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1. Basic definitions and notation

• We consider simple graphs G with at least one edge;

• E(G) and V (G) will denote the edge set and the vertex set

of G, respectively;

• Given a vertex subset S ⊆ V (G) a subgraph induced by S,

G′ = G[S] is such that V (G′) = S and E(G′) are the edges

of G connecting vertices of S;r
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1. Basic definitions and notation (cont.)

• The neighborhood of v ∈ V (G), denoted by NG(v), is the

subset of vertices adjacent to v, and the degree of v is

dG(v) = |NG(v)|
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Figure 2: NG(6) = {1, 3, 5} and dG(6) = 3.

• If dG(v) = p ∀v ∈ V (G) then we say that G is p-regular.
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1. Basic definitions and notation (cont.)

• A stable set (clique) is a vertex subset inducing a null

(complete) subgraph. The cardinality of a maximum size

stable set (clique) of a graph G is called stability (clique)

number of G and it is denoted by α(G) (ω(G));
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Figure 3: A stable set S = {2, 4, 6} and a clique K = {3, 4, 5}.
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1. Basic definitions and notation (cont.)

• The complement of a graph G, denoted by Ḡ, is such that

V (Ḡ) = V (G) and E(Ḡ) = {ij : i, j ∈ V (G) ∧ ij 6∈ E(G)}.
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Figure 4: A graph G and its complement Ḡ.

• Then α(G) = ω(Ḡ) and determine the stability number is

equivalent to determine the clique number.
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1. Basic definitions and notation (cont.)

• Given a nonnegative integer k, to determine if a graph G

has a stable set of size k is NP -complete [Karp, 1972].

• A matching in a graph G is a subset of edges M ⊆ E(G),

no two of which have a common vertex. A matching with

maximum cardinality is designated maximum matching.

• If for each vertex v ∈ V (G) there is one edge e ∈ M such

that v is incident with e, then M is called a perfect matching.

• The line graph L(G) of a graph G has the edges of G as its

vertices, with two vertices of L(G) being adjacent if and only

if the corresponding edges of G have a vertex in common.
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1. Basic definitions and notation (cont.)

• Then a matching in G corresponds to a stable set in L(G).
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Figure 5: A graph G and its line graph L(G).

• The graph G has the perfect matching {a, d, g}

• and then L(G) has the maximum stable set {a, d, g}.
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1. Basic definitions and notation (cont.)

• The adjacency matrix of a graph G, denoted by AG, is such

that AG = (aij)n×n, with n > 1, and

aij =

 1, if ij ∈ E(G)

0, otherwise.

• Thus AG is symmetric and then it has n real eigenvalues

λmax(AG) = λ1 ≥ λ2 ≥ · · · ≥ λn = λmin(AG).

• Furthermore, since G has at least one edge, the minimum

eigenvalue of AG, λmin(AG), is not greater than −1.
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2. Continuous formulations for the stability number

• The first continuous formulation for ω(G) was obtained by

Motzkin and Straus (1965):

max
x∈∆

1

2
xT AGx =

1

2
(1 −

1

ω(G)
),

where ∆ = {x : êT x = 1, x ≥ 0} and ê is the all ones vector.

• Then (assuming that |V (G)| = n) it follows that

α(G) = max
06=x∈[0,1]n

1

xT (AG + I)x
(1)

〈 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40



Iberian Conference in Optimization, Coimbra 2006 Upper bounds on the stability number

2.Continuous formulations for the stability number (cont.)

Other continuous formulations for the stability number of a

graph G

(Shor, 1990):

α(G) = max
∑

v∈V (G)

xv

s.t. xixj = 0, ∀ij ∈ E(G) (2)

x2
i − xi = 0, ∀i ∈ V (G)
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2.Continuous formulations for the stability number (cont.)

(Harant, 2000) and (Harant et al, 1999):

α(G) = max
0≤x≤ê

(
∑

i∈V (G)

(1 − xi)
∏

j∈NG(i)

xj) (3)

α(G) = max
0≤x≤ê

(
∑

v∈V (G)

xv −
∑

ij∈E(G)

xixj) (4)

(Balasundaram and Butenko, 2005):

α(G) = max
0≤x≤ê

∑
i∈V (G)

xi

1 +
∑

j∈NG(i) xj

(5)
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2.Continuous formulations for the stability number (cont.)

• Consider the family of quadratic programming problems

depending on a parameter τ > 0 [C, 2003]:

υG(τ ) = max{2êT x − xT (
AG

τ
+ In)x : x ≥ 0}, (6)

where I is the identity matrix.

Then, for each τ > 0, we may conclude that

• α(G) ≤ υG(τ );
• 1 ≤ υG(τ ) ≤ n, υG(τ ) = 1 if G is a clique, and υG(τ ) = n

if G has no edges;

• Furthermore, (6) is a convex program for τ ≥ −λmin(AG).
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2.Continuous formulations for the stability number (cont.)

•[C, 2003] The function υG :]0, +∞[7→ [1, n] verifies:

0 < τ1 < τ2 ⇒ υG(τ1) ≤ υG(τ2).
The following statements are equivalent:

• ∃τ̄ ∈]0, τ ∗[ such that υG(τ̄ ) = υG(τ ∗);

• υG(τ ∗) = α(G);

• ∀τ ∈]0, τ ∗] υG(τ ) = α(G).

∀U ⊂ V (G) ∀τ > 0 υG−U(τ ) ≤ υG(τ ).

For τ = 1, (6) is equivalent to the Motzkin-Straus program

[Motzkin and Straus, 1965] and υG(1) = α(G).
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2.Continuous formulations for the stability number (cont.)
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Figure 6: A cubic graph G such that υG(2) = 4 = α(G).
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3.Polynomial-time upper bounds

• From the above family, setting τ = −λmin(AG), we obtain

the convex programming problem introduced in [Luz, 1995].

υ(G) = max
x≥0

2êT x − xT (
AG

−λmin(AG)
+ I)x. (7)

Then α(G) ≤ υ(G) and, according to [Luz, 1995],

α(G) = υ(G) if and only if for a maximum stable set S (and

then for all)

−λmin(AG) ≤ min{|NG(v) ∩ S| : v /∈ S}. (8)
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3.Polynomial-time upper bounds(cont.)

• Actually, α(G) = υ(G) if and only if there exists a stable

set S for which (8) holds [C and Cvetković, 2006].

• [Luz and C, 1998] If x̃ and x̄ are distinct optimal solutions

for (7), then the vector x̃ − x̄ belongs to the

λmin(AG)-eigensubspace.

Assuming that G is regular, we may conclude that

• According to [Luz, 1995], υ(G) = |V (G)| −λmin(AG)

λmax(AG)−λmin(AG)

(the Hoffman bound).

• υ(G) = α(G) if and only if there exists a stable set S for

which (8) holds as equality.
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3.Polynomial-time upper bounds(cont.)

• The Lovász ϑ-number, [Lovász, 1979], is the most popular

polynomial-time upper bound on the stability number.

ϑ(G) = max tr(JX)

Xij = 0, ∀ij ∈ E(G)

tr(X) = 1

X ∈ S+
n ,

where tr(A) is the trace of a square matrix A, J is the all

ones n × n square matrix and

S+
n = {X ∈ Rn×n : X = XT , zT Xz ≥ 0 ∀z ∈ Rn}.
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3.Polynomial-time upper bounds(cont.)

• Recently, in [Luz and Schrijver, 2005], the Lovász ϑ-number

was redefined as follows:

ϑ(G) = min
C

υ(G, C) (9),

where υ(G, C) = max{2êT x − xT ( C
λmin(C)

+ In)x : x ≥ 0}
and C ranges over all weighted adjacency matrices of G

which are real symmetric matrices C = (cij) such that

cij = 0 if i = j or ij 6∈ E(G).

• Then, for every graph G, ϑ(G) ≤ υ(G).
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3.Polynomial-time upper bounds(cont.)

• Additionally, according to the sandwich theorem,

1. α(G) ≤ ϑ(G) ≤ χ̄(G),

where χ̄(G) denotes the cardinality of a minimum clique

cover of G (that is, a minimum vertex set partition such that

each subset is a clique);

2. if G is a perfect graph then α(G) = ϑ(G) (note that a

perfect graph is a graph G such that α(H) = χ̄(H) for every

induced subgraph H of G).
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3.Polynomial-time upper bounds(cont.)

• It follows two additional polynomial-time upper bounds on

the stability number.

1. [Cvetković, 1971] Let us denote by p−, p0, p+ the number of

eigenvalues of AG smaller than, equal to, and greater than

zero, respectively. Then

α(G) ≤ p0 + min{p−, p+}. (10)

2. [Haemers, 1980] If G is a graph of order n and smallest

degree δ(G), then

α(G) ≤
−nλmin(AG)λmax(AG)

δ(G)2 − λmin(AG)λmax(AG)
. (11)
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3.Polynomial-time upper bounds(cont.)

• Computational experiments:

Graph |V (G)| α(Ḡ) (7) (9) (10) (11)

brock200-1.clq 200 21 40 27 98 69

hamming6-2.clq 64 32 32 32 42 32

hamming6-4.clq 64 4 13 5 28 13

hamming8-2.clq 256 128 128 128 163 128

johnson8-2-4.clq 28 4 4 4 8 4

johnson8-4-4.clq 70 14 14 14 28 14

johnson16-2-4.clq 120 8 8 8 16 8

MANN-a9.clq 45 16 19 17 20 20
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3.Polynomial-time upper bounds(cont.)

Graph |V (G)| α(Ḡ) (7) (9) (10) (11)

MANN-a27.clq 378 126 230 132 143 252

san200-0.7-1.clq 200 30 93 30 95 120

san200-0.7-2.clq 200 18 108 18 77 138

san200-0.9-1.clq 200 70 113 70 98 171

san200-0.9-2.clq 200 60 95 60 98 147

san200-0.9-3.clq 200 44 84 44 96 132

sanr200-0.7.clq 200 18 36 23 97 69

sanr200-0.9.clq 200 42 64 49 99 128
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4.Graphs whose stability number is easily determined

• The graphs G such that α(G) = υ(G) are called graphs

with convex-QP stability number, where QP means quadratic

program. The class of these graphs is denoted by Q and its

elements called Q-graphs.

• [Lozin and C, 2001] The class Q is not hereditary. However,

if G ∈ Q and ∃U ⊆ V (G) such that α(G) = α(G − U),

then G − U ∈ Q.
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4.Graphs whose stability number is easily determined(cont.)

•[C, 2001] There exists an infinite number of Q-graphs.

1. A connected graph with at least one edge, which is nor a star

neither a triangle, has a perfect matching if and only if its line

graph is a Q-graph.

2. If each component of G has a no zero even number of edges

then L(L(G)) is a Q-graph.

3. There are several famous Q-graphs. For instance, the

Petersen graph and the Hoffman-Singleton graph.
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4.Graphs whose stability number is easily determined(cont.)

[C, 2001] Related with the recognition of Q-graphs, we may

refer the following results:

A graph G belongs to Q if and only if each of its components

belongs to Q.

Every graph G has an induced subgraph H ∈ Q.

If ∃U ⊆ V (G) such that υ(G) = υ(G − U) and

λmin(AG) < λmin(AG−U), then G ∈ Q.
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4.Graphs whose stability number is easily determined(cont.)

If ∃v ∈ V (G) such that

υ(G) 6= max{υ(G − v), υ(G − NG(v))},

then G 6∈ Q.

Consider that ∃v ∈ V (G) υ(G − v) 6= υ(G − NG(v)).

• If υ(G) = υ(G − v) then

G ∈ Q ⇔ G − v ∈ Q;

• If υ(G) = υ(G − NG(v)) then

G ∈ Q ⇔ G − NG(v) ∈ Q.
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5. Recognition of Q-graphs

The above results allows the recognition of Q-graphs, except

for adverse graphs, which are graphs having an induced

subgraph G, without isolated vertices, such that υ(G) and

λmin(AG) are both integers, for which the following

conditions hold:

• ∀v ∈ V (G), υ(G) = υ(G − NG(v)).

• ∀v ∈ V (G), λmin(AG) = λmin(AG−NG(v)).
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5.Recognition of Q-graphs(cont.)
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Figure 6: Adverse graph G, where λmin(AG) = −2

and υ(G) = α(G) = 5.
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5.Recognition of Q-graphs

• A vertex subset S ⊆ V (G) is (k, τ )-regular if induces a

k-regular subgraph and ∀v /∈ S |NG(v) ∩ S| = τ .
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Considering the Petersen graph, S1 = {1, 2, 3, 4} is

(0, 2)-regular, S2 = {5, 6, 7, 8, 9, 10} is (1, 3)-regular and

S3 = {1, 2, 5, 7, 8} is (2, 1)-regular.
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5. Recognition of Q-graphs (cont.)
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• Each Hamilton cycle of an Hamiltonian graph G defines a

(2, 4)-regular set in L(G).

• In the graph G, depicted above, the edge set

{a, b, c, d, e, f} ⊂ E(G) defines a (2, 4)-regular set in L(G).
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5. Recognition of Q-graphs (cont.)

[Thompson, 1981] A p-regular graph has a (k, τ )-regular set

S, with τ > 0, if and only if k − τ is an adjacency eigenvalue

and

(p − k + τ )x(S) − τ ê

belongs to the corresponding eigenspace.

[C and Rama, 2004] A graph G has a (k, τ )-regular set S if

and only if the characteristic vector x of S is a solution for

the linear system

(AG − (k − τ )I)x = τ ê.
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5. Recognition of Q-graphs (cont.)

[C, 2003] If G is an adverse graph then G ∈ Q if and only if

∃S ⊆ V (G) which is (0, τ )-regular, with τ = −λmin(AG).

• If G is a regular graph then G ∈ Q if and only if

∃S ⊆ V (G) which is (0, τ )-regular, with τ = −λmin(AG).

• Therefore, for regular graphs G, the Hoffman bound is

attained if and only if G includes a (0, τ )-regular set, with

τ = −λmin(AG).
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5. Recognition of Q-graphs (cont.)

There are several families of graphs for which we may

recognize (in polynomial-time) Q-graphs. For instance,

• Bipartite graphs.

• Dismantable graphs, that is, graphes with the following

recursive definition:

• One-vertex graph is dismantable and a graph G with at

least two vertices is dismantable if ∃x, y ∈ V (G) such

that NG[x] ⊆ NG[y] and G − {x} is dismantable.
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5. Recognition of Q-graphs (cont.)

[C, 2003] Given a graph G and τ > 1, if ∃p, q ∈ V (G) such

that NG[q] ⊆ NG[p] then υG(τ ) > υG−NG(p)(τ ).

• Graphs with low Dilworth number (note that given two

vertices x, y ∈ V (G), if NG(y) ⊆ NG[x] then we say that

the vertices x and y are comparable, and then the Dilworth

number of a graph is the largest number of pairwise

incomparable vertices of).

[C, 2003] Let G be a not complete graph. If dilw(G) < ω(G)

then G is not adverse.

〈 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40



Iberian Conference in Optimization, Coimbra 2006 Upper bounds on the stability number

6.References

• B. Balasundaran and S. Butenko, Constructing test functions

for global optimization using continuous formulations of graph

problems, Optimization Methods and Software, 20 (2005):

439-452.

• D. M. Cardoso, Convex quadratic programming approach to

the maximum matching problem, Journal of Global

Optimization, 21 (2001): 91-106.

• D. M. Cardoso, On graphs with stability number equal to the

optimal value of a convex quadratic program, Matemática
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