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Wireless in the 21st CenturyWireless in the 21st Century

• High-Level Trends
– Dramatic growth rates in capacity demands:

• mobile multimedia
• broadband
• sensor nets

– Increase in shared (multiple-access, interference) channels:
• cellular (IS-95, 3G)
• WiFi/Bluetooth/UWB (unlicensed spectrum)
• ad hoc networks (large numbers of nodes, flexible transport)

– Opportunistic/resource-controlled/cross-layer approaches:
• WiMax (IEEE802.15)
• mobile broadband (‘4G’)

• Basic Resources
– Bandwidth - tightly constrained 
– Transmit Power - tightly constrained 
– SP Power - growing exponentially 

Cross-Layer Issues in Wireless Networks



SP in Wireless NetworksSP in Wireless Networks

• Advanced node-level processing affords:

– Mitigation of PHY impairments: dispersion, interference, etc.

– Exploitation of PHY diversity: spatial, temporal & spectral

– Compression/collaboration to optimize PHY: batteries & bandwidth

• This affects the overall performance of the network:

– Spectral Efficiency: bits-per-cycle (users-per-dimension)

– Energy Efficiency: bits-per-joule

– Delay: transmission delay and queuing delay

– Performance in Applications: media transmission, inference, etc.

Cross-Layer Issues in Wireless Networks



Today’s Talk: Three Topics
A Sampling of Ideas

• Energy Efficiency in Multiple-Access Networks 

• Diversity-Multiplexing Tradeoffs in MIMO Systems

• Distributed Inference in Wireless Sensor Networks

Cross-Layer Issues in Wireless Networks



ENERGY 
EFFICIENCY IN 

MULTIPLE-ACCESS 
NETWORKS
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OutlineOutline

• Multiuser Detection (MUD) - Briefly

• The Multiuser Power Control Game

• A Unified Power Control Algorithm

• Power Control in Multicarrier CDMA

• Energy Efficiency and Delay QoS

Energy Efficiency in Multiple-Access Nets



• PHY choices (e.g., modulation, detection 

scheme, # of antennas, etc.) can affect the

energy efficiency of wireless networks.

• This issue can be examined by considering 

equilibria in a game theoretic framework in 

which terminals seek to maximize their energy 

efficiencies while competing for resources.

• First, we digress …

MotivationMotivation

Energy Efficiency in Multiple-Access Nets



MULTIUSER 
DETECTION - BRIEFLY

Energy Efficiency in Multiple-Access Nets



What is MUD Anyway?

• Multiuser detection (MUD) refers to data detection in a 

non-orthogonal multiplex (e.g., CDMA, TDMA with 

channel imperfections, etc).

• MUD can potentially increase the capacity (e.g., bits-

per-chip) of interference-limited systems significantly.

• MUD comes in various flavors:

– Optimal  

– Linear

– Iterative

– Adaptive

MUD - Briefly
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Multiuser Multiuser Detection (MUD)Detection (MUD)

......

Matched Filter,
User 1

Matched Filter,
User 2

Decision
Logic

MAC

110…

010…

•• OptimalOptimal (maximum likelihood, MAP)(maximum likelihood, MAP)
•• LinearLinear (zero(zero--forcing, MMSE)forcing, MMSE)
•• IterativeIterative (PIC, SIC, linear, nonlinear, EM, (PIC, SIC, linear, nonlinear, EM, turboturbo))
•• AdaptiveAdaptive (LMS, RLS, subspace)(LMS, RLS, subspace)

MUD - Briefly



K users, each transmitting a frame of B channel symbols, 
yields a linear model for the decision logic input:

yy = = H bH b + + NN(0, (0, σσ22HH))

• y = KB-long sufficient statistic vector

• b = KB-long vector of channel symbols

• σ2 = background noise level

• H = KB×KB matrix of cross-correlations

• b is a function of RKB information symbols (R = code rate)

Linear ModelLinear Model

MUD - Briefly



Maximum Likelihood (ML):  

max{f(y|b) | b ∈ {-1,+1}KB }

Maximum a posteriori Probability (MAP): 

max{ P(bk(i)=b|y) | b ∈ {-1,+1} }

yy = = H bH b + + NN(0, (0, σσ22HH))

• Optimal MUD can achieve close to single-user performance.

• But, it requires O(2K∆) complexity, where K is the number of 

users and ∆ is the delay spread of the channel.

• This degree of complexity is prohibitive for most applications.

Optimal MUDOptimal MUD

bk(i)= ith symbol of user k

MUD - Briefly



• Basic Idea: Estimate b linearly, then quantize.

• Key Examples: 

• Matched filter/RAKE:

• Decorrelator (zero-forcing):

• MMSE Detector:

Complexity: O((KB)3), or lower.

Adaptivity: Can be adapted using LMS, RLS & subspace.

yy = = H bH b + + NN(0, (0, σσ22HH))

Linear MUDLinear MUD

ˆ b = sgn{H−1y}

ˆ b = sgn{y}

ˆ b = sgn{(H+ σ 2I)−1 y}

MUD - Briefly



Linear MUD: Illustrated

Decision
Logic

...... == Quantizer
Linear 

Transformation
(LT)

......

Key ExamplesKey Examples::

•• Matched Filter/RAKEMatched Filter/RAKE ReceiverReceiver: : LT = identityLT = identity

•• DecorrelatorDecorrelator:  :  LT = channel inverterLT = channel inverter (i.e., zero(i.e., zero--forcing)forcing)

•• MMSE DetectorMMSE Detector: : LT = MMSE* estimateLT = MMSE* estimate of the transmitted symbolsof the transmitted symbols

*MMSE = Minimum Mean*MMSE = Minimum Mean--Square ErrorSquare Error

MUD - Briefly



Question:

• How do these detectors’ bit-error rates (BERs) compare with 
one another?

Partial Answers:

• Under various conditions, the decorrelator and MMSE detectors 
satisfy

where SINR = Output Signal-to-Interference-pulse-Noise Ratio. 
(This is exact for the decorrelator.)

• The MMSE detector maximizes the SINR over all detectors, so 
we would expect that typically it has the lowest error 
probability of these two. (Not always true.)

Pe ~ Q SINR( )

Linear MUD: BER Performance

MUD - Briefly



MMSE Detector (Solid Line); Matched Filter/RAKE (Dashed Line). 

Perfect Power Control: SNR = 10 dB; DS/CDMA: 127-Length Signature Sequences.

MMSE vs. Matched Filter

MUD - Briefly



MMSE Detector (Solid Line); Matched Filter/RAKE (Dashed Line). 

No Power Control: SNR = 10 dB; DS/CDMA: 127-Length Signature Sequences.

MMSE vs. Matched Filter

MUD - Briefly



• Basic Idea: Iteratively fit this model.

• Key Examples: 

• Linear Interference Cancellers (Gauss-Seidel, Jacobi, etc.)

• Nonlinear Interference Cancellers (Successive IC; Parallel IC)

• Expectation-Maximization (EM) Algorithm (Random b)

• Turbo (Constraints on b from space-time/error-control coding) 

Complexity: O(K∆niterations) for ICs. 

yy = = H bH b + + NN(0, (0, σσ22HH))

Iterative MUDIterative MUD

MUD - Briefly



THE MULTIUSER 
POWER CONTROL 

GAME

[w.[w. MeshkatiMeshkati, et al., , et al., IEEE Trans. IEEE Trans. CommunCommun.., Nov. 2005., Nov. 2005.]]

Energy Efficiency in Multiple-Access Nets



Competition in MA NetworksCompetition in MA Networks

The Multiuser Power Control Game

APT

T T

T

• Consider a set of terminals 

transmitting to an access point 

via a multiple-access channel.

• Terminals are like players in a 

game, competing for resources

to transmit their data to the AP.

• The action of each terminal 

affects the others.

• Can model this as a non-cooperative game, with utility 

(measured in bits/joule) as a payoff.



Recall, MultipleRecall, Multiple--Access ChannelAccess Channel

Modulator Channel

010…

110…

Signal
Processing

110…

Modulator

Signal
Processing 010…

...... ......

Multiuser Detection: receiver processing for shared-access systems

The Multiuser Power Control Game



r2 (t)

rP ( t)

......

......
r1( t)

User 1: 010…

User 2: 110…

User K: 011…

MultipathMultipath, Multi, Multi--antenna Caseantenna Case

The Multiuser Power Control Game



Space-Time MUD Structure

•• XISO (XISO (P=P=11) ) requiresrequires no beamno beam--formersformers
•• Flat fading (Flat fading (LL=1=1))requires requires no no RAKEsRAKEs
•• Decision logic:  Decision logic:  Optimal (ML, MAP), linear, iterative, adaptive.Optimal (ML, MAP), linear, iterative, adaptive.

......

Temporal
Matched
Filters

{k, l, p}

Decision
Logic

110…
010…

011…

Beam
Formers
{k, l}

RAKEs
{k}

r2 (t)

rP ( t)

r1( t)

...... ...... ...... ......

KK××LL××PP KK××LL KK

K Users; P Receive Antennas; L Paths/User/Antenna

The Multiuser Power Control Game



Space-Time Linear MUD

Decision
Logic

...... == Quantizer
Linear 

Transformation
(LT)

......

Key ExamplesKey Examples::

•• Matched Filter/RAKEMatched Filter/RAKE ReceiverReceiver: : LT = identityLT = identity

•• DecorrelatorDecorrelator:  :  LT = channel inverterLT = channel inverter (i.e., zero(i.e., zero--forcing)forcing)

•• MMSE DetectorMMSE Detector: : LT = MMSE estimateLT = MMSE estimate of the transmitted symbolsof the transmitted symbols

The Multiuser Power Control Game



Game Theoretic FrameworkGame Theoretic Framework

uk = utility =
throughput

transmit power
=

Tk

pk

  
bits

Joule
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

Tk = Rk f(γk), where f(γk) is the frame success rate, 
and γk  is the received SIR of user k.

Game: G = [{1,…, K}, {Ak}, {uk}]

K: total number of users

Ak: set of strategies for user k
uk: utility function for user k

The Multiuser Power Control Game



Efficiency FunctionEfficiency Function

• f(·) is the efficiency 

function.

• It is assumed to be

increasing and  “S-

shaped”

• A useful choice is

f(γ) = (1 - e-γ )M

(M = packet length)

f(γ)

γ

The Multiuser Power Control Game



An Uplink SIMO GameAn Uplink SIMO Game

• Game: Each user selects its transmit power and 

uplink linear MUD to maximize its own utility. 

• Nash equilibrium (i.e., no user can unilaterally

improve its utility) is reached when each user:

– chooses the MMSE detector as its receiver, and

– chooses a transmit power that achieves γ*, the solution to:

f(γ) = γ f′(γ)

The Multiuser Power Control Game



Outline of ProofOutline of Proof

• Regularity conditions on f imply first-order 

stationary point of utility is a Nash equilibrium.

• This leads to SIR balancing as a necessary and 

sufficient condition for a Nash equilibrium for any 

linear MUD. (This relies on the linearity of γk in pk.)

• Since MMSE maximizes SIR, this does it.  

The Multiuser Power Control Game



RemarksRemarks

• Nash equilibrium (NE) requires SIR balancing. 

• The NE is unique, and can be reached iteratively 

as the unique fixed point of a nonlinear map.

• Effects on Energy Efficiency of Detector Choice:

– If we were to fix the uplink detectors to be linear 

detectors other than MMSE detectors, the corresponding 

NE still requires SIR balancing, with the same target SIR.

– Of interest are the classical matched filter and the (zero-

forcing) decorrelator.

The Multiuser Power Control Game



Flat SIMO ModelFlat SIMO Model

r2 (t)

rP ( t)

......

......
r1( t)

User 1: 010…

User 2: 110…

User K: 011…

Channel GainsChannel Gains:: {{hhkk,p,p}}
hh11,,11

hhKK,P,P

hh11,P,P
hh22,P,P

hhKK,,11

The Multiuser Power Control Game



LargeLarge--System AnalysisSystem Analysis

uk =
Rk f (γ * )
γ *σ 2 h k Γ       where

Γ MF = 1−α γ *               for  α <
1
γ *

Γ DE = 1− α                  for  α < 1

Γ MMSE = 1− α γ *

1+ γ *
      for  α < 1+ 1

γ *

with         h k = hkp
2

p=1

P

∑      and     α =
α
P

    

• Consider R-CDMA with spreading gain N.
• As K,N →∞ with K/N = α, NE utilities are:

Two mechanisms:Two mechanisms:
•• power poolingpower pooling
•• interference reductioninterference reduction

The Multiuser Power Control Game



Example: ParametersExample: Parameters

• Packet length: M = 100.

• Rate: 100 kbps

• Thermal noise level: 5 × 10-14 W

• Equilibrium SIR: γ* = 8.1 dB 

• Channel gains: Rayleigh

The Multiuser Power Control Game



• Multiuser detectors achieve higher utility and can 

accommodate more users compared to the matched filter.

• Significant performance improvements are achieved when 

multiple antennas are used compared to single antenna case.

Example: Utility Example: Utility vsvs. Load. Load

The Multiuser Power Control Game



Social OptimalitySocial Optimality

• The Pareto (or socially) optimal solution, 

chooses the transmit power so that no user’s 

utility can be improved without decreasing that 

of another. 

• The Pareto solution is generally hard to find.

• The Nash equilibrium solution not generally 

Pareto optimal.

• But, it’s close.

The Multiuser Power Control Game



Example: Nash & Pareto OptimaExample: Nash & Pareto Optima

Utility vs. Load: N = 100

The Multiuser Power Control Game



A MIMO GameA MIMO Game

• Game: Each user selects its transmit power, uplink 

linear detector, and distribution of power among 

transmit antennas to maximize its own utility. 

• Conjecture: Nash equilibrium is reached when each 

user:

– chooses the MMSE detector as its receiver, 

– transmits to achieve SIR γ*, and

– uses spatial waterfilling (i.e., transmits in the direction of 

the principal eigenvector of an effective channel matrix.)

The Multiuser Power Control Game



UNIFIED POWER UNIFIED POWER 
CONTROLCONTROL

[w [w D. D. GuoGuo, et al., , et al., IEEE Trans. Wireless IEEE Trans. Wireless CommunCommun.,., to appearto appear]]

Energy Efficiency in Multiple-Access Nets



Nonlinear MUDNonlinear MUD

• That SIR-balancing leads to a Nash 

equilibrium for a given detector follows from

the following property:   

• For linear MUD, this property always holds.

• What about nonlinear MUD (e.g., ML MUD)?

Unified Power Control

∂γk/∂pk= γk/pk



LargeLarge--System Analysis System Analysis 
of Nonlinear MUDof Nonlinear MUD

• Consider (SISO) R-CDMA in the large-system limit.

• Asymptotically, many MUDs (linear detectors, ML MUD, 

MAP MUD, PIC, etc.) have the property:

γk = ηk SNRreceived = ηk hk pk/σ2 

where ηk is the multiuser efficiency of MUD. (hk = hk,1)

• So, ∂γk/∂pk= γk/pk, holds asymp. for all such MUDs.

Unified Power Control



• Conclude: In the large-system limit, SIR balancing

leads to a Nash equilibrium for all such detectors, 

linear and nonlinear.

• For a fixed detector, the NE can be reached iteratively 

via the unified power control (UPC) algorithm:

Unified Power Control

UPC AlgorithmUPC Algorithm

pk(n+1) =
γ*σ2

hkηk(n)



UPC Iteration: MMSEUPC Iteration: MMSE

• UPC: pk(n+1) = γ*σ2/hkηk(n)
• SIR [Foschini, et al.]: pk(n+1) = γ* pk(n) /γk(n)

• N = 32
• K = 8
• P = 1
• Inverse-quartic

path loss
• Rayleigh fading
• Distances differ

Unified Power Control



UPC Iteration: MLUPC Iteration: ML

• Recall for MMSE: p1 = 0.2 × 10-3 ; p4 = 0.5 × 10-3 ; p8 = 1.4 × 10-3

Unified Power Control



POWER CONTROL POWER CONTROL 
IN IN 

MULTICARRIER CDMAMULTICARRIER CDMA
(BRIEFLY)(BRIEFLY)

[w. [w. M. Chiang, et al., M. Chiang, et al., IEEE JSACIEEE JSAC, June 2006, June 2006]]

Energy Efficiency in Multiple-Access Nets



Multicarrier Multicarrier CDMACDMA

• Now we have K users, D carriers, and processing 

gain N for each carrier. 

• User k now chooses D powers, pk
(1) , pk

(2) , … , pk
(D),

resulting in D throughputs, Tk
(1) , Tk

(2) , … , Tk
(D) . 

• The resulting utility is 

Power Control in Multicarrier CDMA

Tk
(1) + … + Tk

(D)

pk
(1) + … + pk

(D)
uk =

where Tk
(d) = Rk

(d)f(γk
(d)).



Nash EquilibriumNash Equilibrium

• For simplicity, we assume all users use MFs. 

• uk is maximized when all k’s power is transmitted 

on its “best” carrier, and so as to achieve SIR γ*.

• NE ⇔ all users achieve this state simultaneously.

• NE may not exist, and may not be unique.

• Depends on the channel gains (a set of nec. & 

suff. inequalities can be derived). 

Power Control in Multicarrier CDMA



Power Control in Multicarrier CDMA

Ex.: K=D=10; Ex.: K=D=10; RayleighRayleigh
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ENERGY ENERGY 
EFFICIENCY AND EFFICIENCY AND 

DELAY QOSDELAY QOS

[w [w F. F. MeshkatiMeshkati, et al., , et al., IEEE 2005 ISIT, AdelaideIEEE 2005 ISIT, Adelaide]]
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• X is a r.v. representing the number of transmissions needed for a 
packet to be received error-free. Then

• i.e., X is a geometric r.v. with parameter f (γ)

• Specify the delay requirements by a pair (D, β):

• The delay requirements translate to a lower bound on SIR:

P(X=m) = f(γ) [1 - f(γ)]m-1 , m = 0, 1, …

P(X≤D)≥β

P(X≤Dk)≥βk ⇔ γk ≥ γk’

Delay Model (Infinite Backlog)Delay Model (Infinite Backlog)

Energy Efficiency in Delay QoS



• Proposed delay-constrained power control game:

• Th’m: For all linear multiuser 

receivers, the proposed game has a

unique Nash equilibrium. At NE, each 

user transmits at a power level that 

achieves an output SIR  equal to:

max{γ*,γk’}

where γ * is the solution to 

SIR

U
se

r's
 U
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γ1 γ2 γ* 
~ ~ 

SIR, γ
U

ti
lit

y,
 u

γ* γ’

--
--

--
--

--
--

--
--

--
--

-
--

--
--

--
--

--
--

--
--

--
-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

pk ≥ 0, γk ≥ γk’
max uk

f(γ) = γ f′(γ)

Nash EquilibriumNash Equilibrium

Energy Efficiency in Delay QoS



• Consider a network with C classes of users and Kc users in class c.

• All users in class c have the same delay requirements (Dc,βc).

• At NE, all users in class c have the same output SIR γc* where

• Note: γc* depends on the delay constraints through γc’ and on 

physical layer parameters such as modulation, coding and packet 

size through γ*.

γc* = max{γ*,γc’}

MultiMulti--class Networksclass Networks

Energy Efficiency in Delay QoS



• Large-system assumptions: 

• Equilibrium utilities for matched filter, decorrelator and MMSE 
detector can be written in closed form (see paper).

• Observations:
⎯ Presence of users with stringent delay requirements affects the energy 

efficiency of all users in the network

⎯ Two factors contribute to the reduction in utility

• Increase of target SIR (only for delay-sensitive users)

• Increase in multiple-access interference (for all users)

⎯ The energy efficiency and network capacity are larger for MMSE 
detector as compared to decorrelator and matched filter

Kc , N →∞ , with αc = Kc /N fixed, c = 1, 2, … C; α1 + α2 + … + αC = α

LargeLarge--System AnalysisSystem Analysis

Energy Efficiency in Delay QoS



Effect of delay on utility with low network load (α=0.1). Users in Class A are delay-sensitive 
(DA=1, β A=0.99) and users in Class B are delay-tolerant (DB=3, β B=0.90) 

Numerical ResultsNumerical Results

Energy Efficiency in Delay QoS



Effect of delay on utility with high network load (α =0.9). Users in Class A are delay-sensitive 

(DA=1, β A=0.99) and users in Class B are delay-tolerant (DB=3, β B=0.90)

Numerical Results (ContNumerical Results (Cont’’d)d)

Energy Efficiency in Delay QoS



SummarySummary

• The Multiuser Power Control Game 

• Unified Power Control

• Power Control in Multi-carrier CDMA

• Energy Efficiency and Delay QoS

• Other Interesting Problems:  

– Delay with Finite-Backlog (w. R. Balan et al.)

– Adaptive modulation (w. A. Goldsmith, et al.)

– Formalism for ad hoc networks (w. S. Betz)

Energy Efficiency in Multiple-Access Nets



Today’s Talk: Three Topics
A Sampling of Ideas

• Energy Efficiency in Multiple-Access Networks 

• Diversity-Multiplexing Tradeoffs in MIMO Systems 

• Distributed Inference in Wireless Sensor Networks

Cross-Layer Issues in Wireless Networks



DIVERSITY-
MULTIPLEXING 
TRADEOFFS IN 
MIMO SYSTEMS

Cross-Layer Issues in Wireless Networks

[w [w T. Holliday & A. Goldsmith, T. Holliday & A. Goldsmith, Proc. 2006 IEEE ICCProc. 2006 IEEE ICC, Istanbul, Istanbul]]



• Multiple antennas provide a multiplexing versus 
diversity tradeoff in wireless channels.

• The “sweet spot” on this tradeoff curve is 
driven by higher-layer protocol performance 
metrics.
– Cross-layer design with multiple antennas

• We investigate this sweet spot in the context of 
joint source and channel coding.

• The framework can be extended to include
queueing delay and ARQ.

IntroductionIntroduction

Diversity-Multiplexing Tradeoffs in MIMO Systems



• Two fundamental resources in a MIMO wireless 
channel:
– Diversity – improve error probability

– Degrees of freedom – increase rate

• Most traditional coding formulations attempt to 
maximize only one of these.

• Recent results allow us to characterize optimal 
combinations of the two.

Diversity and FreedomDiversity and Freedom

Diversity-Multiplexing Tradeoffs in MIMO Systems



• Two fundamental resources in a MIMO wireless 
channel:
– Diversity – improve error probability

– Degrees of freedom – increase rate

• Most traditional coding formulations attempt to 
maximize only one of these.

• Recent results allow us to characterize optimal 
combinations of the two.

Diversity and FreedomDiversity and Freedom

Diversity-Multiplexing Tradeoffs in MIMO Systems



• Two independent fading channels increase 

diversity.

• Spatial Diversity:

– Transmit, receive diversity, or both

• For a channel with M receive antennas and N

transmit antennas the total diversity is MN.

DiversityDiversity

Diversity-Multiplexing Tradeoffs in MIMO Systems

Fading Channel 1

Fading Channel 2



• Arrivals from different 
directions provide 
extra degrees of 
freedom.

Degrees of FreedomDegrees of Freedom

Diversity-Multiplexing Tradeoffs in MIMO Systems

Fading

Channel

• We can achieve the same results with a 
scattering environment.

• In a M-by-N channel with scattering there are 
min{M,N} degrees of freedom.



• A space-time code achieves a diversity-
multiplexing tradeoff with rate r if

and the diversity gain d(r) satisfies

• The largest rate is min{M,N}.

• The largest diversity gain is MN.

DiversityDiversity--Multiplexing TradeoffMultiplexing Tradeoff

Diversity-Multiplexing Tradeoffs in MIMO Systems

SNRlogr~R(SNR)

d(r)
e SNR~(SNR)P −



MIMO Channel ModelsMIMO Channel Models

Diversity-Multiplexing Tradeoffs in MIMO Systems
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• Define a family of block codes {C(SNR)} 
of length T with rate R(SNR)~r log SNR .

• Given {C(SNR)}, define diversity and 
multiplexing gains asymptotically.

Tradeoff at High SNR*Tradeoff at High SNR*

Diversity-Multiplexing Tradeoffs in MIMO Systems

r)r)(N(M(r)d* −−=

r
SNRlog

R(SNR)lim =
∞→SNR

d
SNRlog

)SNR(P loglim e −=
∞→SNR

**ZhengZheng//Tse Tse 20022002



Diversity/Multiplexing TradeoffDiversity/Multiplexing Tradeoff

Diversity-Multiplexing Tradeoffs in MIMO Systems

For an integer r it’s as though r transmit and receive
antennas are used for multiplexing, and the rest for diversity.



• Codes that achieve the tradeoff

– El Gamal, Caire, IEEE Trans. Inform. Theory, 2004

– Tavildar, Viswanath, IEEE Trans. Inform. Theory, 2004

• Incremental Redundancy and ARQ

– Discuss later in the talk

• Cross-layer design problems

– Joint-source channel coding

– Rate, compression, and ARQ adaptation for delay sensitive 

traffic

ApplicationsApplications

Diversity-Multiplexing Tradeoffs in MIMO Systems



• Use antennas for multiplexing:

• Use antennas for diversity:

Joint S/C Coding with MIMOJoint S/C Coding with MIMO

Diversity-Multiplexing Tradeoffs in MIMO Systems

High-Rate
Quantizer

ST Code
High Rate Decoder

Error Prone

Low Pe

Low-Rate
Quantizer

ST Code
High 

Diversity
Decoder



• Code over many (asymptotically infinite) source and 
channel coding blocks.

• Channel error goes to zero with blocklength via error 
exponent. 

• Asymptotically optimal to encode source at channel 
capacity (full multiplexing).
– No channel distortion

• Leads to optimal separation of source and channel code
designs.

Traditional FormulationTraditional Formulation

Diversity-Multiplexing Tradeoffs in MIMO Systems

What about finite blocklengths?



• Required under delay constraints.

• Can’t drive channel error to zero:

– Induces diversity/multiplexing tradeoff

• To optimize this tradeoff analytically, we require 

a high SNR regime:

– Make use of Zheng/Tse results

Finite Block LengthsFinite Block Lengths

Diversity-Multiplexing Tradeoffs in MIMO Systems



• Suppose we have a source with some notion of a 
distortion measure.

• Define the average distortion as

• Then the optimal distortion exponent is

Distortion ExponentDistortion Exponent

Diversity-Multiplexing Tradeoffs in MIMO Systems

⎥
⎦

⎤
⎢
⎣

⎡
∞→ SNRlog

(r)Dloglimmin
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Diversity/Multiplexing TradeoffDiversity/Multiplexing Tradeoff

Diversity-Multiplexing Tradeoffs in MIMO Systems

How do we map the distortion exponent to the diversity-
multiplexing tradeoff curve?



Source and Channel CodingSource and Channel Coding

Diversity-Multiplexing Tradeoffs in MIMO Systems

• K-dimensional source vector

• Quantized and mapped into the 
channel codebook.

kRu ∈ Source
Encoder

jv

Index 
Assignment

s bits
π(i)

Channel 
Encoder

s bits
i

MIMO 
Channel

Channel 
Decoder

Inverse Index 
Assignment π(j)

s bits
j

s bitsSource
Decoder



EndEnd--toto--End TradeoffsEnd Tradeoffs

Diversity-Multiplexing Tradeoffs in MIMO Systems

kRu ∈ Source
Encoder

jv

Index 
Assignment

s bits
π(i)

Channel 
Encoder

s bits
i

MIMO 
Channel

Channel 
Decoder

Inverse Index 
Assignment π(j)

s bits
j

s bitsSource
Decoder

Increased rate here
decreases source distortion

But permits 
less diversity 

here

Resulting in more errorsAnd maybe higher total distortion



• Vector source        encoded into s bits by a
quantizer Q with distortion Ds(Q)

• Distortion at asymptotically high source 
resolution satisfies‡

Source Code ConstructionSource Code Construction

Diversity-Multiplexing Tradeoffs in MIMO Systems
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• Define q(π(j)|π(i)) as the probability that 
the channel decoder selects codeword j 
when codeword i was sent.

• From [Hochwald, 1998], this can be split 
into two pieces:

EndEnd--toto--End DistortionEnd Distortion
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Decoding failureCorrect decoding



• We use the high SNR bound (finite blocks):

• Equating source and channel rates and assuming 
high SNR (order terms negligible):

• As SNR→∞, equal exponents minimizes distortion.

Bound on Total DistortionBound on Total Distortion

Diversity-Multiplexing Tradeoffs in MIMO Systems
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• With matching exponents,

• The distortion is a simple function of SNR and the 
optimal diversity/multiplexing point.

• Asymptotically, leads to a familiar form:

Asymptotic Upper BoundAsymptotic Upper Bound

Diversity-Multiplexing Tradeoffs in MIMO Systems
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• A lower bound can also be constructed for the 

average distortion (w.r.t π)

• The optimal distortion exponent is:

Tight ResultsTight Results

Diversity-Multiplexing Tradeoffs in MIMO Systems

Solve this to find r*.
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Optimal Tradeoff PointOptimal Tradeoff Point
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4x4 MIMO, with T=16, p=2, and k=8
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• Convex problem:
– Source dimension k
– Channel code block size T
– Distortion order p

• Solution shows how to best use antennas.

Minimizing DistortionMinimizing Distortion

Diversity-Multiplexing Tradeoffs in MIMO Systems
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DistortionDistortion vsvs. Multiplexing N=M=8 . Multiplexing N=M=8 
k>>Tk>>T
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DistortionDistortion vsvs. Multiplexing N=M=8 . Multiplexing N=M=8 
k<<Tk<<T
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DistortionDistortion vsvs. Multiplexing N=M=8 . Multiplexing N=M=8 
k = O(T)k = O(T)

Diversity-Multiplexing Tradeoffs in MIMO Systems



• Assume the source and channel encoder know
M, N, T, p, and k.

• Then we can encode the source and channel at 
r* without coordination.

• Provides a version of a separation theorem.

• What happens when we permit ARQ?

SeparationSeparation

Diversity-Multiplexing Tradeoffs in MIMO Systems



• Suppose we correct errors through incremental 

redundancy.

• Define a family of block codes {C(SNR)} of length LT:

– Block fading channel with block size T

– ARQ window size L

• Retransmissions reduce the average rate.

MIMOMIMO--ARQ ChannelARQ Channel

Diversity-Multiplexing Tradeoffs in MIMO Systems
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• Arriving data have deadlines.

• Errors result from ARQ failure or deadline expiration.

• What is the optimal tradeoff?

Delay System ModelDelay System Model

Diversity-Multiplexing Tradeoffs in MIMO Systems

Poisson Arrivals
Finite Buffer

MIMO-ARQ Channel

kRu ∈
M/G/1 Queue

Source

Encoder



• New average distortion measure:

• Find a fixed allocation of rate, diversity, and 
ARQ that minimizes average distortion:

• Or we could try to adapt to the random queue: 
– Large queue -> high compression, high diversity

– Empty queue -> low compression, high multiplexing

• Fixed scheme is separable, adaptive scheme is not.

Tradeoff OptionsTradeoff Options

Diversity-Multiplexing Tradeoffs in MIMO Systems
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• The M/G/1 queue is a stochastic process.

• Control the size of a job by changing the source 
compression

• Control the service time with the multiplexing 
rate r and ARQ window L

• Formulate and solve a standard dynamic 
program to find the optimal solution.‡

Adaptive SolutionAdaptive Solution

Diversity-Multiplexing Tradeoffs in MIMO Systems

‡Holliday, Goldsmith, Poor ICC 2006



• 4x4 MIMO–ARQ channel with block fading

•

• Arrival rate λ =0.9

• Examine the impact of deadlines ranging 
from short (d=2) to long (d=16)

Numerical ExampleNumerical Example

Diversity-Multiplexing Tradeoffs in MIMO Systems

{ }4 3, 2, 1,L∈



Optimal Multiplexing RateOptimal Multiplexing Rate

Diversity-Multiplexing Tradeoffs in MIMO Systems

Multiplexing decreases as the queue size increases or as 
deadlines become shorter.



ARQ Window SizeARQ Window Size

Diversity-Multiplexing Tradeoffs in MIMO Systems

We use longer ARQ windows with empty queues and long 
deadlines.



Distortion for Fixed and Adaptive ControlsDistortion for Fixed and Adaptive Controls

Diversity-Multiplexing Tradeoffs in MIMO Systems

Note the gap between the best fixed policy and the 
adaptive results.



• When delay affects distortion we no longer 
have a separation theorem.

• The best fixed pair of rate and ARQ incurs more 
distortion than adaptation.

• Optimal fixed rate and ARQ assignment does 
not utilize all available ARQ.

• Therefore, the high SNR regime is a poor 
approximation in this case.

MIMOMIMO--ARQ at Finite SNRARQ at Finite SNR

Diversity-Multiplexing Tradeoffs in MIMO Systems



• Computed the end-to-end distortion exponent
for a MIMO system

• The exponent is a point on the diversity-
multiplexing tradeoff curve

• Results in a separation theorem for finite-block 
length codes

• Delay sensitivity precludes a separation 
theorem

SummarySummary

Diversity-Multiplexing Tradeoffs in MIMO Systems



Today’s Talk: Three Topics
A Sampling of Ideas

• Energy Efficiency in Multiple-Access Networks 

• Diversity-Multiplexing Tradeoffs in MIMO Systems

• Distributed Inference in Wireless Sensor Networks 

Cross-Layer Issues in Wireless Networks
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WIRELESS SENSOR 
NETWORKS

Cross-Layer Issues in Wireless Networks

[w. [w. J. J. PreddPredd & S. & S. KulkarniKulkarni, , Proc. 2006 IEEE Info. Proc. 2006 IEEE Info. ThTh’’y y WorkshopWorkshop, Uruguay, Uruguay]]



Outline: Collaborative RegressionOutline: Collaborative Regression**

• Background

• A Model for Distributed Learning

• A Collaborative Training Algorithm

• Performance Guarantees

• Energy Considerations

* [Related work w.* [Related work w. PreddPredd & & KulkarniKulkarni, , IEEE Trans. Inform. IEEE Trans. Inform. ThTh’’yy, Jan. 2006, Jan. 2006]]

Collaborative Regression



• Input space ______  , Output space  ____

• ___ is an  ____-valued r.v. with ______

• Design _____ to predict outputs from inputs and 

minimize expected loss

• __    is unknown

• Given training examples ______

Classical (Supervised) Classical (Supervised) 
LearningLearning

Collaborative Regression



• Sensor i measures . 

• Example:

– _______ (coordinates in space-time),

– ____ (temperature) 

– ______ models structure of a temperature field

A ModelA Model forfor
Distributed Learning (in Distributed Learning (in WSNsWSNs))

S4

S6
S8

S2

S10

S5

S1

S7
S3

S9

S11

““A distributed sampling deviceA distributed sampling device with a wireless interfacewith a wireless interface””



• Sensor i sends                  to a centralized processor

• “Learn” using (Reproducing) Kernel Methods:  

– For a positive semi-definite kernel K(,):

• Assumption: energy and bandwidth constraints preclude the 
sensors from sending                    for centralized 

processing.

The Centralized ApproachThe Centralized Approach

Collaborative Regression



• Sensor i measures                            . 

• Informal justification: local communication is efficient

The Seed of a ModelThe Seed of a Model……

S4

S6
S8

S2

S10

S5

S1

S7
S3

S9

S11

AssumptionAssumption:  Sensor i can access all neighboring :  Sensor i can access all neighboring 
sensorssensors’’ measured data.measured data.

Collaborative Regression



• m learning agents (i.e., sensors)

• n training examples 

A General ModelA General Model

Collaborative Regression



ExampleExample
Centralized LearningCentralized Learning

Collaborative Regression



ExampleExample
SpatioSpatio--temporal Field Estimation in temporal Field Estimation in WSNsWSNs

Collaborative Regression



ExampleExample
A public databaseA public database

Collaborative Regression



• m learning agents (i.e., sensors)

• n training examples 

The General CaseThe General Case

Collaborative Regression



““LocalLocal”” LearningLearning
A Natural ApproachA Natural Approach

Collaborative Regression



Local incoherence:

Sensor 1 and sensor m both train with

but                     . 

Local learningLocal learning
is is ““locally incoherentlocally incoherent””

Collaborative Regression



Define distance measure

……And local incoherence is And local incoherence is undesirableundesirable

Collaborative Regression



Define distance measure

Lemma: For any locally incoherent rules

there exists a set of locally coherent rules 

such that

……And local incoherence is And local incoherence is undesirableundesirable

Collaborative Regression



• In this model for distributed learning, “local 

learning” requires only local communication.

• However, it leads to local incoherence, which 

is provably “undesirable”.

•• Can agents (i.e., sensors) collaborate to gain Can agents (i.e., sensors) collaborate to gain 

the the ““optimalityoptimality”” of coherence, while of coherence, while 

retaining efficiency locality?retaining efficiency locality?

SummarySummary

Collaborative Regression



A Collaborative Training Algorithm
Intuition

• Local learning as a building block.

Iterate over sensors s = 1,…, m
sensor s

Computes using local data:

Updates labels of local data:

end

Collaborative Regression



A Collaborative Training Algorithm
Intuition (cont’d)

• Need multiple passes + inertia term

Initialize: 

for t=1,…., T
Iterate over sensors s = 1,…, m

sensor s
Computes using local data:

Updates labels of local data:

Collaborative Regression



A Collaborative Training Algorithm
Intuition (cont’d)

Collaborative Regression



DefineDefine

TheoremTheorem::

1.1. convergesconverges (in norm)(in norm) to a to a ““relaxationrelaxation”” of of 
centralized estimate.centralized estimate.

2.2. ______        ______        isis locally coherentlocally coherent and satisfiesand satisfies

3.3. Moreover,Moreover, __________ ““improvesimproves”” with every updatewith every update

Collaborative Regression



• Each sensor locally computes a global estimate.

• Computation: Sensor i solves |Ni| x |Ni| linear system

• Storage: O(|Ni|2)   (coefficients + kernel matrix)

• Parallelism: Non-sequential updates possible

• Robustness to ordering

Other ObservationsOther Observations

Collaborative Regression



Why?Why?
The Algorithm CanThe Algorithm Can Be Derived in 3 StepsBe Derived in 3 Steps

• Step 1: Interpret classical (centralized) estimator as 
projection onto a Hilbert space.

• Step 2: Relax projection by “respecting” network topology

• Step 3: Alternating projection algorithms
imply the distributed training algorithm.

Collaborative Regression



• n=50 sensors uniformly distributed about [-1, 1]

• Sensor i observes yi = f(xi) + ni

– {ni} is i.i.d. standard normal

– regression function f is linear (Case 1) or sinusoidal (Case 2)

• Sensors i and j are neighbors iff |xi - xj| < r

• Sensors employ linear (Case 1) or Gaussian (Case 2) kernel

Case 1Case 1 CaseCase 22

ExperimentsExperiments



Case 1Case 1 Case 2Case 2

M
S
E

M
S
E

ConnectivityConnectivity

How does collaboration effect How does collaboration effect 
generalization error?generalization error?

Collaborative Regression



• Overall error decreases with 

size of the  neighborhoods.

• But, energy consumed by 

message-passing  increases

with neighborhood size.

• Question: What are the trade-offs?

M
S
E

M
S
E

ConnectivityConnectivity

Collaborative Regression

Energy EfficiencyEnergy Efficiency
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NN (number of sensors)(number of sensors)

rrNN = = NNαα

αα ={.30, .35, .40, .45}

PKP

Centralized

Local Averaging

Collaborative Regression

MeanMean--Square ErrorSquare Error vsvs. N. N
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EnergyEnergy--perper--Sensor Sensor vsvs. N. N



•• ModelModel andand algorithmalgorithm for collaborative for collaborative 

regressionregression

•• Convergence Convergence propertiesproperties

•• Cautionary Cautionary note on energynote on energy

•• Rich area for further work Rich area for further work 

Summary/ConclusionsSummary/Conclusions

Collaborative Regression



Today’s Talk: Three Topics
A Sampling of Ideas

• Energy Efficiency in Multiple-Access Networks 

• Diversity-Multiplexing Tradeoffs in MIMO Systems 

• Distributed Inference in Wireless Sensor Networks 

Cross-Layer Issues in Wireless Networks



Thank You!Thank You!


