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Mumford-Shah model

E (u) =

∫

Ω

(

|∇u|p + |u − f |2
)

dx +

∫

S(u)
γ(ν)dHN−1

p ≥ 1, p = 1 . . .TV model

u ∈ BV (bounded variation)

Du = ∇u LN⌊Ω + [u] ⊗ ν HN−1⌊S(u) + C (u)

[De Giorgi, Ambrosio, Carriero, Leaci, Chan, Osher, et. al.]
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second order models in imaging

Blake-Zisserman Model [Leaci and Tomarelli, et.al.]

E (u) =

∫

Ω
W (∇u,∇2u) dx + |u − f |2dx +

∫

S(∇u)
γ(ν)dHN−1
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staircasing
T. Chan, A. Marquina and P. Mulet, SIAM J. Sci. Comput. 22 (2000), 503–516
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more on staircasing

[With G. Dal Maso, G. Leoni, M. Morini]

E (u) =

∫

Ω

(

|∇u| + |u − f |2
)

dx +

∫

Ω
ψ(|∇u|)|∇2u|p dx

p ≥ 1, ψ ∼ 0 at ∞
e.g. ψ(t) ≤ c

tα for t ≥ 1, α > 1

∫ ∞

∞
ψ(t) dt < +∞, inf

t∈K
ψ(t) > 0

for every compact K ⊂ R
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more on staircasing

compactness

relaxed functional:

F (u) := inf

{

lim inf
k→+∞

F (uk) : uk → u in L1(]a, b[)

}

fk := f + hk , f smooth, hk
∗
⇀ 0

Is uk smooth for k >> 1?
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inpainting

[With G. Leoni, F. Maggi, M. Morini]
Restoration of color images by vector-valued BV functions

Recovery is obtained from few, sparse complete samples and from
a significant incomplete information
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recolorization

Restoration of frescoes of Andrea Mantegna, Ovetari Chapel of the
Eremitani’s Church, Padova (Italy); destroyed by bombing in WWII
[courtesy of Massimo Fornasier et. al]
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inpainting

D ⊂ Ω ⊂ R
2 . . . inpainting region

Minimize

∫

Ω
φ(∇u) dx + λ

∫

D

|L(u) − v̄ |p dx + µ

∫

Ω\D
|u − ū|p dx
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more on inpainting

RGB . . . u : Ω → [0,∞)3 channels u(x) = (r(x), g(x), b(x))
observed (ū, v̄)
ū . . . correct information
v̄ . . . distorted information . . . only gray level is known on D
L : R

3 → R . . . e.g. L(u) := 1
3(r + g + b)

Goal

to produce a new color image that extends colors of the fragments
to the gray region, constrained to match the known gray level
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questions

“optimal design” : what is the “best” D? How much color do
we need to provide?

are we creating spurious edges? sptDui ⊂ sptDv̄?
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thin structures

Hyperelastic material with reference configuration

Ω(ε) := ω × (−ε, ε)

εΣ

εΣ

ε
ε

Ω ε

ω

−

+

ω ⊂ R
2 . . . open, bounded domain
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more on thin structures

W : Ω(ε) × R
3×3 → [0,∞) . . . stored energy density

g : R
3 × S2 → [0,+∞) . . . surface energy density

xα := (x1, x2) . . . in-plane variables

l(ε) . . . dead loads

τ(ε) . . . surface traction on Σε := ω × {−ε} ∪ ω × {ε}
v(x) = x on ∂ω × (−ε, ε). . . pinned on lateral bdry
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rescale

[Acerbi, Buttazzo Percivale, Anzellotti, Baldo, Le Dret, Raoult, Braides, Francfort, Müller, Bhattacharya, . . . ]

Ω(ε) → Ω := ω × (−1, 1)

−

ω
1

1

Σ

Σ+ Ω

(xα, x3) 7→
(

xα,
x3
ε

)

, u(x) = v (xα, εx3) , x ∈ Ω
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membrane regime if

l(ε)(xα, εx3) = l(xα, x3) x ∈ Ω
τ(ε)(xα, εx3) = ετ(xα, x3) x ∈ ω × {−1, 1}

1

ε

∫

Ωε

W (Dv) dy +

∫

S(v)

g([v ], ν(v))dH2 =

∫

Ω

W

(

Dαu,
1

ε
D3u

)

dx

+

∫

S(u)

g

(

[u],

(

να(u), 1
ε
ν3(u)

)

∣

∣

(

να(u), 1
ε
ν3(u)

)
∣

∣

)

∣

∣

∣

∣

(

να(u),
1

ε
ν3(u)

)∣

∣

∣

∣

dH2

u ∈ W 1,p(Ω; R3), u(x) = v(xα, εx3)
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nonlocal?

[With G. Bouchitté and L. Mascarenhas]
W ∼ |ξ|p 1 < p < +∞

E (u, b) := inf

{

lim inf

∫

Ω
W

(

Dαun|
1

εn
D3un

)

dx |

un ⇀ u W 1,p and
1

εn
D3un ⇀ b Lp

}
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singular perturbations

[With F., Francfort and Leoni]

1

ε

∫

Ωε

[

W (Dvε) + εγ
∣

∣D2vε

∣

∣

2
]

dx

=

∫

Ω

[

W

(

Dαuε

∣

∣

∣

1

ε
D3uε

)

+εγ
(

|D2
αβuε|2 +

1

ε2
|D2

α3uε|2 +
1

ε4
|D2

33uε|2
)]

dx

uε(x) := vε(xα, εx3),
1
ε
D3uε ⇀ b
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γ = 2

[Bhattacharya and James, Shu]

∫

Ω

[

W

(

Dαuε

∣

∣

∣

1

ε
D3uε

)

+ ε2|D2
αβuε|2 + |D2

α3uε|2 +
1

ε2
|D2

33uε|2
]

dx

uε(x) := vε(xα, εx3),
1
ε
D3uε ⇀ b

Γ-limit recently obtained!!!
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nonlocal?

WE STRONGLY SUSPECT THAT IT IS NON LOCAL in the
ORIGIANL model without second order penalization)!
i.e. can’t write

E (u, b) =

∫

Ω
W̃ (Dαu(xα), b(x),D3b(x)) dx

it is NON LOCAL with second order penalization (Dal Maso, F.,
Leoni)
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Maxwell’s equations

[With G. Bouchitté, G. Leoni and V. Millot]







div (h + χΩm) = 0 in D′(R3)
curl h = 0 in D′(R3)
|m| = 1 a.e. inΩ

∫

Ω
εα|∇mε|2 +

1

εβ
ϕ(mε) +

∫

R3

1

εγ
|hε|2

. . .∇mε ∼ ∇2 . . .α = β = γ = 1
[DeSimone, Kohn, Müller, Otto, Rivière, Serfaty, etc.]
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[With G. Bouchitté, G. Leoni and V. Millot]







div (h + χΩm) = 0 in D′(R3)
curl h = 0 in D′(R3)
|m| = 1 a.e. inΩ

∫

Ω
εα|∇mε|2 +

1

εβ
ϕ(mε) +

∫

R3

1

εγ
|hε|2

. . .∇mε ∼ ∇2 . . .α = β = γ = 1
[DeSimone, Kohn, Müller, Otto, Rivière, Serfaty, etc.]

Irene Fonseca Variational Methods in Materials and Imaging Problems



The Issues
The Context

Imaging
Thin Structures
Micromagnetics

Foams

Maxwell’s equations

[With G. Bouchitté, G. Leoni and V. Millot]







div (h + χΩm) = 0 in D′(R3)
curl h = 0 in D′(R3)
|m| = 1 a.e. inΩ

∫

Ω
εα|∇mε|2 +

1

εβ
ϕ(mε) +

∫

R3

1

εγ
|hε|2

. . .∇mε ∼ ∇2 . . .α = β = γ = 1
[DeSimone, Kohn, Müller, Otto, Rivière, Serfaty, etc.]

Irene Fonseca Variational Methods in Materials and Imaging Problems



The Issues
The Context

Imaging
Thin Structures
Micromagnetics

Foams

Maxwell’s equations
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surfactants and foams: a singular perturbation problem
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foams

[With M. Morini and V. Slastikov]

aequous foams, polymeric foams, metallic foams (AL2O3)

metal foams: cellular structure of solid material (e.g.
Aluminium) w/ large (≥ 80 % volume fraction of gas-filled
pores); size of pores: 1mm–8mm

open-cell foams (interconnected network): lightweight optics,
advanced aerospace technology

closed-cell foams (sealed pores): high impact loads
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what for

detergents, oil recovery, snowboard wax, hair conditioner

scaffolds for bone tissue engineering, biotechnology

lightweight structural materials

. . .

little liquid in thin film that separates adjacent bubbles; most liquid
in Plateau Borders/Struts (region between 3 touching bubbles)
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Plateau borders/struts; nodes/joints
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surfactants

Surf(ace) Act(ive) A(ge)nt

organic compounds - wetting agents
Amphiphiles: hydrophobic tail and hydrophilic head  decrease
surface tension; allow easier spreading; lower interfacial tension
between two liquids

 stabilizing effect of multiple interfaces configurations –
Gibbs-Marangoni effect : mass transfer due to gradients in surface
tension

Typical mixtures:
– water-oil  micelles of surfactants
– water-air  monolayers of surfactants at the interface
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micelle
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monolayers of surfactant

Irene Fonseca Variational Methods in Materials and Imaging Problems



The Issues
The Context

Imaging
Thin Structures
Micromagnetics

Foams

The Phase Field Model
The Theorem
The Surface Energy Density
The Convexity of Φ

surfactants effects

determine macroscopic properties

segregate to interfaces

facilitate formation of interfaces (wetness)
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the phase field model

[R. Perkins, R. Sekerka, J. Warren and S. Langer]

Modification of the Cahn-Hilliard model for fluid-fluid phase
transitions

FCH
ε (u) :=

∫

Ω

(

1

ε
f (u) + ε|∇u|2

)

dx

f . . . double well potential . . . {f = 0} = {0, 1}

u : Ω → [0, 1] order parameter,
∫

Ω u = a
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the phase field model

To this we add

F surf

α(ε)(u, ρs) := α(ε)

∫

Ω
(ρs − |∇u|)2 + β(ε)

∫

Ω
|∇ρs |2

Fε(u, ρ) :=

∫

Ω

(

1

ε
f (u) + ε|∇u|2 + ε (ρ− |∇u|)2

)

dx

ρs ≥ 0 . . . surfactant density

∫

Ω ρs = b
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asymptotic behavior

Goal: Study the asymptotics as ε→ 0+ (β(ε) = 0)

Fε(u, ρs) := FCH
ε (u) + F surf

α(ε)(u, ρs)

minima of Fε converge to minima of F . . .

Theorem

Γ-limit Fε(u, µ) = F (u, µ) in BV (Ω; {0, 1}) ×M(Ω)

Different regimes:

α(ε) ∼ ε

ε << α(ε) << 1 . . . surfactant plays no role

α(ε) << ε . . . creation of interfaces needs ∞ energy
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Theorem

α(ε) = ε

F (u, µ) :=











∫

S(u) Φ
(

dµ

dHN−1⌊S(u)
(x)
)

dHN−1

if u ∈ BV (Ω; {0, 1})
+∞ otherwise

Φ described by optimal profile problem

Φ nonincreasing, convex

Φ is constant on [1,+∞) . . . saturation
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Theorem, still

The energy density φ
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some conclusions

surfactant segregates to interface

prescribed distribution of surfactant dictates location of
interfaces

macroscopic energy F unchanged is density of surfactant on
the interfaces exceeds 1 . . . saturation threshold

stability implies uniform distribution of surfactant
. . . Marangoni effect
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surface energy density

Φ(γ) := inf
(u,λ)∈A(γ)

{
∫ +∞

−∞

[

f (u) + min{λ2 + |u′|2, 2|u′|2}
]

}

min{λ
2

+ |u
′
|
2
, 2|u

′
|
2
} = |u

′
|
2

+ (max{λ + |u
′
|, 0} − |u

′
|)

2
= |u

′
|
2

+ min{λ
2
, |u

′
|
2
}

ρ ∼ max{λ + |u
′
|, 0}

A(γ) :=

{

(u, λ) ∈ H1
loc(R) × (−∞, 0] : lim

t→−∞
u(t) = 0,

lim
t→+∞

u(t) = 1,

∫ +∞

−∞
max{λ+ |u′|, 0} ≤ min{γ, 1}

}
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the optimal profile

The solution u to the optimal profile problem and the corresponding ρ
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properties of the surface energy density

Theorem

Φ ∈ C 1, nonincreasing and is convex.
This is not a simple curiosity! It is needed in a crucial way to prove Γ − lim inf in the vectorial case!

For all γ > 0 the optimal profile Φ(γ) admits a unique solution
(u, λ) ∈ A(γ)

u nondecreasing and strictly increasing in {0 < u < 1}

Φ(0) = 2
√

2
∫ 1
0 f (s) ds Φ(1) =

√
2
∫ 1
0 f (s) dx (Modica-Mortola)
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stability

Theorem

[Stability “a la” Kohn and Sternberg]
(u0, µ0) ∈ BV (Ω; {0, 1}) ×M
u0 . . . isolated local minimum of F (·, µ0), i.e.

F (u0, µ0) < F (v , µ0)

if 0 < ||u0 − v ||L1 ≤ δ,
∫

Ω u0 =
∫

Ω v

Then there exists {uε, ρε} such that

uε → u0 in L1, ρε
∗
⇀ µ0

uε local minimizer of Fε(·, ρε)
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next . . .

1D metastability of multiple interfaces configurations

the impact of surfactants on the dynamics of phase separation

vectorial models . . . more complicated interaction between u
and ρs , e.g.

Fε(u, ρs) =
1

ε

∫

Ω
f (x , u, ε∇u, ερs) dx

[Acerbi and Bouchitté]
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Recall . . .

Φ(γ) := inf
(u,λ)∈A(γ)

{
∫ +∞

−∞

[

f (u) + |u′|2 + (max{λ+ |u′|, 0} − |u′|)2
]

}

If γ > 1 then the unique minimizing pair is (u, 0) (ρ = |u′|) with u
the solution of the Modica-Mortola (Cahn-Hilliard) profile
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Φ “localized”

Φ(γ) := inf
(u,λ)∈A(γ)

{
∫ +∞

−∞

[

f (u) + |u′|2 + (max{λ+ |u′|, 0} − |u′|)2
]

}

Φ(γ) = lim
T→∞

inf {E (u, λ; (−T ,T )) : (u, λ) ∈ AT (γ)}

E (u, λ; (−T ,T )) =

∫ T

−T

[

f (u) + |u′|2 + (max{λ+ |u′|, 0} − |u′|)2
]

dx

AT (γ) :=

{

(u, λ) ∈ H1(−T ,T ) × (−∞, 0] : u(−T ) = 0, u(T ) = 1

∫ T

−T

max{λ+ |u′|, 0} ≤ (=)γ

}

Irene Fonseca Variational Methods in Materials and Imaging Problems



The Issues
The Context

Imaging
Thin Structures
Micromagnetics

Foams

The Phase Field Model
The Theorem
The Surface Energy Density
The Convexity of Φ

Φ “localized”

Φ(γ) := inf
(u,λ)∈A(γ)

{
∫ +∞

−∞

[

f (u) + |u′|2 + (max{λ+ |u′|, 0} − |u′|)2
]

}

Φ(γ) = lim
T→∞

inf {E (u, λ; (−T ,T )) : (u, λ) ∈ AT (γ)}

E (u, λ; (−T ,T )) =

∫ T

−T

[

f (u) + |u′|2 + (max{λ+ |u′|, 0} − |u′|)2
]

dx

AT (γ) :=

{

(u, λ) ∈ H1(−T ,T ) × (−∞, 0] : u(−T ) = 0, u(T ) = 1

∫ T

−T

max{λ+ |u′|, 0} ≤ (=)γ

}

Irene Fonseca Variational Methods in Materials and Imaging Problems



The Issues
The Context

Imaging
Thin Structures
Micromagnetics

Foams

The Phase Field Model
The Theorem
The Surface Energy Density
The Convexity of Φ

Φ “localized”

Φ(γ) := inf
(u,λ)∈A(γ)

{
∫ +∞

−∞

[

f (u) + |u′|2 + (max{λ+ |u′|, 0} − |u′|)2
]

}

Φ(γ) = lim
T→∞

inf {E (u, λ; (−T ,T )) : (u, λ) ∈ AT (γ)}

E (u, λ; (−T ,T )) =

∫ T

−T

[

f (u) + |u′|2 + (max{λ+ |u′|, 0} − |u′|)2
]

dx

AT (γ) :=

{

(u, λ) ∈ H1(−T ,T ) × (−∞, 0] : u(−T ) = 0, u(T ) = 1

∫ T

−T

max{λ+ |u′|, 0} ≤ (=)γ

}

Irene Fonseca Variational Methods in Materials and Imaging Problems



The Issues
The Context

Imaging
Thin Structures
Micromagnetics

Foams

The Phase Field Model
The Theorem
The Surface Energy Density
The Convexity of Φ

Φ “localized”

Φ(γ) := inf
(u,λ)∈A(γ)

{
∫ +∞

−∞

[

f (u) + |u′|2 + (max{λ+ |u′|, 0} − |u′|)2
]

}

Φ(γ) = lim
T→∞

inf {E (u, λ; (−T ,T )) : (u, λ) ∈ AT (γ)}

E (u, λ; (−T ,T )) =

∫ T

−T

[

f (u) + |u′|2 + (max{λ+ |u′|, 0} − |u′|)2
]

dx

AT (γ) :=

{

(u, λ) ∈ H1(−T ,T ) × (−∞, 0] : u(−T ) = 0, u(T ) = 1

∫ T

−T

max{λ+ |u′|, 0} ≤ (=)γ

}

Irene Fonseca Variational Methods in Materials and Imaging Problems



The Issues
The Context

Imaging
Thin Structures
Micromagnetics

Foams

The Phase Field Model
The Theorem
The Surface Energy Density
The Convexity of Φ

the convexity of Φ

Theorem

Φ ∈ C 1, nonincreasing and is convex.

Proof Step 1: auxilliary energy density

Φ(M, a, b; γ) := inf
t>0

inf

{

Mt +

∫ t

0
min{λ2 + |u′|2, 2|u′|2}

}

(u, λ) ∈ A(t, a, b; γ)

A(t, a, b; γ) :=
{

(u, λ) ∈ H1(0, t) × (−∞, 0] : u(0) = a, u(t) = b,
∫ t

0
max{λ+ |u′|, 0} ≤ (=)min{γ, b − a}

}
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the convexity of Φ; Step 1, cont.

Claim: If (u, λ) ∈ A(t, a, b; γ) minimizes

Mt +

∫ t

0
min{λ2 + |u′|2, 2|u′|2}

then u is increasing, (u,max{u′ + λ, 0}) minimizes

Mt +

∫ t

0
|v ′|2 +

∫ t

0
(ρ− |v ′|)2

among (v , ρ), v ∈ H1(0, t), v(0) = a, v(t) = b, ρ ≥ 0,
∫ t

0 ρ = min{γ, b − a}
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the convexity of Φ; Step 1, cont.

Need

Lemma

(Y , µ) measure space, µ non-atomic positive measure,
g : Y → [0,+∞) (non-zero) ∈ L1(Y , µ) ∩ L2(Y , µ),
0 < γ ≤

∫

Y
g dµ. The problem

min

{
∫

Y

(v − g)2 dµ : v ≥ 0,

∫

Y

v dµ = γ

}

admits a (µ a.e.) unique solution

v := max{λ+ g , 0}

λ is the unique (≤ 0) constant such that
∫

Y
max{λ+ g , 0} dµ = γ
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the convexity of Φ; use lemma . . .

use Lemma . . .

∫ t

0
|v ′|2 +

∫ t

0
(ρ− |v ′|)2 ≥

∫ t

0
|v ′|2 +

∫ t

0
(max{|v ′| + λ̄, 0} − |v ′|2)

=

∫ t

0
min{λ̄2 + |v ′|2, 2|v ′|2}

≥
∫ t

0
min{λ2 + |u′|2, 2|u′|2}

=

∫ t

0
|u′|2 +

∫ t

0
(max{u′ + λ, 0} − |u′|2)

with λ̄ s.t.
∫ t

0 max{|v ′| + λ̄, 0} = min{γ, b − a}.
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variations (u + εϕ,max{u′ + λ, 0}) in

Mt +

∫ t

0
|v ′|2 +

∫ t

0
(ρ− |v ′|)2

yield Euler-Lagrange equation

2u′ − max{u′ + λ, 0} = C a.e. in (0, t)

for some constant C . . . u′ is constant . . .

u(x) = a +
b − a

t
x , λ =

min{γ − (b − a), 0}
t
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the convexity of Φ; use lemma . . .

Φ(M, a, b; γ) = min
t>0

{

Mt +
(b − a)2

t
+

[min{γ − (b − a), 0}]2
t

}

=

{

2
√

M
√

(b − a)2 + (γ − (b − a))2 if γ ≤ b − a

2
√

M(b − a) otherwise

So, Φ(M, a, b; ·) is convex!
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the convexity of Φ; Step 2

Step 2: f lsc, piecewise constant on [0, 1]
f = Mi in (ai−1, ai ), Mi > 0, 0 = a0 < a1 < . . . < am = 1

Claim

Φ(γ) = min

{

m
∑

i=1

Φ(Mi , ai−1, ai ; γi ) : γi ≥ 0,
m
∑

i=1

γi = min{γ, 1}
}

infimal convolution of Φ(Mi , ai−1, ai ; ·)
The infimal convolution of convex, nondecreasing functions is
convex, nondecreasing!
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the convexity of Φ; Step 3

f any continuous double-well potential, fn as in Step 2, fn → f
decreasingly, fn = f outside (0, 1)

Φn are convex. . . DONE if Φn → Φ pointwise

Clearly lim inf Φn ≥ Φ. Fix ε > 0; choose (u, λ) ∈ A(γ) s.t.
u(−T ) = 0, u(T ) = 1, some T > 0,

E (u, λ; (−T ,T )) ≤ Φ(γ) + ε

Then

lim supΦn(γ) ≤ limEn(u, λ; (−T ,T )) = E (u, λ; (−T ,T )) ≤ Φ(γ)+ε
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