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R the commodity space

u: R — R Bernoulli utility function:
u(texr' (1 —t)ez") =tu(x) + (1 —t)u(z")

An agent is risk averse in consumption space if she
prefers the sure bundle tz’ + (1 — t)z” to the lottery
tex' ®(1—1t)ex”

Risk aversion in commodity space: u concave

U quasiconcave, u.s.c., has no local maximum

v:RY, xRy - R
v(p,y) = max{u(z) [p-z < yj

v(p,tey @ (1—t)ey") =tv(p,y')+(1—t)u(p,y")
Risk aversion in income: v (p, ) concave

u concave & v (p,-) concave Vpe R



CHARACTERIZING RISK AVERSION OVER INCOME

I open interval of the real line R

fig: I — R g increasing

1

f is more concave than g << fog -~ is concave.

If f and g are C? with positive first derivatives and

f(y)
A = — :
1) f'(y)
fis more concave than g < Af(y) > Ag(y) Vyel

g : I — R is a support function of f at y* &
g(y*) = f(y*) and g(y) > f(y) Vyel

g : I — R s a capping function of f &
Vy* € I, 3 v, € R such that rg + r’ is a support
function of f at y™.



THEOREM. Let f and g be two real-valued and con-
tinuous functions defined on an open interval I, with
g increasing. Then the following are equivalent:

I. f is more concave than g;

ii. g is a capping function of f;

iii. the function f has the representation

fly) = min {o(r) +rg(y)},
where U C R and ¢ : U — R.

1 (v")
g (y*)

f) < fly")+ (9(y)—9W")) Vy,yeR

c>0,y>0,te]0,1]
2! 2" € (0,e%Y) such that t2/ + (1 —t)2"" =1

L 4(o,y,t,2') the lottery
1 1
te (y——lnz/) D(1l—1t)e (y——lnz”)
o o

thnz' +(1—t)Inz"

o

Mean income Y



v : R414 — R nondecreasing Bernoulli utility function

1 1
v (LA(O', Y, t, z’)) = tv(y—; In z’)—{—(l—t)’u(y—; In 2'")

v is said to be of type A; if

v(y) > tv(y — éln 2+ (1 —t)v(y — % In 2")

LEMMA. Suppose 0 > G. Then for every lottery
L A(G,y,t,Z') withZ' # 1, thereisa lottery L 4(o,y,t, 2')
such that

1 1
y——Inz' > y—=1InZ,
o o
1 1
y—=—Inz" > y—=InZ".
o o

PROPOSITION. v is of type Ay if and only if it is of
type Az for all ¢ < 0.



PROPOSITION. Suppose that v is C? with v/ > 0.
Then

Ay > o forall y > 0 — v is of type Ag.

PROPOSITION. Suppose that v is C? with v/ > 0.
Then Ay(y*) = o if and only if the following holds:
(a) for each & > o, there is a neighborhood of 1 such
that whenever 2’ and 2" are in that neighborhood,
v (y*) > v (Ly (0,t,y%, 7).

(b) for each & < o, there is a neighborhood of 1 such

that whenever 2’ and 2" are in that neighborhood,

v(Ly (o,t,y* 2")) >v(y*).

PROPOSITION. For a nondecreasing utility function

v, the following are equivalent:

I. v is of type Ag,

ii. the function g given by go(y) = —e~ Y is a cap-

ping function of v,

iii. v has the representation v (y) = min,cy; {¢ (r) — re_ay} :
where U C R and ¢ : U — R.



6>0,0+£1 y>0,4tcl0,1]
2!, 2" > 0such that t2' + (1 —t)z" =1
Lr(0,y,t,2") the lottery
‘o Z/l/(l—@)y D(l—t)e z”l/(l_e)y,
Lr(1,y,t,2") the lottery
te ezly ®(l—1t)e ezﬁy,
with 2/, 2" > 0 such that tz/ + (1 — )2’ =0

v is said to be of type Ry if

’U(y) > v (LR(Qa Y, t, Z/))

Coefficient of relative risk aversion at y:

~yo"(y)

=y




PROPOSITION. Suppose that v is C? with v/ > 0.
Then

Ru(y) > 0 for all y > 0 if and only if v is of type Ry.

PROPOSITION. Suppose that v is C? with v/ > 0.
Then Ry(y*) = 0 if and only if, for an agent with
utility v, the following holds:

(a) for each & > 6, there is a neighborhood of 1
such whenever z' and 2" are in that neighborhood,
v (Lgr(0,y%t2")) = v (y").

(b) for each & < 0, there is a neighborhood of 1
such whenever z' and 2" are in that neighborhood,

v(y*) >wv (LR(é, y*,t, z’))

PROPOSITION. A nondecreasing utility function v is
of type Ry if and only if it is of type Ry for all 6 <6.



PROPOSITION. For a nondecreasing function v,
v Is of type Ry <= v has the representation

v(y) = min.cy {¢(r) +rgo(y)}, where U C R and
o:U— R

RELATING RISK AVERSION OVER INCOME AND
RISK AVERSION OVER COMMODITIES

pER1+,y>O

The budget set at (p,y) :

B(p,y) ={z € R, :p -z <y}

The demand at (p, y) : Z(p,y) = argmax,c g(p 4 u(T)

u is well behaved if:

(a) #2(p,y) #0 V (p,y) € R} XRyyandp-x’ =y
for ' in Z(p, y)

(b) Vz € R, 3 psuch that z € Z(p, 1).



u is very well behaved if, in addition to (a) and (b),
the demand set Z(p, y) is a singleton at all (p,y) and
the function Z is continuous.

w is regular if it is increasing, continuous, quasicon-
cave, and {z € Rl : u(x) > 4} is a closed set in
R"™ for any .

u is very regular if it is regular and strictly quasicon-
cave

For w € R"} \ {0}, the normalized price set:

Q“={peR), :p-w=1}



w € R\ {0}, o > 0.

u:R7};+—>RisoftypeAgif

u (te’ + (1 —t)z") >
(to(,at—ln—o‘w)@(l—t) (
Vtelo,1],V oz”>Osuchthattoz+(1 t) 1
V 2/,2” € R" such that

1 , Ind 1 , Ind
— T — W, — & —

n

o « o

THEOREM. Suppose u : R} , — R is very well be-
haved and generates the indirect utility function
v:RY, X Ryy — R. Then the following are equiv-
alent:
a. v(p,-) is of type Ay for all p in the normalized price
set Q¥;
b. u has the representation
min — re 027
u(z) = min 16(q,r) —re 7},

where U C Q¥ x R and ¢ : U — R;
c. u is of type A¥.



Suppose that u : R | — R is well behaved
0>0,0+#£1

u is of type Ry if

u (tr’ + (1 —t)z") >

U (t o (a/Q/(l—G)x/> D(1—1t)e (a//Q/(l—Q)x//»
Vite[0,1]Vd,a” > 0such that ta/ + (1 —t)a" =1,
Va2 e R

u is of type Rq if

u (ta:/ + (1 - t):c") > u (t . (eo‘/azl) D(1—t)e (eo‘”x”»
Vtel0,1],V o > 0suchthat ta/+(1-t)a’ = 0,
V' e R

THEOREM. Suppose v : R} | — R is well behaved
and generates the indirect utility function

v: RV, X Ry — R. Then

v (p,-) is of type Ry for all p € R} | <= u is of type Ry



0-CONCAVE FUNCTIONS OF ONE REAL VARIABLE

Let 6 € R\ [0,1).

A nondecreasing function F': Ry — R is 0-concave
if Ry >y — F(y%) is concave.

PROPOSITION. If F': Ry — R is 0-concave then it

1 1
is a-concave for all a € R\ [0,1) such that — > 7
o

(that is, for 1 < a <0 if 6 > 1 and for all a < 6 and
all & > 1if 0 < 0).

In particular, every 6-concave function is concave.



PROPOSITION. Suppose F' : R+ — R is a non-
decreasing function and let 6 € R\ [0,1). Then the
following statements are equivalent:

(i) The function F' is 6-concave.

(ii) Thereexistsaset U C Ryyandamapg:U — R
such that, for any x € R4,

F () = min {g (r) + 5 (0) (m)%}  where s (6) = %

(iii) For any t € [0,1] and 2/, 2" € Ry, we have

o
F(ta'+(1—t)a") > tF <(t:1:’ +(1—1t) w”)9_1>

2! 0
A= ((m/ (1-1) :13”)‘9_1> |




PROPOSITION. Suppose F' : Ry — R is a nonde-
creasing function and let § € R\[0,1). If F' is 6-
concave and differentiable at x € Ry then

PO < F@ 40 @ () ~o) )

for all Yy € R_|__|_.

Conversely, if F'is differentiable on R4 and satisfies
(1) for all z,y € R4 4 then it is f-concave.

PROPOSITION. Suppose F': Ry — R is increasing,
C? on Ry, and satisfies F/(y) > 0 for all y € R
and let 6 € R\ [0,1). Then F'is 6-concave if and only

if the function Kp : Ry — R given by

yF ()
F'(y)

1
satisfies Kp(y) > 1 — 7 forallye Ry4.

Kr(y) =



0-CONCAVE UTILITY FUNCTIONS

A function u : R, — R is called a utility function if
it has the following properties:

(i) u is nondecreasing along rays, i.e., u(Ax) > u(x)
for any scalar A > 1 and =z € R’ ;

(ii) u is locally non-satiated, i.e., for any z, there is
x’ arbitrarily close to = such that u(z’) > u(x);

(iii) for any (p,y) in RlijL X Ry, thereis & € Rl+ that
maximizes u(x) in B(p,y) = {x € Rl_F p-x <y}

F(p,y) = {g‘g = Rl+ | Zmaximizes u(z) in B(p, y)}



u Rl_F — R is O-concave at pE Rl—k—k if

u(z) > tu((p - 2)? 12’y + (1 — t)u((p - ") "),

whenever z € f(p,1), 0 <t <1, z/,2" € Rl_l_\ {0},
and p- (tz' + (1 —t)2") = 1.

PROPOSITION. Suppose F' : Ry — R is an in-
creasing function and let 8 € R\[0,1). Then F is
f-concave if and only if it is 6-concave at p for all

pe Ry

PROPOSITION. If a utility function u : R}, — R
Is 0-concave at p then it is a-concave at p for all
1 _ 1
a € R\ [0,1) such that — > 7 (thatis, for 1 < a <0
o)
if 0 > 1 and for all < 0 and all « > 1 if 6 < 0).

In particular, every 6-concave function is concave.

v (p,-) is B-concave <= u is f-concave at Ap VA > 0

(T Rl+ — R has the supporting price property if
at every x € RZ_F\ {0}, there is p € Rﬂ_+ such that
z € f(p,1).



THEOREM. Suppose u : Rl+ — R is a utility func-
tion with the supporting price property and let 6 &
R\ [0,1). Then the following statements are equiva-
lent:

(i) The function u is 6-concave at all prices.

(ii) There exist a set U C Rl ‘“yandamapg:U — R
such that, for any = € R/ '\ {0},

0

u(z) = minfg(r) +5(0) (r - 2)7}, where s(6) = 1.

(iii) Forany p € R |, ¢t € [0,1] and 2/, 2" € Rl \ {0}
satisfying p - (tz’ + (1 — t)z”") = 1, we have

u(tz' + (1 —t)z") > tu((p- )12
+(1 = tyu((p - ") *a").



(iv) Foranyp € Ry |, t € [0,1] and 2’, 2" € R\ {0},

we have

/
il (1 — D > ¢ p-x 0—1_1
wta' + (1= 0a") > ()
1"
p-x O—1_1
1—1t :
(1= () )

(v) For any p € Rl—l——l—' t € [0,1], o/, 2" € Rl_|_\ {0}
and o,3 € R4y satisfying ta + (1 —t)8 = 1 and
ar’ — Bx' ¢ (RlJr U (—RZ_F)) \ {0}, we have

w(tz' + (1 —t)z") > tu(a?1z)) + (1 — t)u(8~12").



PROPOSITION. If w : RZ_F — R is a 6-concave utility
function, with 8 € R\ [0, 1), satisfying the supporting
price property and being differentiable at x &€ RlijL
then

0 <@+ (((Tu(@) - 1 Vule) 1)’ - Vul) o)

(2)
for all y € RZJF\ {0}.

Conversely, if u : RlJer — R is differentiable and sat-
isfies Vu (z) € RZ_HL and (2) for all z,y € Rl_HL then
it admits an extension as a 6-concave utility function

[
on R+.



PROPOSITION. If u : Rl, — R is a f-concave utility
function, with 6 € R\ [0,1), having the supporting
price property and being C? on Rl_HL then the function
Ky : RlJFJF — R given by

( Vu(z) - x

- 1
Vu(x) - (Vzu (:1:)) Vu (x)
if V2u () is nonsingular
0 otherwise

Ky (x) =

\

1
satisfies Ky (x) > 1 — ) for all z € R{F—i—'

Conversely, if u : R{HL — Ris a C? concave function
1
satisfying Vu (x) € RZ_H_ and Ky (x) > 1 — 2 > 0,

with 6 € R\ [0,1), for all z € RZ_HL then it admits an
extension as a f-concave utility function on RZJF.



