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Wireless in the 21st Century

e High-Level Trends

— Dramatic growth rates in capacity demands:
e mobile multimedia
e broadband
e sensor nets
— Increase in shared (multiple-access, interference) channels:
e cellular (1S-95, 3G)
= WiFi/Bluetooth/UWB (unlicensed spectrum)
= ad hoc networks (large numbers of nodes, flexible transport)
— Opportunistic/resource-controlled/cross-layer approaches:
- WiMax (IEEE802.15)
e mobile broadband (‘4G’)

e Basic Resources
— Bandwidth - tightly constrained %
— Transmit Power - tightly constrained x
— SP Power - growing exponentially v/
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SP in Wireless Networks

Advanced node-level processing affords:

— Mitigation of PHY impairments: dispersion, interference, etc.

— Exploitation of PHY diversity: spatial, temporal & spectral

— Compression/collaboration to optimize PHY: batteries & bandwidth

This affects the overall performance of the network:

— Spectral Efficiency: bits-per-cycle (users-per-dimension)

— Energy Efficiency: bits-per-joule

— Delay: transmission delay and queuing delay

— Performance in Applications: media transmission, inference, etc.
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Today’s Talk: Three Topics
A Sampling of Ideas

e Energy Efficiency in Multiple-Access Networks v

e Diversity-Multiplexing Tradeoffs in MIMO Systems

e Distributed Inference in Wireless Sensor Networks
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ENERGY
EFFICIENCY IN
MULTIPLE-ACCESS
NETWORKS
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OQutline

e Multiuser Detection (MUD) - Briefly
e The Multiuser Power Control Game
e A Unified Power Control Algorithm

e Power Control in Multicarrier CDMA

e Fnergy Efficiency and Delay QoS

Energy Efficiency in Multiple-Access Nets




Motivation

e PHY choices (e.g., modulation, detection
scheme, # of antennas, etc.) can affect the

energy efficiency of wireless networks.

e This i1ssue can be examined by considering
equilibria In a game theoretic framework In
which terminals seek to maximize their energy

efficiencies while competing for resources.

e First, we digress ...
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MULTIUSER
DETECTION - BRIEFLY
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What is MUD Anyway?

Multiuser detection (MUD) refers to data detection in a
non-orthogonal multiplex (e.g., CDMA, TDMA with

channel imperfections, etc).

MUD can potentially increase the capacity (e.g., bits-

per-chip) of interference-limited systems significantly.

MUD comes in various flavors:
— Optimal

— Linear

— lterative

— Adaptive

MUD - Briefly
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Multiuser Detection (MUD)
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e Optimal (maximum likelihood, MAP)
e Linear (zero-forcing, MMSE)

e lterative (PIC, SIC, linear, nonlinear, EM, turbo)

 Adaptive (LMS, RLS, subspace)
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Linear Model

K users, each transmitting a frame of B channel symbols,
yields a linear model for the decision logic input:

y =H b+ N(0, o>H)

= Y = KB-long sufficient statistic vector

- b = KB-long vector of channel symbols
e 52 = background noise level

« H = KBxKB matrix of cross-correlations

= b is a function of RKB information symbols (R = code rate)

MUD - Briefly




Optimal MUD

Maximum Likelihood (ML):

max{f(y|b) | b € {-1,+1}xB}

y =H b+ N(0, 52H)

Maximum a posteriori Probability (MAP):

max{ P (Iy=bly) | b ¢ {-1,+1} } by (i)= it symbol of user k

e Optimal MUD can achieve close to single-user performance.

= But, it requires O(2%4) complexity, where K is the number of

users and 4 is the delay spread of the channel.

e This degree of complexity is prohibitive for most applications

MUD - Briefly




Linear MUD

y = H b + N(0, H)

Basic Idea: Estimate b linearly, then quantize.

Key Examples:

. Matched filter/RAKE: b =sgniy}
. Decorrelator (zero-forcing): p = sgn{H_ly}
. MMSE Detector: b=sgn{(H+o’)y}

Complexity: O((KB)?), or lower.

Adaptivity: Can be adapted using LMS, RLS & subspace.
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Linear MUD: Illustrated

—IDecision— Linear . -,
U Loaic — |Transformation| : | Quantizer
S (LT) '

Key Examples:

e Matched Filter/RAKE Receiver: LT = identity

e Decorrelator: LT = channel inverter (i.e., zero-forcing)

e MMSE Detector: LT = MMSE™* estimate of the transmitted symbols

*MMSE = Minimum Mean-Square Error

MUD - Briefly




Linear MUD: BER Performance

Question:

e How do these detectors’ bit-error rates (BERs) compare with
one another?

Partial Anhswers:

e Under various conditions, the decorrelator and MMSE detectors

satisfy
P, ~Q(SINR)

where SINR = Output Signal-to-Interference-pulse-Noise Ratio.
(This is exact for the decorrelator.)

e The MMSE detector maximizes the SINR over all detectors, so
we would expect that typically it has the lowest error
probability of these two. (Not always true.)
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MMSE vs. Matched Filter

Perfect Power Control
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MMSE vs. Matched Filter

No Power Control
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Iterative MUD

- Basic Idea: Iteratively fit this model.

y = H b + N(0, o>H)

e Key Examples:

« Linear Interference Cancellers (Gauss-Seidel, Jacobi, etc.)

« Nonlinear Interference Cancellers (Successive IC; Parallel I1C)
« Expectation-Maximization (EM) Algorithm (Random b)

« Turbo (Constraints on b from space-time/error-control coding) v/

= Complexity: O(KAN;torations) TOr ICs.

MUD - Briefly




THE MULTIUSER
POWER CONTROL
GAME

[w. Meshkati, et al., IEEE Trans. Commun., Nov. 2005.]
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Competition in MA Networks

Consider a set of terminals

transmitting to an access point é é
via a multiple-access channel. N T

Terminals are like players in a -7 AN

game, competing for resources g N

to transmit their data to the AP. é AP é

The action of each terminal

affects the others.

Can model this as a non-cooperative game, with utility

(measured in bits/joule) as a payoff.
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Recall, Multiple-Access Channel

e
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Multiuser Detection: receiver processing for shared-access systems
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Multipath, Multi-antenna Case
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Space-Time MUD Structure

K Users; P Receive Antennas; L Paths/User/Antenna

(1) —|Temporal B ’ ’ — 010..
i L X_» Beam .
(1) — Matched "RAKEs[—1Decision|— 110...
. : . |[Formers, . . : .
. Filters . £k, I - | {k} |:| Logic
ro(t) | LG L PR, = = - 011..
KxLxP KxL K

e XISO (P=1) requires no beam-formers
e Flat fading (L=1)requires no RAKEs
e Decision logic: Optimal (ML, MAP), linear, iterative, adaptive.
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Space-Time Linear MUD

—IDecision— Linear . -,
' Loaic — |Transformation| : | Quantizer
S (LT) ‘

Key Examples:

e Matched Filter/RAKE Receiver: LT = identity

e Decorrelator: LT = channel inverter (i.e., zero-forcing)

e MMSE Detector: LT = MMSE estimate of the transmitted symbols

The Multiuser Power Control Game




Game Theoretic Framework

Game: G=[{1,..., K}, {A}, {u}]

K: total number of users

A,: set of strategies for user k

U,: utility function for user K

u, = utility =

throughput T, [ bits }
transmit power p, | Joule

k

T, = Ry f(5), where f() is the frame success rate,
and j, is the received SIR of user k.

The Multiuser Power Control Game




Efficiency Function

e f(:) is the efficiency

function.

e |t Is assumed to be
Increasing and “S- ()
shaped” !

e A useful choice is

f(n)=(1-e7)M
(M = packet length)

The Multiuser Power Control Game




An Uplink SIMO Game

e Game: Each user selects its transmit power and

uplink linear MUD to maximize its own utility.

e Nash equilibrium (i.e., no user can unilaterally

Improve its utility) is reached when each user:

— chooses the MMSE detector as its receiver, and

— chooses a transmit power that achieves y*, the solution to:

() = 7t

The Multiuser Power Control Game




Qutline of Proof

e Regularity conditions on f imply first-order

stationary point of utility is a Nash equilibrium.

e This leads to SIR balancing as a necessary and

sufficient condition for a Nash equilibrium for any
linear MUD. (This relies on the linearity of ), inp,.)

e Since MMSE maximizes SIR, this does it.

The Multiuser Power Control Game




Remarks

e Nash equilibrium (NE) requires SIR balancing.

e The NE Is unique, and can be reached iteratively

as the unigue fixed point of a nonlinear map.

e Effects on Energy Efficiency of Detector Choice:

— If we were to fix the uplink detectors to be linear
detectors other than MMSE detectors, the corresponding

NE still requires SIR balancing, with the same target SIR.

— Of interest are the classical matched filter and the (zero-

forcing) decorrelator.

The Multiuser Power Control Game




Flat SIMO Model

Channel Gains: {hk,p}

User 1: Olo---Y h“;’L r(t)
, L |
Z(t)

User 21 110... Y s

User K: Oll...Y
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Large-System Analysis

e Consider R-CDMA with spreading gain N.
= As K,N —cowith K/N = o, NE utilities are:

ka(y

u = h, ' where
/4 G
MF — o« 1
' =1l-ay for &« <— | Two mechanisms:
y e power pooling
I _1_g for o <1 * interference reduction
_y 1
WE | —g—L—  for @ <1+ —
1+y a4
a

with h,=>h and &= 5
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Example: Parameters

Packet length: M = 100.
Rate: 100 kbps

Thermal noise level: 5 x 104 W
Equilibrium SIR: "= 8.1 dB
Channel gains: Rayleigh

The Multiuser Power Control Game
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Multiuser detectors achieve higher utility and can
accommodate more users compared to the matched filter.

Significant performance improvements are achieved when
multiple antennas are used compared to single antenna case.
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Social Optimality

The Pareto (or socially) optimal solution,
chooses the transmit power so that no user’s
utility can be improved without decreasing that

of another.
The Pareto solution is generally hard to find.

The Nash equilibrium solution not generally

Pareto optimal.

But, it’s close.

The Multiuser Power Control Game




Example: Nash & Pareto Optima

—* - MF (Pareto optimal)
—— MF (non-cooperative)
—& - DE (Pareto optimal)
—&— DE (non-cooperative)
—0- MMSE (Pareto optimal)
—B- MMSE (non-cooperative)

The Multiuser Power Control Game




A MIMO Game

e Game: Each user selects its transmit power, uplink
linear detector, and distribution of power among

transmit antennas to maximize its own utility.

e Conjecture: Nash equilibrium is reached when each

user:
— chooses the MMSE detector as its receiver,
— transmits to achieve SIR »*, and

— uses spatial waterfilling (i.e., transmits in the direction of

the principal eigenvector of an effective channel matrix.)

The Multiuser Power Control Game




UNIFIED POWER
CONTROL

[w D. Guo, et al., IEEE Trans. Wireless Commun., to appear]
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Nonlinear MUD

e That SIR-balancing leads to a Nash
equilibrium for a given detector follows from

the following property:

9%/9P = %/Px

e For linear MUD, this property always holds.

e What about nonlinear MUD (e.g., ML MUD)?

Unified Power Control




Large-System Analysis
of Nonlinear MUD

e Consider (SISO) R-CDMA in the large-system limit.

e Asymptotically, many MUDs (linear detectors, ML MUD,
MAP MUD, PIC, etc.) have the property:

%= ¢ SNR eceived = T N P/ 02

where 77, is the multiuser efficiency of MUD. (N, = K1)

- So, dx/dP,= /Py, holds asymp. for all such MUDs.

Unified Power Control




UPC Algorithm

e Conclude: In the large-system limit, SIR balancing

leads to a Nash equilibrium for all such detectors,

linear and nonlinear.

e For a fixed detector, the NE can be reached iteratively

via the unified power control (UPC) algorithm:

7* 0
h77,(N)

p(n+1)=

Unified Power Control




UPC Iteration: MMSE
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Iteration

e UPC: p(n+1)= y*a*h,7(n)
e SIR [Foschini, et al.]: p(N+1) = * p,(n)/(n)
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UPC Iteration: ML
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- Recall for MMSE: p,=0.2x 103;p,=0.5 x 103; py= 1.4 x 1073

Unified Power Control




POWER CONTROL
IN
MULTICARRIER CDMA
(BRIEFLY)

[w. M. Chiang, et al., IEEE JSAC, June 2006}
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Multicarrier CDMA

e Now we have K users, D carriers, and processing

gain N for each carrier.

e User k now chooses D powers, p &Y, p@ , ..., p®,
resulting in D throughputs, T® , T,@ ..., T,0),

e The resulting utility is
Tk(l) + ...+ Tk(D)

U, =
pk(l) + ...+ pk(D)

where T, (@ = R, (@f(y ).

Power Control in Multicarrier CDMA




Nash Equilibrium

For simplicity, we assume all users use MFs.

U, is maximized when all k’s power is transmitted

on its “best” carrier, and so as to achieve SIR 7.
NE < all users achieve this state simultaneously.
NE may not exist, and may not be unique.

Depends on the channel gains (a set of nec. &

suff. inequalities can be derived).

Power Control in Multicarrier CDMA




Ex.: K=D=10; Rayleigh
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ENERGY
EFFICIENCY AND
DELAY QOS

[w F. Meshkati, et al., IEEE 2005 ISIT, Adelaide]
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Delay Model (Infinite Backlog)

X Is a r.v. representing the number of transmissions needed for a
packet to be received error-free. Then

p(x=m) =) [1-f()]™t.m=0, 1, ..

l.e., X is a geometric r.v. with parameter f ()

Specify the delay requirements by a pair (D, /):

P(X<D)=p

The delay requirements translate to a lower bound on SIR:

P(X<SD)z2B < w2z K’

Energy Efficiency in Delay QoS




Nash Equilibrium

max Uy

Proposed delay-constrained power control game: ,
P20, % 2 K%

Th'm: For all linear multiuser

receivers, the proposed game has a
unigue Nash equilibrium. At NE, each

user transmits at a power level that

N4

achieves an output SIR equal to:

max{7* %}

where »* is the solution to

ULy, u

() =
\

?) g
"\/7 /7

ya i
\7

7
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Multi-class Networks

Consider a network with C classes of users and K_users in class c.

All users in class ¢ have the same delay requirements (D_,/.).

At NE, all users in class ¢ have the same output SIR 7.* where

7.* = max{J*, 1.}

Note: Q/C* depends on the delay constraints through )/C, and on

physical layer parameters such as modulation, coding and packet

size through 7~.

Energy Efficiency in Delay QoS




Large-System Analysis

Large-system assumptions:

K., N >0, with o, = K_./N fixed,c=1,2, .. C, a;,+ta,+.. + o=«

Equilibrium utilities for matched filter, decorrelator and MMSE
detector can be written in closed form (see paper).

. Observations:
— Presence of users with stringent delay requirements affects the energy
efficiency of all users in the network
— Two factors contribute to the reduction in utility
Increase of target SIR (only for delay-sensitive users)
Increase in multiple-access interference (for all users)

— The energy efficiency and network capacity are larger for MMSE
detector as compared to decorrelator and matched filter

Energy Efficiency in Delay QoS




Numerical Results
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Numerical Results (Contd)
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Summary

The Multiuser Power Control Game
Unified Power Control

Power Control in Multi-carrier CDMA
Energy Efficiency and Delay QoS

Other Interesting Problems:
— Delay with Finite-Backlog (w. R. Balan et al.)
— Adaptive modulation (w. A. Goldsmith, et al.)

— Formalism for ad hoc networks (w. S. Betz)

Energy Efficiency in Multiple-Access Nets




Today’s Talk: Three Topics
A Sampling of Ideas

e Energy Efficiency in Multiple-Access Networks

e Diversity-Multiplexing Tradeoffs in MIMO Systems v

e Distributed Inference in Wireless Sensor Networks

Cross-Layer Issues in Wireless Networks




DIVERSITY-
MULTIPLEXING
TRADEOFFS IN
MIMO SYSTEMS

[w T. Holliday & A. Goldsmith, Proc. 2006 IEEE ICC, Istanbul]
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Introduction

Multiple antennas provide a multiplexing versus
diversity tradeoff in wireless channels.

The “sweet spot” on this tradeoff curve is
driven by higher-layer protocol performance
metrics.

— Cross-layer design with multiple antennas

We investigate this sweet spot in the context of
joint source and channel coding.

The framework can be extended to include
queueing delay and ARQ.

Diversity-Multiplexing Tradeoffs in MIMO Systems




Diversity and Freedom

e Two fundamental resources in a MIMO wireless
channel:
— Diversity — improve error probability
— Degrees of freedom — increase rate

e Most traditional coding formulations attempt to
maximize only one of these.

e Recent results allow us to characterize optimal
combinations of the two.

Diversity-Multiplexing Tradeoffs in MIMO Systems




Diversity and Freedom

e Two fundamental resources in a MIMO wireless
channel:
— Diversity — improve error probability
— Degrees of freedom — increase rate

e Most traditional coding formulations attempt to
maximize only one of these.

e Recent results allow us to characterize optimal
combinations of the two.
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Diversity

e Two Independent fading channels Increase
diversity.

Fading Channel 1 Y Y

b Fading Channel 2 ><Y

e Spatial Diversity:

— Transmit, receive diversity, or both

e For a channel with M receive antennas and /V
transmit antennas the total diversity is MN.

Diversity-Multiplexing Tradeoffs in MIMO Systems




Degrees of Freedom

e Arrivals from different
directions provide
extra degrees of
freedom.

e« We can achieve the same results with a
scattering environment.

e In a M-by-N channel with scattering there are
min{M,N} degrees of freedom.

Diversity-Multiplexing Tradeoffs in MIMO Systems




Diversity-Multiplexing Tradeoff

e A space-time code achieves a diversity-
multiplexing tradeoff with rate r if

R(SNR) ~ rlog SNR

and the diversity gain d(r) satisfies

P_(SNR) ~ SNR "

e The largest rate is min{M,N }.

e The largest diversity gain is MN.

Diversity-Multiplexing Tradeoffs in MIMO Systems




MIMQO Channel Models

NTX antennas M RX antennas
hyy R
X; ¥ - hy, h, \ R4
31 h, :
X; Y ha, Y v
h; ,
h
X; Y = o Bk
y_JSNRHx+n
N
n~N(0,1)
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Tradeoff at High SNR*

e Define a family of block codes {C(SNR)}
of length T with rate R(SNR)~r log SNR .

e Given {C(SNR)}, define diversity and
multiplexing gains asymptotically.

. R(SNR
i log P_(SNR) 4 m (SNR) _
SNR— o0 log SNR SNR—o0 10g SNR

r

d>X< (I‘) — (M — r)(N — 1‘) *Zheng/Tse 2002

e

Diversity-Multiplexing Tradeoffs in MIMO Systems




Diversity/Multiplexing Tradeoff

0,
) /( mn)

d ()

Diversity Gain:

o. (min{m,n},0)

Spatial Multiplexing Gain: r=R/log SNR

For an integer r it’'s as though r transmit and receive
antennas are used for multiplexing, and the rest for diversity.

Diversity-Multiplexing Tradeoffs in MIMO Systems




Applications

« Codes that achieve the tradeoff
— El Gamal, Caire, IEEE Trans. Inform. Theory, 2004
— Tavildar, Viswanath, IEEE Trans. Inform. Theory, 2004

 Incremental Redundancy and ARQ

— Discuss later in the talk

« Cross-layer design problems
— Joint-source channel coding

— Rate, compression, and ARQ adaptation for delay sensitive
traffic

Diversity-Multiplexing Tradeoffs in MIMO Systems




Joint S/C Coding with MIMO

e Use antennas for multiplexing:

High-Rate ST Code |
e

Quantizer High Rate Decoder

alpip

Error Prone

e Use antennas for diversity:

Low-Rate | __| S-II_—I%%de _ I \ Y
Quantizer Diversity J !

Diversity-Multiplexing Tradeoffs in MIMO Systems

Decoder

Low P,




Traditional Formulation

Code over many (asymptotically infinite) source and
channel coding blocks.

Channel error goes to zero with blocklength wvia error
exponent.

Asymptotically optimal to encode source at channel
capacity (full multiplexing).

— No channel distortion

Leads to optimal separation of source and channel code
designs.

What about finite blocklengths?

Diversity-Multiplexing Tradeoffs in MIMO Systems




Finite Block Lengths

e Required under delay constraints.

e Can’t drive channel error to zero:

— Induces diversity/multiplexing tradeoff

e To optimize this tradeoff analytically, we require
a high SNR regime:

— Make use of Zheng/Tse results

Diversity-Multiplexing Tradeoffs in MIMO Systems




Distortion Exponent

e Suppose we have a source with some notion of a
distortion measure.

- Define the average distortion as ﬁ(r)

e Then the optimal distortion exponent is

min| Iim log D(r)
r _SNR—)oo log SNR |

Diversity-Multiplexing Tradeoffs in MIMO Systems




Diversity/Multiplexing Tradeoff

0,
) /( mn)

d ()

Diversity Gain:

o. (min{m,n},0)

Spatial Multiplexing Gain: r=R/log SNR

How do we map the distortion exponent to the diversity-
multiplexing tradeoff curve?

Diversity-Multiplexing Tradeoffs in MIMO Systems




Source and Channel Coding

pk—| Source |S bits Index sbits | Channel

4e Encoder 1 Assignment | x(j) Encoder
e K-dimensional source vector J

. _ MIMO

e Quantized and mapped Iinto the Ch 1

channel codebook. almle

V.. Source | 8 bits | Inverse Index | S bits| Channel

J Decoder j | Assignment | p) | Decoder

Diversity-Multiplexing Tradeoffs in MIMO Systems




End-to-End Tradeoffs

ok Source | SDits Index s bits | Channel
4e Encoder 1 Assignment | x(j) Encoder

Increased rate here But permits J
decreases source distortion  less diversity MIMO
here Channel

|

V. - Source | S bits | Inverse Index : s bits| Channel
I Decoder | j | Assignment n(j) | Decoder

O\ %

And maybe higher total distortion Resulting in more errors

Diversity-Multiplexing Tradeoffs in MIMO Systems
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Source Code Construction

e Vector source y e R¥ encoded into s bits by a
quantizer Q with distortion D (Q)

8
Qu) = Z VilAi (u)
=1

Rk

e Distortion at asymptotically high  source
resolution satisfies#

DS(Q) _ 2—ps/k-|—0(1) 93 S —> 00

Diversity-Multiplexing Tradeoffs in MIMO Systems
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End-to-End Distortion

e Define q(n(j)|x(1)) as the probability that
the channel decoder selects codeword |
when codeword | was sent.

D, (Q.SNR.1) = ¥ (q(a() | x(i) j Ju—v,[ fx)dx

IJ—

e From [Hochwald, 1998], this can be split
Into two pieces:

D, (Q,SNR,n) <D _(Q)+O(l)maxP

'\<<S

Correct decoding Decoding failure

Diversity-Multiplexing Tradeoffs in MIMO Systems 3
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Bound on Total Distortion

e \We use the high SNR bound (finite blocks):

D (Q,SNR, ) <D _(Q)+O(l)maxP

1E Leladi)

_ 2—ps/k+O(1) + 2—d (r)logSNR +0(logSNR)
e Equating source and channel rates and assuming
high SNR (order terms negligible):
—RTrlogSNR

D (Q SNR 7'[)< 7k _|_2—d*(r)10g SNR

=SNR k' +SNR™®

e As SNR—w, equal exponents minimizes distortion.

Diversity-Multiplexing Tradeoffs in MIMO Systems




Asymptotic Upper Bound

e With matching exponents,

P,

D, (Q,SNR,7)<SNR ¥ +SNR ¢ ® =28NR 4"

e The distortion is a simple function of SNR and the
optimal diversity/multiplexing point.

e Asymptotically, leads to a familiar form:

min hm lOg DT (Qa SNR: 72-)
r SNR - log SNR

<-d'(r")

Diversity-Multiplexing Tradeoffs in MIMO Systems




Tight Results

e A lower bound can also be constructed for the
average distortion (w.r.t )

e The optimal distortion exponent is:

&' (') = min| lim 28 DPr(Q:5NR)
r _SNR—)OO log SNR i
£ Tr’
d(r)= P " Solve this to find r*.

Diversity-Multiplexing Tradeoffs in MIMO Systems




16

12 -

Optimal Tradeoff Point

%

% Tr i
Distortion optimal d (I' ) = b = 4r

diversity/multiplexing k

tradeoff point
........................................... « 14
r =—
9

4x4 MIMO, with T=16, p=2, and k=8

Diversity-Multiplexing Tradeoffs in MIMO Systems




Minimizing Distortion

P, *

min SNR ¥ +SNR ™ ®

st. d'(r)=(N-1)(M-r1), piecewise linear
0 <r <min(M,N)

e Convex problem:
— Source dimension k
— Channel code block size T
— Distortion order p

e Solution shows how to best use antennas.

Diversity-Multiplexing Tradeoffs in MIMO Systems




Distortion vs. Multiplexing N=M=8
k>>T

Total Distortion vs. Multiplexing Rate, T=500, p=2, k=10000
1 ! , ! ! :

GMA=1

Gl - .. T N e SR20 | £ ]
: : ; ! - S F=40

0 SMR=E0
07+

-

-E DE

t 3

)

et

LA ReY o

(i |

£ 04t

o)

|_

0.3

02

0.1

Multiplexing Rate
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Distortion vs. Multiplexing N=M=8
k<<T

Total Distortion vs. Multiplexing Antennas, T=500, k=100, p=2
1 T T T I
I Z ) . i

ot g1 - ............... .............. Sl
natt L
o7 kba--

i1 L

a5

04r-

Total Distortion

0.3

02

0.1

D | i
3 4

2
Number of Antennas Assigned to Multiplexing

1
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Distortion vs. Multiplexing N=M=8
k = O(T)

0.0

Total Distortion vs. Multiplexing Rate, T=500, p=2, k=1000

— SMFR=1
m— GMR=20 | fI
== 5NR=40
= 5NR=E0
== 5NR=G0 |

ooog bake-- M- .............. .............. .............. .....

ooos MR- Q... .............. e S ......

ooo7 kol s-- R --- R .............. ............... ......... :
oooe k-1 - s P .............. ............... .............. ........ K-
0.005F-yhy b .............. .............. .............. o onn s o ........ N |

|:|.|:||:|4----|---'-~f .............. SR .............. .............. ........

Total Distortion

ooosk---21Y ... .............. ............... .............. .......

ook %% L RERERIRERERES ............... .............. .............. .. ad.

00|y | %% Y ............ .............. R .............. ......

1]

Multiplexing Rate
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Separation

Assume the source and channel encoder know
M, N, T, p, and k.

Then we can encode the source and channel at
r* without coordination.

Provides a version of a separation theorem.

What happens when we permit ARQ?

Diversity-Multiplexing Tradeoffs in MIMO Systems




MIMO-ARQ Channel

X X X —JM Y
PABS

NACK

Suppose we correct errors through incremental
redundancy.

Define a family of block codes {C(SNR)} of length L7
— Block fading channel with block size T

— ARQ window size L

Retransmissions reduce the average rate.

Diversity-Multiplexing Tradeoffs in MIMO Systems




Delay System Model

Poisson Arrivals

MIMO-ARQ Channel

Finite Buffer

ueR¥

i |
Source B 2 I
Encoder

A

M/G/1 Queue

e Arriving data have deadlines.

e Errors result from ARQ failure or deadline expiration.

e What is the optimal tradeoff?

Diversity-Multiplexing Tradeoffs in MIMO Systems




Tradeoff Options

e New average distortion measure:

D,(Q,SNR )< D¢(Q)+P,(SNR )+ P|Delay > t|

e Find a fixed allocation of rate, diversity, and
ARQ that minimizes average distortion:

e Or we could try to adapt to the random queue:
— Large queue -=> high compression, high diversity
— Empty queue -> low compression, high multiplexing

e Fixed scheme iIs separable, adaptive scheme is not.

Diversity-Multiplexing Tradeoffs in MIMO Systems




Adaptive Solution

The M/G/1 queue Is a stochastic process.

Control the size of a job by changing the source
compression

Control the service time with the multiplexing
rate r and ARQ window L

Formulate and solve a standard dynamic
program to find the optimal solution.#

tHolliday, Goldsmith, Poor ICC 2006
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Numerical Example

e Ax4 MIMO—-ARQ channel with block fading
* Leil,2,3,4
- Arrival rate 4 =0.9

e Examine the impact of deadlines ranging
from short (d=2) to long (d=16)

L g,

Diversity-Multiplexing Tradeoffs in MIMO Systems




Optimal Multiplexing Rate

Optimal Multiplexing Rate vs.
Deadline Length and Queue State

25

Optimal Multiplexing Rate

—
(salasl

Deadline Length

Multiplexing decreases as the queue size increases or as
deadlines become shorter.

Diversity-Multiplexing Tradeoffs in MIMO Systems




ARQ Window Size

Optimal ARQ Window Size vs.
Queue State anc_i Deadline

Optimal ARQ Window

[

4

| 4
Deadline Length Queue State
We use longer ARQ windows with empty queues and long

deadlines.

Diversity-Multiplexing Tradeoffs in MIMO Systems




Distortion for Fixed and Adaptive Controls

Total Distortion of Fixed ARQ and Multiplexing
Allocations vs. Adaptive Allocation

Total Distortion in dB

2.5 g

2

35 '
Number of ARQ aiempts 4 05 " Multiplexing rate

Note the gap between the best fixed policy and the
adaptive results.
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MIMO-ARQ at Finite SNR

When delay affects distortion we no longer
have a separation theorem.

The best fixed pair of rate and ARQ incurs more
distortion than adaptation.

Optimal fixed rate and ARQ assignment does
not utilize all available ARQ.

Therefore, the high SNR regime Is a poor
approximation in this case.

Diversity-Multiplexing Tradeoffs in MIMO Systems




Summary

Computed the end-to-end distortion exponent
for a MIMO system

The exponent is a point on the diversity-
multiplexing tradeoff curve

Results In a separation theorem for finite-block
length codes

Delay sensitivity precludes a separation
theorem

Diversity-Multiplexing Tradeoffs in MIMO Systems




Today’s Talk: Three Topics
A Sampling of Ideas

e Energy Efficiency in Multiple-Access Networks

e Diversity-Multiplexing Tradeoffs in MIMO Systems

e Distributed Inference in Wireless Sensor Networks v

Cross-Layer Issues in Wireless Networks :.‘.

e




DISTRIBUTED
INFERENCE IN
WIRELESS SENSOR
NETWORKS

[w. J. Predd & S. Kulkarni, Proc. 2006 IEEE Info. Th’y Workshop, Uruguay]

Cross-Layer Issues in Wireless Networks ‘
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Outline: Collaborative Regression*

e Background

e A Model for Distributed Learning

e A Collaborative Training Algorithm
e Performance Guarantees

e Fnergy Considerations

* [Related work w. Predd & Kulkarni, IEEE Trans. Inform. Th'y, Jan. 2006]

Collaborative Regression S.‘.

e




Input space X =R?, output space I =R
(X,Y)is an X X %Y -valued r.v. with (X,Y) ~ Pxy
Design g: X — 9 to predict outputs from inputs and

minimize expected loss

E{lg(X)—Y|*}

Pyy IS unknown

Given training examples §— {(x,,y;) L CXXY

Collaborative Regression



A Model for
Distributed Learning (in WSNs)

- Sensor i measures S; = {(x;,y;)} CS.

N4

X ¥
% & v
v@bég/

e © Y iy b

— ..X' = !R? (coordinates in space-time),

— Y =R (temperature)

- (X,Y) ~ Pyy models structure of a temperature field

‘ ‘A distributed sampling device with a wireless interface” ‘




e Sensor isends 9= {(Kj;}’j)} to a centralized processor

e “Learn” using (Reproducing) Kernel Methods:

— For a positive semi-definite kernel K(,):

i

fo=argmin 3 (f(x;) —yi)* +2

,
Fllsg

e Assumption: energy and bandwidth constraints preclude the
sensors from sending S, = {(Kj,}’j)} CS for centralized

processing.

Collaborative Regression




The Seed of a Model...

- Sensor i measures S; = {(X;,y;)} €S

Assumption: Sensor i can access all neighboring
sensors’ measured data.

e Informal justification: local communication is efficient

Collaborative Regression




A General Model

e m learning agents (i.e., sensors)

e n training examples § = {(x;,y;) }\_;

L )
; : L ..;*._ ;
et e T Rag Iy e - \
«® u . 1. L - |
, = . s = § !
- F L1 ", . . ; \
L - . L. - - v - i
5 .\, . B - . 2, \
at < " T s .
" g 5 — . L!
o . —p "n ~ b
y ’ .
“ K S . . . . A
, . I B el e v |
- - . 2 o . . \
- - . .
= -
i .

Learning Agents

Training Database XY X5,Y5 Xq:Y5 Xg:¥a XY XY
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Example

|}:1,*f1 \ |x2-""2| ‘Kaf‘iﬂl ‘}':4-""4\ |3{5-”'5 | Ixs="rﬁ| |:r{?.‘-f?|
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Example

| }{11.}’11 I s |x1n1,y1n1 | ‘ }'{1.?1 ' ) ‘ xdlyd \ ‘xm-l’ym.l \ o ‘xmﬂm’ymnm|
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The General Case

e m learning agents (i.e., sensors)

e n training examples § = {(x;,y;) }\_;

Learning Agents

-l.:l- :
r SR i
a" n, “aw . = %
«® u . 1. L -
F . . . n -
, = . s = §
- F L1 ", . .
L - . L. - - v
- L] o - e A L
at < " T s .
ALl - . L - .
o . —p "n ~
y ’ .
L = N . g - a
, . I B el e -
- - L - - H
- - .
= -
Ere

Training Database XY X5,Y5 Xq:Y5 Xg:¥a XY XY
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“Local’ Learning

f 1 ﬁ.‘ra

Learning Agents

Training Database | x1y1|| }{2,;2 | Xq,Yq | | }(4,;4 | 15,'3'5 | | I |xn1"'n |
|N | E (f(x;) — 3‘}})2‘|';’]‘41||f||5t.-;f

JEN)

fl—argmm
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Local learning
is “locally incoherent”

Learning Agents

Training Database | x1y1|‘ }(2,;_-,;2 | Xq,Yq | | X4 },f4 | 15 '3'5 I | -‘ I | ¥n |
Local incoherence:

Sensor 1 and sensor m both train with (X;,y1)

but fi(x1) # fm(x1)

Collaborative Regression




JAnd local incoherence is undesirable

Define distance measure

Ai(f,8) ) (f )*+ il f — gll

|N | JEN,;

Collaborative Regression




Define distance measure
1

Lemma: For any locally incoherent rules {fi}iz;
there exists a set of locally coherent rules {&i}i-;

such that
):, (fi, f+)
=1

L
m

l m
_E gl:vf* {_:
m;_i

Collaborative Regression



e In this model for distributed Ilearning, "“local
learning”

e However, it leads to local incoherence, which

IS provably “undesirable”.

e Can agents (i.e., sensors) collaborate to gain
the “optimality” of coherence, while
retaining efficiency locality?

Collaborative Regression :.‘.
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A Collaborative Training Algorithm
Intuition

e Local learning as a building block.

Iterate over sensorss =1,..., m
sensor s
Computes using local data:

fs=argmin Y (f(x;) —y;)* + Al fII5,

fEHK jeN,
Updates labels of local data:

{Kj,ﬁ(ﬂj)}jgm — {(Kj:yj)}jENs
end

Collaborative Regression




A Collaborative Training Algorithm
Intuition (cont’d)

e Need multiple passes + inertia term

Initialize: fi0=0¢€ Hy

fort=1,...., T

Iterate over sensorss = 1,..., m
sensor s
Computes using local data:

fss=argmin Y (f(x;)—y;)*+
p WZN i)=Y

Updates labels of local data:
{x;, fs.:(Xj) }jen, = {(X},¥)) }jen,

Collaborative Regression




A Collaborative Training Algorithm
Intuition (cont’d)

fig=argmin Y (f(x;) —y;)* +Mlf — fre—illzg
F€Hx ic(12.6)

Colléborative Regression




Define

A(f,8) = Y, wilf(x;) —g(x;))* + Al f —2ll5,
JEN;
Theorem:
1. ﬁgT converges (in norm) to a “relaxation” of
centralized estimate.
2. {1!1111 ﬁ;}f:l IS locally coherent and satisfies
lim fr € span{K(,X;)}jen,

3. Moreover, {fs:}™; “improves” with every update

1 . [ m
;S)::lm(ﬁ;,ﬁ) < ;;Aj(ﬁi_l,f*)

Collaborative Regression




e Fach sensor locally computes a global estimate.

e Computation: Sensor i solves |[N,| x |N;| linear system
e Storage: O(|N;|?) (coefficients + kernel matrix)
e Parallelism: Non-sequential updates possible

e Robustness to ordering

Collaborative Regression




Why ?
The Algorithm Can Be Derived in 3 Steps

Step 1: Interpret classical (centralized) estimator as
projection onto a Hilbert space.

Step 2: Relax projection by “respecting” network topology

Step 3. Alternating projection algorithms
imply the distributed training algorithm.

Collaborative Regression




n=50 sensors uniformly distributed about [-1, 1]

Sensor i observes y;, = f(X;) + n;

— {n;} is i.i.d. standard normal
— regression function f is linear (Case 1) or sinusoidal (Case 2)

Sensors i and j are neighbors iff |X; - X;| <'r

Sensors employ linear (Case 1) or Gaussian (Case 2) kernel

Case *1 Case #2
12 T T T T T T T T T 1.5

1k n=50, alpha=1 #




Test Erraor

How does collaboration effect
generalization error?

Connectivity vs. Error rate

Connectivity vs. Error rate
000 : . : : ! 10 :
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Energy Efficiency

T T
- =+ —- EN-Train

e Overall error decreases with
size of the neighborhoods.  : | N

e But, energy consumed by _ g
message-passing increases | Connectivity |
with neighborhood size. Ny P

a A s L ; A R ; i
a1 Q.18 0z Q28 03 0.3% 04 045 Q8 LESS 0
r

e Question: What are the trade-offs?
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MSE
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Total Energy/N

Energy-per-Sensor vs. N
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Summary/Conclusions

Model and algorithm for collaborative

regression
Convergence properties
Cautionary note on energy

Rich area for further work

Collaborative Regression
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e Energy Efficiency in Multiple-Access Networks v
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