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Mumford-Sh

E@) = [ (Vul" +lu= ) bt [ q)am J

(v)
N . 0
p>1p=1...TV model ; “
u € BV (bounded variation) LSt L
\ ut
Du=VulMNQ+[u]®@v H' L S(u) + C(u) um
[De Giorgi, Ambrosio, Carriero, Leaci, Chan, Osher, et. al.] [u] = u’; —u
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second order

Blake-Zisserman Model [Leaci and Tomarelli, et.al.]

E(u):/ W(Vu, V2u) dx+|u—f|2dx+/ y(v)dHN 1
Q 5(Vu)
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staircasing

T. Chan, A. Marquina and P. Mulet, SIAM J. Sci. Comput. 22 (2000), 503-516

FiG. 8.2, (&) Results of TV restoration; (b) results of our model.
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[With G. Dal Maso, G. Leoni, M. Morini]

Ew) = [ (Vul+lu— ) de+ [ (Va)IV2ul” dx J

p>1 ¢ ~0atoo
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[With G. Dal Maso, G. Leoni, M. Morini]

Ew) = [ (Vul+lu— ) de+ [ (Va)IV2ul” dx J

p>1l, Y~0atoo

eg YP(t)< Sfort>1,a>1

/Oo P(t) dt < +oo, inf ¢(t) >0
0o teK

for every compact K C R



Mumford-Shah model
Staircasing in Imaging
Inpainting

Imaging

@ compactness



Mumford-Shah model
Staircasing in Imaging
Inpainting

Imaging

@ compactness

@ relaxed functional:

F (u) :=inf LimJirnf}"(uk) :ug — wuin [(]a, b])



Mumford-Shah model
Staircasing in Imaging
Inpainting

Imaging

@ compactness

@ relaxed functional:

F (u) :=inf {LlTJlrr;i}"(uk) s ug — uin L1(]a, b[)}

o fi :=f + hg, f smooth, hy =0
Is u, smooth for kK >> 17
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inpainting

[With G. Leoni, F. Maggi, M. Morini]
Restoration of color images by vector-valued BV functions

Recovery is obtained from few, sparse complete samples and from
a significant incomplete information
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Restoration of frescoes of Andrea Mantegna, Ovetari Chapel of the
Eremitani's Church, Padova (ltaly); destroyed by bombing in WWII

[courtesy of Massimo Fornasier et. al]
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inpainting

D c Q C R? ...inpainting region
Minimize

/¢(Vu)dx+)\/ \ﬁ(u)—?pdx+u/ |u— @|P dx
Q D Q\D
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RGB ...u:Q — [0,00)3 channels u(x) = (r(x), g(x), b(x))
observed (u, v)
U ...correct information

v ...distorted information .. .only gray level is known on D
L:R—R..eg L(u):=3(r+g+b)

to produce a new color image that extends colors of the fragments
to the gray region, constrained to match the known gray level
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Mumford-Shah model
Staircasing in Imaging
Inpainting

Imaging

questions

@ “optimal design” : what is the “best” D? How much color do
we need to provide?

@ are we creating spurious edges? sptDu; C sptDv?



Bending: First Order
Bending: Second Order Order

Hyperelastic material with reference configuration

Qe) :=w x (—¢,¢)

z. w C R? ... open, bounded domain

Irene Fonseca Variational Methods in Materials and Imaging Problems



Bending: First Order
Bending: Second Order Order

more on thi

W : Q(e) x R3*3 — [0,00) ...stored energy density



Bending: First Order
Bending: Second Order Order

more on thi

W : Q(e) x R3*3 — [0,00) ...stored energy density
g :R3x 52 — [0, +00) ...surface energy density



Bending: First Order
Bending: Second Order Order

more on thi

W : Q(e) x R3*3 — [0,00) ...stored energy density
g :R3x 52 — [0, +00) ...surface energy density

Xa i= (X1, X2) ...in-plane variables



Bending: First Order
Bending: Second Order Order

more on thi

W : Q(e) x R3*3 — [0,00) ...stored energy density
g :R3x 52 — [0, +00) ...surface energy density

Xq = (X1, %2) ...in-plane variables

I(¢) ...dead loads




Bending: First Order
Bending: Second Order Order

more on thi

W : Q(e) x R3*3 — [0,00) ...stored energy density
g :R3x 52 — [0, +00) ...surface energy density

Xa i= (X1, X2) ...in-plane variables

I(¢) ...dead loads

7(¢) ...surface traction on X, == w x {—e} Uw x {e}



Bending: First Order
Bending: Second Order Order

more on thi

W : Q(e) x R3*3 — [0,00) ...stored energy density
g :R3x 52 — [0, +00) ...surface energy density

Xq = (X1, %2) ...in-plane variables
I(¢) ...dead loads

7(¢) ...surface traction on X, == w x {—e} Uw x {e}
(

v(x) = x on Qw x (—¢,¢€)...pinned on lateral bdry
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rescale

[Acerbi, Buttazzo Percivale, Anzellotti, Baldo, Le Dret, Raoult, Braides, Francfort, Miiller, Bhattacharya, ...]
Q) - Q:=wx(-1,1)
s Q

(X X3) (Xa, X—3), u(x) = v(xa,ex3), x€Q

Irene Fonseca Variational Methods in Materials and Imaging Problems
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membrane r

1(e)(Xa,ex3) = (X0, Xx3) x€Q
7(€)(Xa,€x3) = €7(Xa, X3) x € w x {—1,1}



Bending: First Order
Bending: Second Order Order

1(e)(Xa,ex3) = (X0, Xx3) x€Q
7(€)(Xa,€x3) = €7(Xa, X3) x € w x {—1,1}

w <Dau, 1D3u) dx
€

(Va(u), iw(u)) ’ dH?

u € WHP(Q;R3), u(x) = v(Xa,ex3)
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nonlocal?

[With G. Bouchitté and L. Mascarenhas]
W~ EP 1< p<+oo

1
E(u, b) :=inf { lim inf/ w (Daun6D3un) dx|
Q n

1
up —=u WY and g—D3u,,4b Lp}
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[With F., Francfort and Leoni]

1/ [W(Dvs)+57‘D2v5‘2] dx

6 £
1
D3u€>
€

(o

1 1
+27 (1080l + 510350 + 510Bul) | o




Bending: First Order
Bending: Second Order Order

[With F., Francfort and Leoni]

1/ [W(Dvs)+57‘D2v5‘2] dx

6 £
1
D3u€>
€

(o

1 1
+27 (1080l + 510350 + 510Bul) | o

uz(x) = ve(xa, €x3), éDgUE — b



Bending: First Order
Bending: Second Order Order

[Bhattacharya and James, Shu]

(o

uz(x) = ve(xa,ex3), %Dgu€ — b

1 1
8D3u5> + 52]D§ﬂug\2 + |D?5u.? + ?]D323ua\2 dx



Bending: First Order
Bending: Second Order Order

[Bhattacharya and James, Shu]

(ot

uz(x) = ve(xa,ex3), %Dgu€ — b

1
D3U5> +&%D ﬁua\z + |D3gue* + 2’D323Ua‘2

I-limit recently obtained!!! )
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Bending: Second Order Order

nonlocal?

WE STRONGLY SUSPECT THAT IT IS NON LOCAL in the
ORIGIANL model without second order penalization)!
i.e. can't write

E(u, b) :AW(DQU(XQ),b(x),D3b(X)) dx

it is NON LOCAL with second order penalization (Dal Maso, F.,
Leoni)
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Micromagnetics

Maxwell’s eq

[With G. Bouchitté, G. Leoni and V. Millot]

div (h+xom)=0 inD'(R3)

curl h =0 in D'(R3)
Im| =1 a.e.in Q
VMt Sp(m) + [ S|P

Q c B PAMe R3 ET

Vm.~V? . a=p8=~v=1

[DeSimone, Kohn, Miiller, Otto, Riviére, Serfaty, etc.]
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The Theorem

The Surface Energy Density
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[With M. Morini and V. Slastikov]

aequous foams, polymeric foams, metallic foams (AL203)

@ metal foams: cellular structure of solid material (e.g.
Aluminium) w/ large (> 80 % volume fraction of gas-filled
pores); size of pores: Imm-8mm

@ open-cell foams (interconnected network): lightweight optics,
advanced aerospace technology

o closed-cell foams (sealed pores): high impact loads
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what for

@ detergents, oil recovery, snowboard wax, hair conditioner
@ scaffolds for bone tissue engineering, biotechnology
@ lightweight structural materials

o ...

little liquid in thin film that separates adjacent bubbles; most liquid
in Plateau Borders/Struts (region between 3 touching bubbles)
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Plateau b

0=0.01 (0.95)

$=0.05

Wet Kelvin cell ¢ = 0.01

] Wet rhombic dodecahed
o=0.11
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surfactants

Surf(ace) Act(ive) A(ge)nt )

organic compounds - wetting agents

Amphiphiles: hydrophobic tail and hydrophilic head ~~ decrease
surface tension; allow easier spreading; lower interfacial tension
between two liquids

~ stabilizing effect of multiple interfaces configurations —
Gibbs-Marangoni effect : mass transfer due to gradients in surface
tension

Typical mixtures:
— water-oil ~ micelles of surfactants
— water-air ~» monolayers of surfactants at the interface
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micelle

s

A micelle of surfactant molecules surrounding a drop of oil in water
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monolayers

Monolayers of surfactants molecules separated by a thin film of liquid
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surfactants

@ determine macroscopic properties
@ segregate to interfaces

o facilitate formation of interfaces (wetness)



The Phase Field Model
The Theorem

The Surface Energy Density
The Convexity of ®

the phase fi

[R. Perkins, R. Sekerka, J. Warren and S. Langer]

Modification of the Cahn-Hilliard model for fluid-fluid phase
transitions

FaCH(U) = /Q (if(u) +5\Vu\2> dx

f ...double well potential ...{f =0} = {0,1}

0 T
u:Q — [0,1] order parameter, [ou=a
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To this we add

FET(u, ps) 1= ale) /Q (ps — [Vul)? + B(e) /Q Vsl
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the phase fie

To this we add

FET(u, ps) 1= ale) /Q (ps — [Vul)? + B(e) /Q Vsl

Fe(u, p) :=/Q (if(u)—i—quF—i—s(p—\Vu|)2> dx ’
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To this we add

FET(u, ps) 1= ale) /Q (ps — [Vul)? + B(e) /Q Vsl

Fe(u, p) :=/Q (if(u)—i—quF—i—s(p—\Vu|)2> dx ’
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Goal: Study the asymptotics as ¢ — 0" (3(¢) = 0)

Fo(u, ps) == FEH(u) + F33(u, ps)

minima of F. converge to minima of F ...
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asymptotic

Goal: Study the asymptotics as ¢ — 0" (3(¢) = 0)

FE(UHOS) = FECH(U) + F;l(lg(u’ pS)

minima of F. converge to minima of F ...

Theorem
M-limit Fo(u, 1) = F(u,pu)  in BV(Q;{0,1}) x M(Q)
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asymptotic

M-limit Fo(u, 1) = F(u,pu)  in BV(Q;{0,1}) x M(Q)

Different regimes:

o afe)~e
@ ¢ << afe) << 1...surfactant plays no role

@ a(e) << e ...creation of interfaces needs oo energy
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Theorem

d _

Jsw ® (Frmism ()

F(u,p) = if u e BV(Q;{0,1})
400 otherwise

@ ® described by optimal profile problem
@ & nonincreasing, convex

@ ® is constant on [1,+00) ...saturation
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Theorem, sti

6(0)

b(1)

1 Y
The energy density ¢
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some conclu

@ surfactant segregates to interface

@ prescribed distribution of surfactant dictates location of
interfaces

@ macroscopic energy F unchanged is density of surfactant on
the interfaces exceeds 1 ... saturation threshold

@ stability implies uniform distribution of surfactant
... Marangoni effect
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+o0
®(y):=  inf / f(u) + min{\? + [v/|?,2|u/?
0)i= gt L[ 1)+ minga? 0 20y

min{ A + o/ 2, 20u’ 17} = |0 1? + (max{X + [u'],0} — [u)* = |’ * + min{X, |u’ "}

p ~ max{X + |v'[,0}
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d(y) = inf {/+OO [F(u)+ min{\? + ]u’\2,2]u’\2}]}

(1 2)eA(M) U/ -

min{ A + o/ 2, 20u’ 17} = |0 1? + (max{X + [u'],0} — [u)* = |’ * + min{X, |u’ "}

p ~ max{X + |v'[,0}

AOY = {(@2) € B (B) x (<0.00  lim_u(t) =0,
+o0o
lim u(t) = 17/ max{\ + |¢/[,0} < min{y, 1}}

t—-4o00 oo
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the optimal

u'=|Al
u'=IAl u,

t(Y)

p =max{u;+ A 0}

The solution u to the optimal profile problem and the corresponding p
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properties of t

Theor

o e Cl, nonincreasing and is convex.

This is not a simple curiosity! It is needed in a crucial way to prove ' — liminf in the vectorial case!

For all v > 0 the optimal profile ®() admits a unique solution
(u,A) € A(v)

u nondecreasing and strictly increasing in {0 < u < 1}

®(0) =2v2 [y f(s)ds (1) = V2 [} £(5) dx (MocicaMerol)
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stability

Theorem

[Stability “a la” Kohn and Sternberg]
(uo, o) € BV(£2;{0,1}) x M
Up . ..isolated local minimum of F(-, o), i.e.

F(uo, o) < F(v, po)

if 0 <|lug—v|[n <0, [quo= [oVv

4
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[Stability “a la” Kohn and Sternberg]
(uo, o) € BV(£2;{0,1}) x M
Up . ..isolated local minimum of F(-, o), i.e.

F(uo, o) < F(v, po)

if 0 <|lug—v|[n <0, [quo= [oVv

Then there exists {u., p:} such that
ue — ugin LY, po = po

4
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stability

Theorem

[Stability “a la” Kohn and Sternberg]
(uo, o) € BV(£2;{0,1}) x M
Up . ..isolated local minimum of F(-, o), i.e.

F(uo, o) < F(v, po)

if 0 <|lug—v|[n <0, [quo= [oVv

Then there exists {u., p:} such that
ue — ugin LY, po = po

ue local minimizer of F.(-, p-)
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@ 1D metastability of multiple interfaces configurations

@ the impact of surfactants on the dynamics of phase separation

@ vectorial models ... more complicated interaction between u

and ps, e.g.

1
Fo(u,ps) = 6/Qf(x, u,eVu,eps) dx

[Acerbi and Bouchitté]
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Recall ...

+oo
®(y) = inf {/ [f(u) + | + (max{\ + ||, 0} — u’|)2]}

(1 )eAM) U/ -

If v > 1 then the unique minimizing pair is (u,0) (p = |u'|) with u
the solution of the Modica-Mortola (Cahn-Hilliard) profile
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® “localized”

—+00

®(y) ;= inf {/ [f(u) + |u']? + (max{\ + |/[,0} — ]u’])z]}

S (wNeAm) /oo

d(y) = _I_Iiémooinf{E(u7 XN (=T, T)):(u,\) e Ar(y)}
T

E(u,\; (=T, T)) = /—T [f(u) + |u’|2 + (max{\ + |[,0} — \u’|)2] dx
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® “localized”

+o0
®(y) ;= inf {/ [f(u) + |u']? + (max{\ + |/[,0} — ]u’])z]}

S (wNeAm) /oo

d(y) = _’_Iiﬂloinf{E(u,/\; (=T,7)):(u,\) e Ar(7)}
T
E(u,\; (=T, T)) = /—T [f(u) + |u’|2 + (max{\ + |[,0} — \u’|)2] dx

Ar(v) = {(u,)\) € HY (=T, T) x (=00,0] : u(—=T)=0,u(T) =1

T
/
/ max{\ + /], 0} < (:)’y}
-T
Variational Methods in Materials and Imaging Problems
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® € C!, nonincreasing and is convex.

Proof Step 1: auxilliary energy density

t
®(M, a, b;7y) = tigginf{Mt+/ min{\? + |u’|2,2|u’|2}}
0
(u,\) € A(t, a, b; )

A(t,a,b;7) = {(u, A) € HY(0, ) x (—00,0] : u(0) = a, u(t) = b,

t
/ .
/ max{\ + |uv'],0} < (=) min{v, b — a}}
0
Variational Methods in Materials and Imaging Problems
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Mt+/ min{\2 + |/, 2|2}
0
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the convexit

Claim: If (u, \) € A(t, a, b;y) minimizes
t
Mt+/ min{\2 + /|2, 2/}
0

then u is increasing, (u, max{v' + X, 0}) minimizes

t t
Mt+/ |v’|2+/ (p— IVI)?
0 0
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the convexit

Claim: If (u, \) € A(t, a, b;y) minimizes
t
Mt+/ min{\2 + /|2, 2/}
0
then u is increasing, (u, max{v' + X, 0}) minimizes

t t
Mt+/ |v’|2+/ (p— IVI)?
0 0

among (v, p), v € HY(0, t), v(0) = a, v(t) = b, p >0,
Jo p=min{y,b— a}
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the convexity

Need

Lemma

(Y, ;) measure space, 1 non-atomic positive measure,
g:Y — [0,+00) (non-zero) € LYY, u) N L2(Y, ),
0<y< [, gdpu.

v,
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0<y< fygdﬂ. The problem

mi”{/y(v—g)2du:VEO,/Yvdu—v}

admits a (p a.e.) unique solution
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v,
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the convexity

Lemma

(Y, ;) measure space, 1 non-atomic positive measure,
g:Y — [0,+00) (non-zero) € LYY, u) N L2(Y, ),
0<y< fygdﬂ. The problem

mi”{/y(v—g)2du:VEO,/Yvdu—v}

admits a (p a.e.) unique solution

v := max{\ + g,0}

A is the unique (< 0) constant such that [\, max{\+g,0} dp =~
Variational Methods in Materials and Imaging Problems
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use Lemma ...

t t t t
/O rv’r2+/0 (p—|v'\)2z/o |v'\2+/0(max{|v'\+A,0}—|v’\2)
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the convexit

use Lemma ...

/Ot’V/’2+/ot( /""2 /maX{IVHA 0} —|V'[%)

- / min{X2 + |v/[2,2v'}
0
t

2/ min{ A2 + |/, 2|2}
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the convexit

use Lemma ...

/Ot’V/’2+/ot( /""2 /maX{IVHA 0} —|V'[%)

- / min{X2 + |v/[2,2v'}
0
t

2/ min{ A2 + |/, 2|2}
0

t t
:/ |u’|2+/ (max{d/ + A,0} — [¢/]?)
0 0
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the convexit

use Lemma ...

/Ot’V/’2+/ot( /""2 /maX{IVHA 0} —|V'[%)

:/ min{32 + V2, 2|/}
0
t
2/ min{ A2 + |/, 2|2}
0
t t
:/ |u’|2+/ (max{d/ + A,0} — [¢/]?)
0 0

. 3 t 3 .
with X s.t. [ max{|v/| + X,0} = min{y, b — a}.
Variational Methods in Materials and Imaging Problems
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t t
/\/lt+/ |v'\2+/ (p— IVI)2
0 0
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0 0

yield Euler-Lagrange equation

2u" —max{v' + \,0} = C a.e.in (0, t)

for some constant C
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variations (u + e, max{v' + A, 0}) in

t t
/\/lt+/ |v'\2+/ (p— IVI)2
0 0

yield Euler-Lagrange equation

2u" —max{v' + \,0} = C a.e.in (0, t)

for some constant C ... v is constant ...
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variations (u + e, max{v' + A, 0}) in

t t
/\/lt+/ |v'\2+/ (p— IVI)2
0 0

yield Euler-Lagrange equation

2u" —max{v' + \,0} = C a.e.in (0, t)

for some constant C ... v is constant ...

b— aX7 5= min{~y — (tb— a),0}
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¢Mﬁ%bw)=@${Mr+w:ay+“”ﬁ7—@—ﬂ%@?}

t

_{2¢M¢w—aV+vwwb—wV ity < ba
| 2vVM(b - a) otherwise
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(M, a, b;y) = min {/\/lt+ b= a)® | Imin{y — (b a),O}P}

t

_{ 2VMy/(b—a)2 +(y—(b—a))? ify<b-—a
| 2vVM(b - a) otherwise

So, ®(M, a, b; -) is convex! J
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Step 2: f Isc, piecewise constant on [0, 1]
f:/\/l,' in (a,-_l,a,-), M; >0, 0230<31 <...<am=1

O(7) =min{ > O(M;,ai-1,a;;7i) 7 =0, 7 = min{y,1}
i=1 i=1

infimal convolution of ®(M;, a;_1, a;; -)

The infimal convolution of convex, nondecreasing functions is
convex, nondecreasing!
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f any continuous double-well potential, f, as in Step 2, f, — f
decreasingly, f, = f outside (0,1)

®,, are convex. .. DONE if ®,, — & pointwise

Clearly liminf ®, > ®. Fix ¢ > 0; choose (u, \) € A(Y) s.t.
u(-=T)=0,u(T)=1,some T >0,

E(u,\; (=T, T)) <P(v) +¢
Then

limsup®p(y) <limEp(u, N\ (=T, T))=E(u, A (=T, T)) < P(y)+e
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