Continuous optimization polynomial-time upper

 bounds on the stability number of graphsDomingos M. Cardoso and Sofia Pinheiro

University of Aveiro

Iberian Conference in Optimization
Coimbra, 16-18 November 2006

1.Basic definitions and notation

2.Continuous formulations for the stability number
3.Polynomial-time upper bounds
4.Graphs whose stability number is easily determined
5.Recognition of Q-graphs
6.References

- We consider simple graphs G with at least one edge;
- $E(G)$ and $V(G)$ will denote the edge set and the vertex set of G, respectively;
- Given a vertex subset $S \subseteq V(G)$ a subgraph induced by S, $G^{\prime}=G[S]$ is such that $V\left(G^{\prime}\right)=S$ and $E\left(G^{\prime}\right)$ are the edges of G connecting vertices of S;

1. Basic definitions and notation (cont.)

- The neighborhood of $v \in V(G)$, denoted by $N_{G}(v)$, is the subset of vertices adjacent to v, and the degree of v is

$$
d_{G}(v)=\left|N_{G}(v)\right|
$$

Figure 2: $N_{G}(6)=\{1,3,5\}$ and $d_{G}(6)=3$.

- If $d_{G}(v)=p \forall v \in V(G)$ then we say that G is p-regular.

1. Basic definitions and notation (cont.)

- A stable set (clique) is a vertex subset inducing a null (complete) subgraph. The cardinality of a maximum size stable set (clique) of a graph G is called stability (clique) number of G and it is denoted by $\alpha(G)(\omega(G))$;

Figure 3: A stable set $S=\{2,4,6\}$ and a clique $K=\{3,4,5\}$.

1. Basic definitions and notation (cont.)

- The complement of a graph G, denoted by \bar{G}, is such that $V(\bar{G})=V(G)$ and $E(\bar{G})=\{i j: i, j \in V(G) \wedge i j \notin E(G)\}$.

Figure 4: A graph G and its complement \bar{G}.

- Then $\alpha(G)=\omega(\bar{G})$ and determine the stability number is equivalent to determine the clique number.

1. Basic definitions and notation (cont.)

- Given a nonnegative integer k, to determine if a graph G has a stable set of size k is $N P$-complete [Karp, 1972].
- A matching in a graph G is a subset of edges $M \subseteq E(G)$, no two of which have a common vertex. A matching with maximum cardinality is designated maximum matching.
- If for each vertex $\boldsymbol{v} \in \boldsymbol{V}(\boldsymbol{G})$ there is one edge $e \in M$ such that v is incident with e, then M is called a perfect matching. - The line graph $L(G)$ of a graph G has the edges of G as its vertices, with two vertices of $L(G)$ being adjacent if and only if the corresponding edges of G have a vertex in common.

1. Basic definitions and notation (cont.)

- Then a matching in G corresponds to a stable set in $L(G)$.

Figure 5: A graph G and its line graph $L(G)$.

- The graph G has the perfect matching $\{a, d, g\}$
- and then $L(G)$ has the maximum stable set $\{a, d, g\}$.

1. Basic definitions and notation (cont.)

- The adjacency matrix of a graph G, denoted by A_{G}, is such that $A_{G}=\left(a_{i j}\right)_{n \times n}$, with $n>1$, and

$$
a_{i j}= \begin{cases}1, & \text { if } i j \in E(G) \\ 0, & \text { otherwise }\end{cases}
$$

- Thus A_{G} is symmetric and then it has n real eigenvalues

$$
\lambda_{\max }\left(A_{G}\right)=\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}=\lambda_{\min }\left(A_{G}\right)
$$

- Furthermore, since G has at least one edge, the minimum eigenvalue of $A_{G}, \lambda_{\min }\left(A_{G}\right)$, is not greater than -1 .
- The first continuous formulation for $\omega(G)$ was obtained by Motzkin and Straus (1965):

$$
\max _{x \in \Delta} \frac{1}{2} x^{T} A_{G} x=\frac{1}{2}\left(1-\frac{1}{\omega(G)}\right)
$$

where $\Delta=\left\{x: \hat{e}^{T} x=1, x \geq 0\right\}$ and \hat{e} is the all ones vector.

- Then (assuming that $|V(G)|=n$) it follows that

$$
\begin{equation*}
\alpha(G)=\max _{0 \neq x \in[0,1]^{n}} \frac{1}{x^{T}\left(A_{G}+I\right) x} \tag{1}
\end{equation*}
$$

2.Continuous formulations for the stability number (cont.)

Other continuous formulations for the stability number of a graph G
(Shor, 1990):

$$
\begin{align*}
\alpha(G)=\max & \sum_{v \in V(G)} x_{v} \\
\text { s.t. } & x_{i} x_{j}=0, \forall i j \in E(G) \tag{2}\\
& x_{i}^{2}-x_{i}=0, \forall i \in V(G)
\end{align*}
$$

2.Continuous formulations for the stability number (cont.) (Harant, 2000) and (Harant et al, 1999):

$$
\begin{align*}
& \alpha(G)=\max _{0 \leq x \leq \hat{e}}\left(\sum_{i \in V(G)}\left(1-x_{i}\right) \prod_{j \in N_{G}(i)} x_{j}\right) \tag{3}\\
& \alpha(G)=\max _{0 \leq x \leq \hat{e}}\left(\sum_{v \in V(G)} x_{v}-\sum_{i j \in E(G)} x_{i} x_{j}\right) \tag{4}
\end{align*}
$$

(Balasundaram and Butenko, 2005):

$$
\begin{equation*}
\alpha(G)=\max _{0 \leq x \leq \hat{e}} \sum_{i \in V(G)} \frac{x_{i}}{1+\sum_{j \in N_{G}(i)} x_{j}} \tag{5}
\end{equation*}
$$

2.Continuous formulations for the stability number (cont.)

- Consider the family of quadratic programming problems depending on a parameter $\tau>0$ [C, 2003]:

$$
\begin{equation*}
v_{G}(\tau)=\max \left\{2 \hat{e}^{T} x-x^{T}\left(\frac{A_{G}}{\tau}+I_{n}\right) x: x \geq 0\right\} \tag{6}
\end{equation*}
$$

where I is the identity matrix.
Then, for each $\tau>0$, we may conclude that

- $\alpha(G) \leq v_{G}(\tau)$;
- $1 \leq v_{G}(\tau) \leq n, v_{G}(\tau)=1$ if G is a clique, and $v_{G}(\tau)=n$
if G has no edges;
- Furthermore, (6) is a convex program for $\tau \geq-\lambda_{\min }\left(A_{G}\right)$.
2.Continuous formulations for the stability number (cont.)
$\bullet[C, 2003]$ The function $\left.v_{G}:\right] 0,+\infty[\mapsto[1, n]$ verifies:

$$
0<\tau_{1}<\tau_{2} \Rightarrow v_{G}\left(\tau_{1}\right) \leq v_{G}\left(\tau_{2}\right)
$$

The following statements are equivalent:

- $\exists \bar{\tau} \in] 0, \tau^{*}\left[\right.$ such that $v_{G}(\bar{\tau})=v_{G}\left(\tau^{*}\right)$;
- $v_{G}\left(\tau^{*}\right)=\alpha(G)$;
- $\left.\forall \tau \in] 0, \tau^{*}\right] v_{G}(\tau)=\alpha(G)$.
$\forall U \subset V(G) \forall \tau>0 \quad v_{G-U}(\tau) \leq v_{G}(\tau)$.
For $\tau=1$, (6) is equivalent to the Motzkin-Straus program [Motzkin and Straus, 1965] and $v_{G}(1)=\alpha(G)$.

2.Continuous formulations for the stability number (cont.)

Figure 6: A cubic graph G such that $v_{G}(2)=4=\alpha(G)$.

3.

- From the above family, setting $\tau=-\lambda_{\min }\left(A_{G}\right)$, we obtain the convex programming problem introduced in [Luz, 1995].

$$
\begin{equation*}
v(G)=\max _{x \geq 0} 2 \hat{e}^{T} x-x^{T}\left(\frac{A_{G}}{-\lambda_{\min }\left(A_{G}\right)}+I\right) x \tag{7}
\end{equation*}
$$

Then $\alpha(G) \leq v(G)$ and, according to [Luz, 1995], $\alpha(G)=v(G)$ if and only if for a maximum stable set S (and then for all)

$$
\begin{equation*}
-\lambda_{\min }\left(A_{G}\right) \leq \min \left\{\left|N_{G}(v) \cap S\right|: v \notin S\right\} \tag{8}
\end{equation*}
$$

3.Polynomial-time upper bounds(cont.)

- Actually, $\alpha(G)=v(G)$ if and only if there exists a stable set S for which (8) holds [C and Cvetković, 2006].
- [Luz and C, 1998] If \tilde{x} and \bar{x} are distinct optimal solutions for (7), then the vector $\tilde{x}-\bar{x}$ belongs to the $\lambda_{\text {min }}\left(A_{G}\right)$-eigensubspace.

Assuming that G is regular, we may conclude that

- According to [Luz, 1995], $v(G)=|V(G)|_{\frac{-\lambda_{\min }\left(A_{G}\right)}{\lambda_{\max }\left(A_{G}\right)-\lambda_{\min }\left(A_{G}\right)}}$ (the Hoffman bound).
- $v(G)=\alpha(G)$ if and only if there exists a stable set S for which (8) holds as equality.

3.Polynomial-time upper bounds(cont.)

- The Lovász $\boldsymbol{\vartheta}$-number, [Lovász, 1979], is the most popular polynomial-time upper bound on the stability number.

$$
\begin{aligned}
\vartheta(G)= & \max \operatorname{tr}(J X) \\
& X_{i j}=0, \forall i j \in E(G) \\
& \operatorname{tr}(X)=1 \\
& X \in \mathcal{S}_{n}^{+},
\end{aligned}
$$

where $\operatorname{tr}(A)$ is the trace of a square matrix A, J is the all ones $n \times n$ square matrix and
$\mathcal{S}_{n}^{+}=\left\{X \in \mathbb{R}^{n \times n}: X=X^{T}, z^{T} X z \geq 0 \forall z \in \mathbb{R}^{n}\right\}$.

3.Polynomial-time upper bounds(cont.)

- Recently, in [Luz and Schrijver, 2005], the Lovász $\boldsymbol{\vartheta}$-number was redefined as follows:

$$
\begin{equation*}
\vartheta(G)=\min _{C} v(G, C) \tag{9}
\end{equation*}
$$

$$
\text { where } v(G, C)=\max \left\{2 \hat{e}^{T} x-x^{T}\left(\frac{C}{\lambda_{\min }(C)}+I_{n}\right) x: x \geq 0\right\}
$$

and C ranges over all weighted adjacency matrices of G which are real symmetric matrices $C=\left(c_{i j}\right)$ such that $c_{i j}=0$ if $i=j$ or $i j \notin E(G)$.

- Then, for every graph $G, \vartheta(G) \leq v(G)$.

3.Polynomial-time upper bounds(cont.)

- Additionally, according to the sandwich theorem,

1. $\alpha(G) \leq \vartheta(G) \leq \bar{\chi}(G)$,
where $\bar{\chi}(G)$ denotes the cardinality of a minimum clique cover of G (that is, a minimum vertex set partition such that each subset is a clique);
2. if G is a perfect graph then $\alpha(G)=\vartheta(G)$ (note that a perfect graph is a graph G such that $\alpha(H)=\bar{\chi}(H)$ for every induced subgraph H of G).

3.Polynomial-time upper bounds(cont.)

- It follows two additional polynomial-time upper bounds on the stability number.

1. [Cvetković, 1971] Let us denote by p_{-}, p_{0}, p_{+}the number of eigenvalues of A_{G} smaller than, equal to, and greater than zero, respectively. Then

$$
\begin{equation*}
\alpha(G) \leq p_{0}+\min \left\{p_{-}, p_{+}\right\} \tag{10}
\end{equation*}
$$

2. [Haemers, 1980] If G is a graph of order n and smallest degree $\delta(G)$, then

$$
\begin{equation*}
\alpha(G) \leq \frac{-n \lambda_{\min }\left(A_{G}\right) \lambda_{\max }\left(A_{G}\right)}{\delta(G)^{2}-\lambda_{\min }\left(A_{G}\right) \lambda_{\max }\left(A_{G}\right)} \tag{11}
\end{equation*}
$$

3.Polynomial-time upper bounds(cont.)

- Computational experiments:

Graph	$\|V(G)\|$	$\alpha(\bar{G})$	(7)	(9)	(10)	(11)
brock200-1.clq	200	21	40	27	98	69
hamming6-2.clq	64	32	32	32	42	32
hamming6-4.clq	64	4	13	5	28	13
hamming8-2.clq	256	128	128	128	163	128
johnson8-2-4.clq	28	4	4	4	8	4
johnson8-4-4.clq	70	14	14	14	28	14
johnson16-2-4.clq	120	8	8	8	16	8
MANN-a9.clq	45	16	19	17	20	20

3.Polynomial-time upper bounds(cont.)

Graph	$\|V(G)\|$	$\alpha(\bar{G})$	(7)	(9)	(10)	(11)
MANN-a27.clq	378	126	230	132	143	252
san200-0.7-1.clq	200	30	93	30	95	120
san200-0.7-2.clq	200	18	108	18	77	138
san200-0.9-1.clq	200	70	113	70	98	171
san200-0.9-2.clq	200	60	95	60	98	147
san200-0.9-3.clq	200	44	84	44	96	132
sanr200-0.7.clq	200	18	36	23	97	69
sanr200-0.9.clq	200	42	64	49	99	128

- The graphs G such that $\alpha(G)=v(G)$ are called graphs with convex- $Q P$ stability number, where $Q P$ means quadratic program. The class of these graphs is denoted by \mathcal{Q} and its elements called \mathcal{Q}-graphs.
- [Lozin and C, 2001] The class \mathcal{Q} is not hereditary. However, if $G \in \mathcal{Q}$ and $\exists U \subseteq V(G)$ such that $\alpha(G)=\alpha(G-U)$, then $G-U \in \mathcal{Q}$.
4.Graphs whose stability number is easily determined(cont.)
- [C, 2001] There exists an infinite number of \mathcal{Q}-graphs.

1. A connected graph with at least one edge, which is nor a star neither a triangle, has a perfect matching if and only if its line graph is a \mathcal{Q}-graph.
2. If each component of G has a no zero even number of edges then $L(L(G))$ is a \mathcal{Q}-graph.
3. There are several famous \mathcal{Q}-graphs. For instance, the Petersen graph and the Hoffman-Singleton graph.
4.Graphs whose stability number is easily determined(cont.)
[C, 2001] Related with the recognition of \mathcal{Q}-graphs, we may refer the following results:

A graph G belongs to \mathcal{Q} if and only if each of its components belongs to \mathcal{Q}.

Every graph G has an induced subgraph $\boldsymbol{H} \in \mathcal{Q}$.
If $\exists \boldsymbol{U} \subseteq V(G)$ such that $\boldsymbol{v}(G)=\boldsymbol{v}(G-U)$ and
$\lambda_{\min }\left(A_{G}\right)<\lambda_{\min }\left(A_{G-U}\right)$, then $G \in \mathcal{Q}$.
4.Graphs whose stability number is easily determined(cont.) If $\exists v \in V(G)$ such that

$$
v(G) \neq \max \left\{v(G-v), v\left(G-N_{G}(v)\right)\right\}
$$

then $G \notin \mathcal{Q}$.
Consider that $\exists v \in V(G) v(G-v) \neq v\left(G-N_{G}(v)\right)$.

- If $v(G)=v(G-v)$ then

$$
G \in \mathcal{Q} \Leftrightarrow G-v \in \mathcal{Q}
$$

- If $v(G)=v\left(G-N_{G}(v)\right)$ then

$$
G \in \mathcal{Q} \Leftrightarrow G-N_{G}(v) \in \mathcal{Q}
$$

The above results allows the recognition of \mathcal{Q}-graphs, except for adverse graphs, which are graphs having an induced subgraph G, without isolated vertices, such that $v(G)$ and $\lambda_{\text {min }}\left(A_{G}\right)$ are both integers, for which the following conditions hold:

- $\forall v \in V(G), \quad v(G)=v\left(G-N_{G}(v)\right)$.
- $\forall v \in V(G), \quad \lambda_{\min }\left(A_{G}\right)=\lambda_{\min }\left(A_{G-N_{G}(v)}\right)$.

5.Recognition of Q-graphs(cont.)

Figure 6: Adverse graph G, where $\lambda_{\min }\left(A_{G}\right)=-2$ and $v(G)=\alpha(G)=5$.

5.Recognition of \mathcal{Q}-graphs

- A vertex subset $S \subseteq V(G)$ is (k, τ)-regular if induces a k-regular subgraph and $\forall v \notin S\left|N_{G}(v) \cap S\right|=\tau$.

Considering the Petersen graph, $S_{1}=\{1,2,3,4\}$ is
(0,2)-regular, $S_{2}=\{5,6,7,8,9,10\}$ is $(1,3)$-regular and $S_{3}=\{1,2,5,7,8\}$ is $(2,1)$-regular.
5. Recognition of \mathcal{Q}-graphs (cont.)

- Each Hamilton cycle of an Hamiltonian graph G defines a $(2,4)$-regular set in $L(G)$.
- In the graph G, depicted above, the edge set $\{a, b, c, d, e, f\} \subset E(G)$ defines a $(2,4)$-regular set in $L(G)$.

5. Recognition of \mathcal{Q}-graphs (cont.)

[Thompson, 1981] A p-regular graph has a (k, τ)-regular set S, with $\tau>0$, if and only if $k-\tau$ is an adjacency eigenvalue and

$$
(p-k+\tau) x(S)-\tau \hat{e}
$$

belongs to the corresponding eigenspace.
[C and Rama, 2004] A graph G has a (k, τ)-regular set S if and only if the characteristic vector x of S is a solution for the linear system

$$
\left(A_{G}-(k-\tau) I\right) x=\tau \hat{e}
$$

5. Recognition of \mathcal{Q}-graphs (cont.)

[C, 2003] If G is an adverse graph then $G \in \mathcal{Q}$ if and only if $\exists S \subseteq V(G)$ which is $(0, \tau)$-regular, with $\tau=-\lambda_{\min }\left(A_{G}\right)$.

- If G is a regular graph then $G \in \mathcal{Q}$ if and only if
$\exists S \subseteq V(G)$ which is $(0, \tau)$-regular, with $\tau=-\lambda_{\min }\left(A_{G}\right)$.
- Therefore, for regular graphs G, the Hoffman bound is attained if and only if G includes a $(0, \tau)$-regular set, with $\tau=-\lambda_{\text {min }}\left(A_{G}\right)$.

5. Recognition of \mathcal{Q}-graphs (cont.)

There are several families of graphs for which we may recognize (in polynomial-time) \mathcal{Q}-graphs. For instance,

- Bipartite graphs.
- Dismantable graphs, that is, graphes with the following recursive definition:
- One-vertex graph is dismantable and a graph G with at least two vertices is dismantable if $\exists x, y \in V(G)$ such that $N_{G}[x] \subseteq N_{G}[y]$ and $G-\{x\}$ is dismantable.

5. Recognition of \mathcal{Q}-graphs (cont.)

[C, 2003] Given a graph G and $\tau>1$, if $\exists p, q \in V(G)$ such that $N_{G}[q] \subseteq N_{G}[p]$ then $v_{G}(\tau)>v_{G-N_{G}(p)}(\tau)$.

- Graphs with low Dilworth number (note that given two vertices $x, y \in V(G)$, if $N_{G}(y) \subseteq N_{G}[x]$ then we say that the vertices x and y are comparable, and then the Dilworth number of a graph is the largest number of pairwise incomparable vertices of).
[C, 2003] Let G be a not complete graph. If $\operatorname{dilw}(G)<\omega(G)$ then G is not adverse.
6.References
- B. Balasundaran and S. Butenko, Constructing test functions for global optimization using continuous formulations of graph problems, Optimization Methods and Software, 20 (2005):
439-452.
- D. M. Cardoso, Convex quadratic programming approach to the maximum matching problem, Journal of Global Optimization, 21 (2001): 91-106.
- D. M. Cardoso, On graphs with stability number equal to the optimal value of a convex quadratic program, Matemática Contemporânea, 25 (2003): 9-24.
6.References
- D. M. Cardoso, P. Rama, Equitable bipartitions of graphs and related results, Journal of Mathematical Sciences, 120 (2004): 869-880.
- D. M. Cardoso and D. Cvetković, Graphs with eigenvalue -2 attaining a convex quadratic upper bound for the stability number, Bull. T.CXXXIII de l'Acad. Serbe Sci. Arts, CI. Sci. Math. Natur., Sci. Math., 31 (2006): 41-55.
- D. M. Cvetković, Graphs and their spectra, Thesis, Univ. Beograde. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 354-356, (1971): 1-50.
6.References
- D. Cvetković, M. Doob, and H. SachsSpectra of Graphs, Theory, and Applications, VEB Deutscher Verlag der Wissenschaften, Berlin, 1979.
- S. Földes and P. L. Hammer, The Dilworth number of a graph, Annals of Discrete Mathematics, 2 (1978): 211-219.
- J. Harant, Some news about the independence number of a graph, Discussiones Math. Graph Theory, 20 (2000): 71-79.
- J. Harant, A. Pruchnewski and M. Voigt, On dominating sets and independent sets of graphs, Combinatorics, Probability and Computing, 8 (1999): 547-553.
6.References
- R. M. Karp, Reducibility among combinatorial problems, In:

Complexity of Computer Computations, eds. R. E. Miller and
J. W. Thatcher, Plenum Press, New York, (1972): 85-104.

- L. Lovász, On the Shannon capacity of a graph, IEEE

Transactions on Information Theory, 25 (1979): 1-7.

- V. V. Lozin and D. M. Cardoso, On hereditary properties of the class of graphs with convex quadratic stability number,

Cadernos de Matemática, CM/I-50, Departamento de
Matemática da Universidade de Aveiro (1999).
6.References

- C. J. Luz, An upper bound on the independence number of a graph computable in polynomial time, Operations Research Letters, 18 (1995): 139-145.
- C. J. Luz and D. M. Cardoso, A generalization of the Hoffman-Lovász upper bound on the independence number of a regular graph, Ann. Oper. Res., 81 (1998): 307-319.
- C. J. Luz and A. Schrijver, A convex quadratic characterization of the Lovász theta number, Discrete Math., 19 (2005): 382-387.

6. References

- T. S. Motzkin and E. G. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canadian Journal of Mathematics, 17 (1965): 533-540.
- N. Z. Shor, Dual quadratic estimates in polynomial and Boolean programming, Ann. Oper. Res. 25 (1990): 163-168.
- D. M. Thompson, Eigengraphs: constructing strongly regular graphs with block designs, Utilitas Math., 20 (1981): 83-115.

