set,
¢ C is a nonempty closed convex subset of X, and

¢ ft . X - RU{+4+o0} is a proper I.s.c. convex function, Vit e T.

In many applications C = X, in which case we write

o .= {ft(x) < O) t € T}



Given t € T,

ft(z) <0

ft**(x) <0
ut(x) — fi'(ug) <0, Vu € domff
ur(x) < fi(ug), Yup € domff
ut(z) < fif(ug) + «,
Yuy € domfF, Va € R,

1ty

Analogously,

r€eC s ic(x) <O

< u(z) <65(u), Yu € domdg,
< u(z) < 65(u) + B,
Vu € doméds , VB € Ry



Consequently, the following linear systems are equivalent to o :

’U,t(ilf) < ft*(ut>7 Ut € domft*a teT
u(zr) < 65H(u), u € domér

and

ut(x) < fif(ur) + o, wp cdomff, teT, ac Ry
u(z) < 65H(u) + 8, uedomis, Be Ry
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EXISTENCE THEOREMS

For linear systems [(Chu, 1966), Goberna et al. (1995)]:

(i) {ar(x) < by, t € T} is consistent

(ii) (0,—1) ¢ clcone{(at,by), t €T}

(III) Cl Cone{(a’t7 bt)a t € T, (07 1)}
# clconed{at, t€ T} x R.



Associating with o the convex cones

M = cone {UteT dom fFUdom 5}}}
N = cone {Uier 9ph fF U gph 55}
K = cone {Uscrepiff U epiég}
P = cone {UteT epif + epicS’("j}

we get

(i) o is consistent

0
(ii) (0,—1) ¢ clK (cIN, clP)

)

(iv) cl K #clM xR



1. Short history of these cones

K: Chu (1966), in LISs.
M, N and K: Charnes, Cooper & Kortanek (1965-1969), in LSIP.

P: Jeyakumar, Dinh & Lee (2004), in CP.

2. Closedness

P is weak*-closed

Y

K is weak™*-closed

T

N is weak™*-closed and o is consistent

The converse statements are not true and the consistency of o is not
superfluous.



Example 1: ¢ = X = Rand 0 =
{fi(z) =2 <0}

Since f{ = 041y and 0 = dypy,
epidp = Ry (0,1)
and
epi f{ = epi f; +epidr = (1,0) + R, (0,1).

m
/1T




Example 2: C' = X = R? and

oc={fi(z) =ty + w2 +1<0,t €[-1,1]}

Since gph g2 = {(0,0,0)} and gph f; =

{ (t, t2. —1) } Vt, N = cone {UteT gph ft*} is
closed whereas K is non-closed.




The following recession condition was introduced by Borwein (1981):

(RC)
C®n{zeX|f°) <0, teT)={0}

Generalized Fan’s theorem: if either
(a) K (N) is weak*-closed, or

(b) (RC) holds and K (N) is solid if X is infinite dimensional

then o is consistent iff

va e RYY, 3z, € C such that

> Aefi(xy) <0

te’rT
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C1 \ {x 2 X | f1t (x) � 0, t 2 T} = {0}


Some previous versions

Under closedness conditions

Bohnenblust, Karlin & Shapley (1950), with X = R"™ and C' compact.

Fan (1957), assuming that f;: X - R Vi € T and C is compact.

Shioji & Takahashi (1988), with C compact.

Under recession conditions

Rockafellar (1970), with X = R".



ASYMPTOTIC FARKAS LEMMA

From now on we assume that o is consistent with solution set A #= (.

Given v € X* and a € R, then v(x) < a is a consequence of the consistent
system {a;(x) < by, t € T} iff

(v,a) € clcone{(at,by), t € T; (0,1)}

Applying this result (Chu, 1966) to the linearization of o we get the

Asymptotic Farkas Lemma for linear inequalities: given v € X* and
a € R, v(x) <« is consequence of o iff (v,a) € cl K.
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From now on f: X — RU{+4+oo} denotes a proper l.s.c. convex function.
Another consequence is the

Asymptotic Farkas Lemma for convex inequalities: f(x) < «a is a
consequence of ¢ iff (0,a) 4+ epif* € cl K.

From here we get the following
Characterization of the set containment convex-convex: A C {z €

X | hy(x) <0,w e W} (hy as fi) iff

| epih}, CclK
weW



Precedents:

For Farkas' Lemma: see Jeyakumar (2001).

For set containment:

Goberna & Lo6pez (1998), with C = X = R"™ and f; and hy, affine Vt € T,
YVw e W.

Mangasarian (2002), with C = X = R"™ and |T| < co and |W| < cc.

Jeyakumar (2003), with C = X = R" and hy, affine Yw € W.

Goberna, Jeyakumar & Dinh (2006), with C = X = R",



FARKAS-MINKOWSKI SYSTEMS

The following concept was introduced by Charnes, Cooper & Kortanek
(1965), in LSIP:

o is FM if K is weak™*-closed.

Since cl K = epid’, {64 (z) <0} is a FM representation of A.

If o is FM, then every continuous linear consequence of o is also conse-
quence of a finite subsystem of o. The converse statement holds if o is
linear (but not if o is convex).

Example 3: Let X =C =R" and 0 = {fl () := % z]]? < O}.

Since f{ (v) = % v||?, K = (]R{” X IR{_H_) U {0} is not closed.
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Non-asymptotic Farkas lemma for linear inequalities: let 0 be FM,
v € X"\ {0} and a € R. Then:

(i) v(x) > a is consequence of o

)

(i) —(v,a) € K
)
Giii) 3x e RY) such that
v(z) + > Mfi(z) >, Ve eC

terT

Non-asymptotic Farkas Lemma for convex inequalities: if o is FM,
then f(x) < « is consequence of o iff (0,a) + epif* C K.



Asymptotic Farkas Lemma for reverse-convex inequalities: If o is
FM, then f(x) > « is consequence of o iff

(0,—a) e cl(epif*+ K).

From here we get the following characterization of the set contain-
ment convex-reverse convex: A C {z € X | hy(z) > 0,w € W} (hy as

fr) iff
M

0 €pew Cl{epih;, + K}

Precedents: Jeyakumar (2003) and Bot & Wanka (2005), in CSISs.
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The following closedness condition was introduced by Burachik & Jeyaku-
mar (2005):

(CC)

epif* 4 cl K is weak™-closed.

Each of the following conditions implies (CC):

(i) epif* 4+ K is weak*-closed.

(ii) o is FM and f is linear.

(ii) o is FM and f is continuous at some point of A.


miguela
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Non-asymptotic Farkas Lemma for reverse-convex inequalities: if o
is FM, (CC) holds, and a € R, then

(i) f(x) > « is consequence of o

)

(i) (0,—a) eepif*+ K
T
(iii) 3N € IR%S_T) such that
fl@)+ > Mfi(z) > a, Ve el

teT

Precedents: Gwinner (1987) and Dinh, Jeyakumar & Lee (2005) under
strong assumptions.




FM SYSTEMS IN CONVEX OPTIMIZATION

From now on we consider the CP problem
(P) Minimize f(x)

s.t. fi(x) <0, teT,
x e C.

Solvability theorem: if X = R" and ¢ satisfies (RC), then (P) is solvable.

This is not true for reflexive Banach spaces, unless f 4 04 is coercive
(Zalinescu, 2002).



Example 4: let X = ¢2 (Hilbert space),
C:={z={¢} €2 ||én| <n ¥n €N},

and f(z) =Y . & with f e X'

n=1n"’

C is a closed convex set which is not bounded (because ney, € C, for every
n € N) and such that C*° = {0}. Thus (RC) holds.

Consider cf 1= (v8),>1, k=1,2, ...,

L. ] —n, ifn <k,
=30, ifn>Ek.

We have {ck} € C and f(c¥) = —k, k € N, so that f is not bounded from
below on C and no minimizer exists.



KKT optimality theorem: assume that ¢ is FM, that (CC) holds, and
let a € Andom f. Then a is a minimizer of (P) iff

(T) such that

EI)\GR+

(i) 0ft(a) # 0 Vt € supp A

(ii) Mtft(a) =0, Vt € T, and

(iii) 0 € 9f(a) + >Xter MO ft(a) + No(a)

Precedent: without the FM property, the optimality condition is 0 &
df(a) + N4(a) (Burachik & Jeyakumar, 2005).




Now we consider the parametric problem (Py), for u € RT,

(P,) Minimize f(z)
subject to fi(x) <wuy, t €T,
x e C,

with feasible set A,.

Defining ¥ (x,u) := f(x) +04,(x), ¥ : X X RT — R U {400}, we can write

(P,) Minimize ¢(z,u),z € X.
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T hen

(P) = (Pg) Minimize v¢(z,0),z € X.

The dual problem of (P) is

(D) Maximize —4*(0,A), A € R,

Duality theorem: if (P) is bounded, ¢ is FM, and (CC) holds, then
v(D) =v(P) and (D) is solvable.

Precedents: Rockafellar (1974) and Bonnans & Shapiro (2000).
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Consider the Lagrange function L : X x RT) — RU {400}, where L(z, \)
IS

{ (@) + Srer Mfi(z), if zeC,xeR{D,
o0, otherwise.

Lagrange optimality theorem: suppose that o is FM and that (CC)
holds. Then a point a € A is minimizer of (P) iff

3o € ]REI_T) such that (a,\g) is a saddle point of the Lagrangian function
L, i.e.,

L(a, ) < L(a,Ao) < L(z, A0), VA€ R vz e C.

Then Mg is a maximizer of (D).
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Denote by v (u) the value of (P,), so that v(P) = v(0). The following
stability concepts (Laurent, 1972) involve the value function v : RT — R,
whose directional derivative at O in the direction u is denoted by v/(0, ).

(P) is called:
¢ inf-stable if v(0) € R and v is I.s.c. at 0.

¢ inf-dif-stable if v(0) € R and 3\g € R(T) such that

v'(0,u) > Ao(u), Vu € RY.
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These concepts are related as follows:

(P) inf-stable

)

v(D) =v(P) € R (called normality in Zalinescu, 2002).

(P) inf-dif-stable

)

ov(0) =0 (called calmness in Clarke, 1976)

)

v(D) =v(P) and (D) is solvable.
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Thus, (P) inf-dif-stable = (P) inf-stable

Stability Theorem: if (P) is bounded, o is FM, and (CC) holds, then
(P) is inf-dif-stable.



LOCALLY FARKAS-MINKOWSKI SYSTEMS

The following local c.q. was introduced by Puente & Vera de Serio (1999),
in LSIP. It is also equivalent to the so-called basic c.q. in CP (Hiriart Urruty
& Lemarechal, 1993) if x € int A and sup;cr f is continuous at x :

ois LFM at x € A if

N4(2) € No(x) 4 cone (1erdfi()),
where T(z) ;= {t € T | fi(x) = 0}.

o is said to be LFM if it is LFM at every feasible point = € A.
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miguela
 is LFM at x 2A if
NA(x) � NC(x)+cone �t2T(x)@ft(x)�,
where T(x) := {t 2 T | ft(x) = 0}.

miguela
 is said to be LFM if it is LFM at every feasible point x 2 A.


AsS a consequence of the optimality theorem,

c FM =o¢c LFM

If o is LFM at x € A, then every continuous linear consequence of o
which is binding at x is also consequence of a finite subsystem of o. The
converse statement holds if o is linear (but not if o is convex).

o is LFM at a iff the KK'T optimality theorem holds for any |.s.c. convex
function f such that a € dom f and f is continuous at some point of A.

Precedent: Li & Ng (2005), with real-valued functions and basic c.q.
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