Superconvergence of projection methods for weakly singular integral operators

Mario Ahues, Alain Largillier,
Laboratoire de Mathématiques
Université de Saint-Étienne, France
\&
Andrey Amosov
Institute of Energy at Moscow, Russia

February 10, 2007

References

General facts

Projection approximations

Computations

Forthcoming research
I.W. Busbridge, The Mathematics of radiative transfer, Cambridge University Press, 1960.

國 I.H. Sloan, "Superconvergence and the Galerkin method for integral equations of the second kind", In: Treatment of Integral Equations by Numerical Methods, Academic Press, Inc. 1982, pp. 197-206.

A Weakly Singular Integral Equation

Given $\tau_{*}>0, \omega_{0} \in[0,1[, g$ such that

- $g\left(0^{+}\right)=+\infty$,
- g is continuous, positive and decreasing on $] 0, \infty[$,
- $g \in L^{1}(\mathbb{R}) \cap W^{1,1}(\delta,+\infty)$ for all $\delta>0$,
- $\|g\|_{L^{1}\left(\mathbb{R}^{+}\right)} \leq \frac{1}{2}$,
and a function f, find a function φ such that

$$
\varphi(\tau)=\omega_{0} \int_{0}^{\tau_{*}} g\left(\left|\tau-\tau^{\prime}\right|\right) \varphi\left(\tau^{\prime}\right) d \tau^{\prime}+f(\tau), \quad \tau \in\left[0, \tau_{*}\right]
$$

An example: The Transfer Equation

$$
\begin{gathered}
\varphi(\tau)=\frac{\omega_{0}}{2} \int_{0}^{\tau_{*}} E_{1}\left(\left|\tau-\tau^{\prime}\right|\right) \varphi\left(\tau^{\prime}\right) d \tau^{\prime}+f(\tau), \quad \tau \in\left[0, \tau_{*}\right], \\
E_{1}(\tau):=\int_{0}^{1} \mu^{-1} e^{-\tau / \mu} d \mu, \quad \tau>0,
\end{gathered}
$$

f, the source term, belongs to $L^{1}\left(0, \tau_{*}\right)$,
τ_{*}, the optical depth, is a very large number, ω_{0}, the albedo, may be very close to 1 .

Goal

For a class of four numerical solutions based on projections, find acurate error estimates which

- are independent of the grid regularity,
- are independent of τ_{*},
- depend on ω_{0} in an explicit way, and
- suggest global superconvergence phenomena.

Abstract framework

Set

$$
(\Lambda \varphi)(\tau):=\int_{0}^{\tau_{*}} g\left(\left|\tau-\tau^{\prime}\right|\right) \varphi\left(\tau^{\prime}\right) d \tau^{\prime}, \quad \tau \in\left[0, \tau_{*}\right]
$$

For X and Y, suitable Banach spaces, the problem reads:
Given $f \in Y$, find $\varphi \in X$ such that $\quad \varphi=\omega_{0} \Lambda \varphi+f$.
Remark:

$$
\left\|\left(I-\omega_{0} \Lambda\right)^{-1}\right\| \leq \gamma_{0}:=\frac{1}{1-\omega_{0}}
$$

The equality holds for $X=Y=L^{2}\left(0, \tau_{*}\right)$.

Projecting onto piecewise constant functions

Let be a grid of $n+1$ points in $\left[0, \tau_{*}\right]$:

$$
\begin{aligned}
0=: \tau_{0}<\tau_{1}< & \cdots \quad<\tau_{n-1}<\tau_{n}:=\tau_{*}, \\
h_{i} & :=\tau_{i}-\tau_{i-1}, \quad i \in \llbracket 1, n \rrbracket, \\
h & :=\left(h_{1}, h_{2}, \ldots, h_{n}\right) \\
\mathcal{G}^{h} & :=\left(\tau_{0}, \tau_{1}, \ldots, \tau_{n}\right), \\
\hat{h} & :=\max _{i \in \llbracket 1, n \rrbracket} h_{i}, \\
\mathcal{I}_{i-\frac{1}{2}} & :=] \tau_{i-1}, \tau_{i}[, \quad i \in \llbracket 1, n \rrbracket, \\
\tau_{i-\frac{1}{2}} & :=\left(\tau_{i-1}+\tau_{i}\right) / 2, \quad i \in \llbracket 1, n \rrbracket .
\end{aligned}
$$

The approximating space $\mathbb{P}_{0}^{h}\left(0, \tau_{*}\right)$

$$
f \in \mathbb{P}_{0}^{h}\left(0, \tau_{*}\right) \Longleftrightarrow \forall i \in \llbracket 1, n \rrbracket, \forall \tau \in \mathcal{I}_{i-\frac{1}{2}}, \quad f(\tau)=f\left(\tau_{i-\frac{1}{2}}\right) .
$$

The family of projections π_{h} :

$$
\pi_{h}: L^{p}\left(0, \tau_{*}\right) \rightarrow L^{p}\left(0, \tau_{*}\right)
$$

$\forall i \in \llbracket 1, n \rrbracket, \forall \tau \in \mathcal{I}_{i-\frac{1}{2}}$,

$$
\left(\pi_{h \varphi} \varphi\right)(\tau):=\frac{1}{h_{i}} \int_{\tau_{i-1}}^{\tau_{i}} \varphi\left(\tau^{\prime}\right) d \tau^{\prime} .
$$

Hence

$$
\pi_{h}\left(L^{p}\left(0, \tau_{*}\right)\right)=\mathbb{P}_{0}^{h}\left(0, \tau_{*}\right) .
$$

Four approximations based on π_{h}

The classical Galerkin approximation φ_{h}^{G} solves

$$
\varphi_{h}^{\mathrm{G}}=\omega_{0} \pi_{h} \Lambda \varphi_{h}^{\mathrm{G}}+\pi_{h} f
$$

The Sloan approximation φ_{h}^{S} (iterated Galerkin) solves

$$
\varphi_{h}^{\mathrm{S}}=\omega_{0} \wedge \pi_{h} \varphi_{h}^{\mathrm{S}}+f
$$

The Kantorovich approximation φ_{h}^{K} solves

$$
\varphi_{h}^{\mathrm{K}}=\omega_{0} \pi_{h} \Lambda \varphi_{h}^{\mathrm{K}}+f .
$$

The Authors' approximation φ_{h}^{A} (iterated Kantorovich) solves

$$
\varphi_{h}^{\mathrm{A}}=\omega_{0} \Lambda \pi_{h} \varphi_{h}^{\mathrm{A}}+f+\omega_{0} \Lambda\left(I-\pi_{h}\right) f
$$

Useful remarks and relationships

- $\varphi_{h}^{\mathrm{G}} \in \mathbb{P}_{0}^{h}\left(0, \tau_{*}\right)$,
- φ_{h}^{G} is computed through an algebraic linear system,
- $\varphi_{h}^{\mathrm{S}}=\omega_{0} \wedge \varphi_{h}^{\mathrm{G}}+f$,
- $\psi_{h}=\omega_{0} \pi_{h} \wedge \psi_{h}+\pi_{h} \wedge f \Longrightarrow \varphi_{h}^{\mathrm{K}}=\omega_{0} \psi_{h}+f$,
- $\phi_{h}=\omega_{0} \Lambda \pi_{h} \phi_{h}+\Lambda f \Longrightarrow \varphi_{h}^{\mathrm{A}}=\omega_{0} \phi_{h}+f$.

The absolute errors and superconvergence

$$
\varepsilon_{h}^{\mathrm{N}}:=\varphi_{h}^{\mathrm{N}}-\varphi \quad \text { for } \quad \mathrm{N} \in\{\mathrm{G}, \mathrm{~K}, \mathrm{~S}, \mathrm{~A}\} .
$$

Superconvergence is understood with respect to $\operatorname{dist}\left(\varphi, \mathbb{P}_{0}^{h}\left(0, \tau_{*}\right)\right)$.
Theorem
In any Hilbert space setting, $\exists \alpha$ such that

$$
\left\|\varphi-\pi_{h \varphi}\right\| \leq\left\|\varepsilon_{h}^{\mathrm{G}}\right\| \leq \alpha\left\|\varphi-\pi_{h \varphi}\right\| .
$$

Main technical notions and results

Definitions

$$
\begin{aligned}
\Delta_{\epsilon} g(\tau) & :=g(\tau+\epsilon)-g(\tau) \\
\omega_{1}(g, \delta) & :=\sup _{0<\epsilon<\delta}\left\|\Delta_{\epsilon} g(|\cdot|)\right\|_{L^{1}(\mathbb{R})} \\
& =\sup _{0<\epsilon<\delta} \int_{\mathbb{R}}|g(|\tau+\epsilon|)-g(|\tau|)| d \tau
\end{aligned}
$$

Main technical notions and results

The key for estimating errors
For $\alpha \in[0,1]$ and $i \in \llbracket 1, n \rrbracket$:

$$
\begin{aligned}
\Delta_{\alpha}^{h} f(\tau) & := \begin{cases}\Delta_{\alpha h_{i}} f(\tau) & \text { for } \tau \in\left[\tau_{i-1}, \tau_{i}-\alpha h_{i}\right], \\
0 & \text { for } \left.\tau \in] \tau_{i}-\alpha h_{i}, \tau_{i}\right],\end{cases} \\
\omega_{p}\left(f, \mathcal{G}^{h}\right) & :=2^{1 / p}\left[\int_{0}^{1}\left\|\Delta_{\alpha}^{h} f\right\|_{p}^{p} d \alpha\right]^{1 / p} \text { for } p<+\infty, \\
\omega_{\infty}\left(f, \mathcal{G}^{h}\right) & :=\max _{i \in \llbracket 1, n \rrbracket} \operatorname{essup}_{\left(\tau, \tau^{\prime}\right) \in\left[\tau_{i-1}, \tau_{i}\right]^{2}}\left|f(\tau)-f\left(\tau^{\prime}\right)\right|, \\
\widehat{\omega}_{1}\left(g, \mathcal{G}^{h}\right) & :=\sup _{0<\tau^{\prime}<\tau_{*}} \omega_{1}\left(g\left(\left|\cdot-\tau^{\prime}\right|, \mathcal{G}^{h}\right) .\right.
\end{aligned}
$$

Global superconvergence

The main result
Theorem
If $0 \neq f \in L^{p}\left(0, \tau_{*}\right)$ for some $p \in[1,+\infty]$, then $0 \neq \varphi \in L^{p}\left(0, \tau_{*}\right)$ and

$$
\begin{aligned}
\frac{\left\|\varepsilon_{h}^{\mathrm{K}}\right\|_{p}}{\|\varphi\|_{p}} & \leq 4 \cdot 3^{\frac{1}{p}} \cdot \omega_{0} \cdot \gamma_{0} \cdot \int_{0}^{\hat{h}} g(\tau) d \tau \\
\frac{\left\|\varepsilon_{h}^{\mathrm{S}}\right\|_{p}}{\|\varphi\|_{p}} & \leq 12 \cdot 3^{-\frac{1}{p}} \cdot \omega_{0} \cdot \gamma_{0} \cdot \int_{0}^{\hat{h}} g(\tau) d \tau \\
\frac{\left\|\varepsilon_{h}^{\mathrm{A}}\right\|_{p}}{\|\varphi\|_{p}} & \leq 48 \cdot \omega_{0}^{2} \cdot \gamma_{0} \cdot\left[\int_{0}^{\hat{h}} g(\tau) d \tau\right]^{2}
\end{aligned}
$$

The proof

First step

For all $f \in L^{p}\left(0, \tau_{*}\right)$,

$$
\left\|\left(I-\pi_{h}\right) f\right\|_{p} \leq \omega_{p}\left(f, \mathcal{G}^{h}\right)
$$

The proof

Second step

$$
\begin{aligned}
\frac{\left\|\varepsilon_{h}^{\mathrm{K}}\right\|_{p}}{\|\varphi\|_{p}} & \leq \omega_{0} \cdot \gamma_{0} \cdot\left\|\left(I-\pi_{h}\right) \Lambda\right\|_{p} \\
\frac{\left\|\varepsilon_{h}^{\mathrm{S}}\right\|_{p}}{\|\varphi\|_{p}} & \leq \omega_{0} \cdot \gamma_{0} \cdot\left\|\Lambda\left(I-\pi_{h}\right)\right\|_{p} \\
\frac{\left\|\varepsilon_{h}^{\mathrm{A}}\right\|_{p}}{\|\varphi\|_{p}} & \leq \omega_{0}^{2} \cdot \gamma_{0} \cdot\left\|\Lambda\left(I-\pi_{h}\right) \Lambda\right\|_{p}
\end{aligned}
$$

The proof

Third step

$$
\begin{aligned}
\left\|\left(I-\pi_{h}\right) \Lambda\right\|_{p} & \leq \omega_{1}(g, \hat{h})^{1-\frac{1}{\rho}} \widehat{\omega}_{1}\left(g, \mathcal{G}^{h}\right)^{\frac{1}{\rho}} \\
\left\|\Lambda\left(I-\pi_{h}\right)\right\|_{p} & \leq \omega_{1}(g, \hat{h})^{\frac{1}{\rho}} \widehat{\omega}_{1}\left(g, \mathcal{G}^{h}\right)^{1-\frac{1}{\rho}}, \\
\left\|\Lambda\left(I-\pi_{h}\right) \Lambda\right\|_{p} & \leq \omega_{1}(g, \hat{h}) \widehat{\omega}_{1}\left(g, \mathcal{G}^{h}\right) .
\end{aligned}
$$

The proof

Fourth step

$$
\begin{gathered}
\omega_{1}(g, \hat{h}) \leq 4 \int_{0}^{\hat{h}} g(\tau) d \tau \\
\widehat{\omega}_{1}\left(g, \mathcal{G}^{h}\right) \leq 12 \int_{0}^{\hat{h}} g(\tau) d \tau
\end{gathered}
$$

The proof

Desired conclusion

$$
\begin{aligned}
& \frac{\left\|\varepsilon_{h}^{K}\right\|_{p}}{\|\varphi\|_{p}} \leq 4 \cdot 3^{\frac{1}{p}} \cdot \omega_{0} \cdot \gamma_{0} \cdot \int_{0}^{\hat{h}} g(\tau) d \tau, \\
& \frac{\left\|\varepsilon_{h}^{S}\right\|_{p}}{\|\varphi\|_{p}} \leq 12 \cdot 3^{-\frac{1}{p}} \cdot \omega_{0} \cdot \gamma_{0} \cdot \int_{0}^{\hat{h}} g(\tau) d \tau, \\
& \frac{\left\|\varepsilon_{h}^{A}\right\|_{p}}{\|\varphi\|_{p}} \leq 48 \cdot \omega_{0}^{2} \cdot \gamma_{0} \cdot\left[\int_{0}^{\hat{h}} g(\tau) d \tau\right]^{2} .
\end{aligned}
$$

Numerical evidence

- $g=\frac{1}{2} E_{1} \Longrightarrow \int_{0}^{\hat{h}} g(\tau) d \tau=O(\hat{h} \ln \hat{h})$
- Data: $\omega_{0}=0.5, \quad \tau_{*}=500, \quad f(\tau)=0.5$
- Number of grid points: $n=1000$
- First 5 points equally spaced by 0.1
- Last 5 points equally spaced by 0.1
- Between 0.5 and 499.5: a uniform grid with 990 points
- $\hat{h}=0.5 \overline{04}$

Plotting residuals on [0, 5]

Looking for generalizations

A joint work with F. d'Almeida (Porto) and R. Fernandes (Braga)
X, a complex Banach space,
T, a bounded linear operator from X into itself,
$0 \neq \zeta \in \operatorname{re}(T)$, the resolvent set of T, and $f \in X$.

Problem:
Find $\varphi \in X$ such that $(T-\zeta I) \varphi=f$.

Looking for generalizations

A family of numerical schemes
Use an approximate operator T_{n} such that $\operatorname{re}(T) \subseteq \operatorname{re}\left(T_{n}\right)$ and an approximate second member f_{n} to solve exactly

$$
\left(T_{n}-\zeta I\right) \varphi_{n}=f_{n}
$$

Remark that the resolvents

$$
R(\zeta):=(T-\zeta I)^{-1}, \quad R_{n}(\zeta):=\left(T_{n}-\zeta I\right)^{-1}
$$

satisfy

$$
R_{n}(\zeta)-R(\zeta)=R(\zeta)\left(T-T_{n}\right) R_{n}(\zeta)
$$

hence the error,

$$
\varepsilon_{n}:=\varphi_{n}-\varphi=R(\zeta)\left[f_{n}-f+\left(T-T_{n}\right) \varphi_{n}\right] .
$$

Looking for generalizations

Iterating
A fixed point approach leads to build the so-called

$$
\text { Iterated approximate solution } \quad \widetilde{\varphi}_{n}:=\frac{1}{\zeta}\left(T \varphi_{n}-f\right) \text {. }
$$

The error of $\widetilde{\varphi}_{n}$ is related with the error φ_{n} by

$$
\widetilde{\varepsilon}_{n}=\frac{1}{\zeta} T \varepsilon_{n}=\frac{1}{\zeta} R(\zeta) T\left[f_{n}-f+\left(T-T_{n}\right) \varphi_{n}\right]
$$

Under some conditions on T and T_{n} we may expect that $\left\|\varphi_{n}\right\|$ is uniformly bounded in n, and that $T\left(T-T_{n}\right), T\left(f_{n}-f\right)$ tend to 0 faster than $\left(T-T_{n}\right) \varphi_{n}$ and $f_{n}-f$, respectively.

