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Rn+ the commodity space

u : Rn+ ! R Bernoulli utility function:

u
�
t � x0 � (1� t) � x00

�
= tu

�
x0
�
+ (1� t)u

�
x00
�

An agent is risk averse in consumption space if she

prefers the sure bundle tx0 + (1� t)x00 to the lottery
t � x0 � (1� t) � x00

Risk aversion in commodity space: u concave

u quasiconcave, u.s.c., has no local maximum

v : Rn++ �R+ ! R

v (p; y) = max fu (x) j p � x � yg

v
�
p; t � y0 � (1� t) � y00

�
= tv(p; y0)+(1� t)v(p; y00)

Risk aversion in income: v (p; �) concave

u concave , v (p; �) concave 8 p 2 Rn++



CHARACTERIZING RISK AVERSION OVER INCOME

I open interval of the real line R

f , g : I ! R g increasing

f is more concave than g , f � g�1 is concave.

If f and g are C2 with positive �rst derivatives and

Af(y) � �
f 00(y)
f 0(y)

;

f ismore concave than g , Af(y) � Ag(y) 8 y 2 I

�g : I ! R is a support function of f at y� ,
�g(y�) = f(y�) and �g(y) � f(y) 8 y 2 I

g : I ! R is a capping function of f ,
8y� 2 I, 9 r; r0 2 R such that rg + r0 is a support
function of f at y�.



THEOREM. Let f and g be two real-valued and con-

tinuous functions de�ned on an open interval I, with

g increasing. Then the following are equivalent:

i. f is more concave than g;

ii. g is a capping function of f ;

iii. the function f has the representation

f(y) = min
r2U

f�(r) + rg(y)g ;

where U � R and � : U ! R:

f (y) � f (y�)+f
0 (y�)
g0 (y�)

(g (y)� g (y�)) 8 y�; y 2 R

� > 0, y � 0; t 2 [0; 1]
z0; z00 2 (0; e�y) such that tz0 + (1� t)z00 = 1

LA(�; y; t; z
0) the lottery

t �
�
y � 1

�
ln z0

�
� (1� t) �

�
y � 1

�
ln z00

�

Mean income y � t ln z
0 + (1� t) ln z00

�



v : R++ ! R nondecreasing Bernoulli utility function

v
�
LA(�; y; t; z

0)
�
= tv(y�1

�
ln z0)+(1�t)v(y�1

�
ln z00)

v is said to be of type A� if

v(y) � tv(y � 1

�
ln z0) + (1� t)v(y � 1

�
ln z00)

LEMMA. Suppose � > ��. Then for every lottery

LA(��; y; t; �z
0) with �z0 6= 1, there is a lottery LA(�; y; t; z0)

such that

y � 1

�
ln z0 > y � 1

�
ln �z0;

y � 1

�
ln z00 > y � 1

�
ln �z00:

PROPOSITION. v is of type A� if and only if it is of

type A�� for all �� � �.



PROPOSITION. Suppose that v is C2 with v0 > 0.

Then

Av � � for all y > 0 () v is of type A�.

PROPOSITION. Suppose that v is C2 with v0 > 0.

Then Av(y�) = � if and only if the following holds:
(a) for each ~� > �, there is a neighborhood of 1 such

that whenever z0 and z00 are in that neighborhood,
v (y�) � v

�
LA

�e�; t; y�; z0��.
(b) for each ~� < �, there is a neighborhood of 1 such

that whenever z0 and z00 are in that neighborhood,
v
�
LA

�e�; t; y�; z0�� � v (y�) :
PROPOSITION. For a nondecreasing utility function

v, the following are equivalent:

i. v is of type A�,

ii. the function g� given by g�(y) = �e��y is a cap-
ping function of v,

iii. v has the representation v (y) = minr2U
n
� (r)� re��y

o
;

where U � R and � : U ! R:



� � 0, � 6= 1, y � 0; t 2 [0; 1]
z0; z00 > 0 such that tz0 + (1� t)z00 = 1

LR(�; y; t; z
0) the lottery

t � z01=(1��)y � (1� t) � z001=(1��)y;

LR(1; y; t; z
0) the lottery

t � ez
0
y � (1� t) � ez

00
y;

with z0; z00 > 0 such that tz0 + (1� t)z00 = 0

v is said to be of type R� if

v(y) � v
�
LR(�; y; t; z

0)
�

Coe�cient of relative risk aversion at y:

Rv(y) = �
yv00(y)
v0(y)

:



PROPOSITION. Suppose that v is C2 with v0 > 0.

Then

Rv(y) � � for all y > 0 if and only if v is of type R�:

PROPOSITION. Suppose that v is C2 with v0 > 0.

Then Rv(y�) = � if and only if, for an agent with

utility v, the following holds:

(a) for each ~� > �, there is a neighborhood of 1

such whenever z0 and z00 are in that neighborhood,
v
�
LR(

e�; y�; t; z0)� � v (y�).
(b) for each ~� < �, there is a neighborhood of 1

such whenever z0 and z00 are in that neighborhood,
v (y�) � v

�
LR(

e�; y�; t; z0)�.
PROPOSITION. A nondecreasing utility function v is

of type R� if and only if it is of type R�� for all
�� � �.



PROPOSITION. For a nondecreasing function v,

v is of type R� () v has the representation

v(y) = minr2U f�(r) + rĝ�(y)g ; where U � R and

� : U ! R

RELATING RISK AVERSION OVER INCOME AND

RISK AVERSION OVER COMMODITIES

p 2 Rn++, y > 0

The budget set at (p; y) :

B(p; y) = fx 2 Rn++ : p � x � yg

The demand at (p; y) : �x(p; y) = argmaxx2B(p;y)u(x)

u is well behaved if:

(a) �x(p; y) 6= ; 8 (p; y) 2 Rn++�R++ and p�x0 = y
for x0 in �x(p; y)
(b) 8 x 2 Rn++, 9 p such that x 2 �x(p; 1).



u is very well behaved if, in addition to (a) and (b),

the demand set �x(p; y) is a singleton at all (p; y) and

the function �x is continuous.

u is regular if it is increasing, continuous, quasicon-

cave, and fx 2 Rn++ : u(x) � �ug is a closed set in
Rn for any �u.

u is very regular if it is regular and strictly quasicon-

cave

For ! 2 Rn+ n f0g, the normalized price set:

Q! = fp 2 Rn++ : p � ! = 1g



! 2 Rn+ n f0g, � > 0.

u : Rn++ ! R is of type A!� if

u
�
tx0 + (1� t)x00

�
�

u
�
t �

�
1
�0 x

0 � ln�0
� !

�
� (1� t) �

�
1
�00 x

00 � ln�00
� !

��
8 t 2 [0; 1] ; 8 �0,�00 > 0 such that t�0+(1�t)�00 = 1,
8 x0,x00 2 Rn such that

1

�0
x0 � ln�

0

�
!;

1

�00
x00 � ln�

00

�
! 2 Rn++

THEOREM. Suppose u : Rn++ ! R is very well be-

haved and generates the indirect utility function

v : Rn++ � R++ ! R. Then the following are equiv-

alent:

a. v(p; �) is of type A� for all p in the normalized price
set Q!;

b. u has the representation

u(x) = min
(q;r)2 �U

n
�(q; r)� re��(q�x)

o
;

where U � Q! �R and � : U ! R;

c. u is of type A!� .



Suppose that u : Rn++ ! R is well behaved

� � 0, � 6= 1

u is of type R� if

u
�
tx0 + (1� t)x00

�
�

u
�
t �

�
�0�=(1��)x0

�
� (1� t) �

�
�00�=(1��)x00

��
8 t 2 [0; 1] 8 �0,�00 > 0 such that t�0+(1�t)�00 = 1,
8 x0,x00 2 Rn++

u is of type R1 if

u
�
tx0 + (1� t)x00

�
� u

�
t �

�
e�

0
x0
�
� (1� t) �

�
e�

00
x00
��

8 t 2 [0; 1] ; 8 �0,�00 > 0 such that t�0+(1�t)�00 = 0,
8 x0,x00 2 Rn++

THEOREM. Suppose u : Rn++ ! R is well behaved

and generates the indirect utility function

v : Rn++ �R++ ! R. Then

v (p; �) is of type R� for all p 2 Rn++ () u is of type R�



�-CONCAVE FUNCTIONS OF ONE REAL VARIABLE

Let � 2 Rn [0; 1) :

A nondecreasing function F : R+ ! R is �-concave

if R++ 3 y 7�! F (y�) is concave.

PROPOSITION. If F : R+ ! R is �-concave then it

is �-concave for all � 2 Rn [0; 1) such that 1
�
� 1

�
(that is, for 1 � � � � if � � 1 and for all � � � and
all � � 1 if � < 0):

In particular, every �-concave function is concave.



PROPOSITION. Suppose F : R+ ! R is a non-

decreasing function and let � 2 Rn [0; 1) : Then the
following statements are equivalent:

(i) The function F is �-concave.

(ii) There exists a set U � R++ and a map g : U ! R

such that, for any x 2 R++;

F (x) = min
r2U

�
g (r) + s (�) (rx)

1
�

�
; where s (�) =

�

j�j
:

(iii) For any t 2 [0; 1] and x0; x00 2 R++; we have

F
�
tx0 + (1� t)x00

�
� tF

 
x0 �

(tx0 + (1� t)x00)��1

!

+(1� t)F
 

x00 �

(tx0 + (1� t)x00)��1

!
:



PROPOSITION. Suppose F : R+ ! R is a nonde-

creasing function and let � 2 Rn [0; 1) : If F is �-

concave and di�erentiable at x 2 R++ then

F (y) � F (x) + �F 0 (x)
 �
x��1y

�1
� � x

!
(1)

for all y 2 R++:

Conversely, if F is di�erentiable on R++ and satis�es

(1) for all x; y 2 R++ then it is �-concave:

PROPOSITION. Suppose F : R+ ! R is increasing,

C2 on R++ and satis�es F
0 (y) > 0 for all y 2 R++

and let � 2 Rn [0; 1) : Then F is �-concave if and only
if the function KF : R++ ! R given by

KF (y) = �
yF 00 (y)
F 0 (y)

satis�es KF (y) � 1�
1

�
for all y 2 R++:



�-CONCAVE UTILITY FUNCTIONS

A function u : Rl+ ! R is called a utility function if

it has the following properties:

(i) u is nondecreasing along rays, i.e., u(�x) � u(x)

for any scalar � � 1 and x 2 Rl+;

(ii) u is locally non-satiated, i.e., for any x, there is

x0 arbitrarily close to x such that u(x0) > u(x);

(iii) for any (p; y) in Rl++�R+, there is �x 2 Rl+ that
maximizes u(x) in B(p; y) = fx 2 Rl+ : p � x � yg.

f(p; y) =
n
�x 2 Rl+ j �xmaximizes u(x) in B(p; y)

o



u : Rl+ ! R is �-concave at p2 Rl++ if

u(x) � tu((p � x0)��1x0) + (1� t)u((p � x00)��1x00);
whenever x 2 f(p; 1), 0 � t � 1, x0; x00 2 Rl+n f0g,
and p � (tx0 + (1� t)x00) = 1.

PROPOSITION. Suppose F : R+ ! R is an in-
creasing function and let � 2 Rn [0; 1) : Then F is
�-concave if and only if it is �-concave at p for all
p 2 R++:

PROPOSITION. If a utility function u : Rl+ ! R
is �-concave at p then it is �-concave at p for all

� 2 Rn [0; 1) such that 1
�
� 1

�
(that is, for 1 � � � �

if � � 1 and for all � � � and all � � 1 if � < 0):

In particular, every �-concave function is concave.

v (p; �) is �-concave() u is �-concave at �p 8 � > 0

u : Rl+ ! R has the supporting price property if
at every x 2 Rl+n f0g, there is p 2 Rl++ such that
x 2 f(p; 1).



THEOREM. Suppose u : Rl+ ! R is a utility func-

tion with the supporting price property and let � 2
Rn [0; 1) : Then the following statements are equiva-
lent:

(i) The function u is �-concave at all prices.

(ii) There exist a set U � Rl++ and a map g : U ! R

such that, for any x 2 Rl+n f0g ;

u(x) = min
r2U

fg(r) + s (�) (r � x)
1
�g; where s (�) = �

j�j
:

(iii) For any p 2 Rl++, t 2 [0; 1] and x0; x00 2 Rl+n f0g
satisfying p � (tx0 + (1� t)x00) = 1, we have

u(tx0 + (1� t)x00) � tu((p � x0)��1x0)
+(1� t)u((p � x00)��1x00):



(iv) For any p 2 Rl++, t 2 [0; 1] and x0; x00 2 Rl+n f0g ;
we have

u(tx0 + (1� t)x00) � tu((
p � x0

tp � x0 + (1� t) p � x00
)��1x0)

+(1� t)u(( p � x00

tp � x0 + (1� t) p � x00
)��1x00):

(v) For any p 2 Rl++, t 2 [0; 1], x0; x00 2 Rl+n f0g
and �; � 2 R++ satisfying t� + (1� t)� = 1 and

�x00 � �x0 =2
�
Rl+ [

�
�Rl+

��
n f0g ; we have

u(tx0+ (1� t)x00) � tu(���1x0) + (1� t)u(���1x00):



PROPOSITION. If u : Rl+ ! R is a �-concave utility

function, with � 2 Rn [0; 1) ; satisfying the supporting
price property and being di�erentiable at x 2 Rl++
then

u (y) � u (x)+�
 �
(ru (x) � x)��1ru (x) � y

�1
� �ru (x) � x

!
(2)

for all y 2 Rl+n f0g :

Conversely, if u : Rl++ ! R is di�erentiable and sat-

is�es ru (x) 2 Rl++ and (2) for all x; y 2 Rl++ then
it admits an extension as a �-concave utility function

on Rl+:



PROPOSITION. If u : Rl+ ! R is a �-concave utility

function, with � 2 Rn [0; 1) ; having the supporting
price property and being C2 on Rl++ then the function

Ku : Rl++ ! R given by

Ku (x) =

8>>>>><>>>>>:
� ru (x) � x

ru (x) �
�
r2u (x)

��1ru (x)
if r2u (x) is nonsingular

0 otherwise

satis�es Ku (x) � 1�
1

�
for all x 2 Rl++:

Conversely, if u : Rl++ ! R is a C2 concave function

satisfying ru (x) 2 Rl++ and Ku (x) � 1 � 1

�
� 0,

with � 2 Rn [0; 1) ; for all x 2 Rl++ then it admits an
extension as a �-concave utility function on Rl+:


