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Goals

Establish stability results for symplectic leaves of Poisson
manifolds;

Understand the relationship between (apparently) distinct
stability results in different geometric settings;
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Flows: Stability of periodic orbits

Definition

A periodic orbit of a vector field X ∈ X(M) is called stable if
every nearby vector field also has a nearby periodic orbit.

Basic Fact: Stability is controled by the Poincaré return
map h : T → T .
Assumptions on dx0h can also guarantee stability.
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Foliations: stability of leaves

Fix a manifold M (dim M = n) and a foliation F (codim(F) = q).
F is given by a foliation atlas (Ui , ϕi)i∈I

ϕi : Ui → Rn−q × Rq, ϕij(x , y) = (gij(x , y), hij(y)).
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Foliations: stability of leaves

Theorem (Frobenius)

Folq(M) oo // {D : M → Grq(TM)|D is involutive}

F � // D := TF

=⇒ Folq(M) has a natural Cr compact-open topology

Definition

A leaf L of a foliation F ∈ Folk (M) is called stable if every
nearby foliation in Folk (M) has a nearby leaf diffeomorphic to L.
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Construct diffeomorphism f : T → S that satisfies f (x) = y and
y ′ = f (x ′) iff x ′ and y ′ are in same plaque. Then:
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Construct diffeomorphism f : T → S that satisfies f (x) = y and
y ′ = f (x ′) iff x ′ and y ′ are in same plaque. Then:

HolT ,S(γ) := germx(f ) : (T , x)→ (S, y).
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HolT ,S(γ) := HolTk ,Tk−1(γ) ◦ · · · ◦ HolT2,T1(γ) ◦ HolT1,T0(γ)
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Foliations: stability of leaves

Facts:
Taking germs makes construction independent of choices;
If γ, η are curves in L with γ(0) = η(1) then:
HolT ,S(γ · η) = HolT ,S(γ) ◦ HolS,R(η);
If γ and γ′ are homotopic curves in L, then:
HolT ,S(γ) = HolT ,S(γ′);

Hence, if we fix x ∈ L we obtain the holonomy homomorphism:

Hol := HolT ,T : π1(L, x)→ Diffx(T ).

Note: The Poincaré return map is a special case of this
construction.
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Foliations: stability of leaves

Differentiating gives the linear holonomy representation:

ρ : π1(L, x)→ GL(ν(L)x), ρ := dx ◦ Hol

Denote by H1(π1(L, x), ν(L)x) the first group cohomology.

Theorem (Reeb, Thurston, Langevin & Rosenberg)

Let L be a compact leaf and assume that

H1(π1(L, x), ν(L)x) = 0.

Then L is stable.
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Group actions: stability of orbits

Fix a manifold M and a Lie group M
α(g, x) := g · x - an action of G on M
Action α : G ×M → M ⇔ homomorphism α : G→ Diff(M)

Act(G; M) ⊂ Maps(G; Diff(M))

=⇒ Act(G; M) has a natural Cr compact-open topology

Definition

An orbit O of α ∈ Act(G; M) is called stable if every nearby
action in Act(G; M) has a nearby orbit diffeomorphic to O.
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Group actions: stability of orbits

The stability of an orbit O is controled by the isotropy of O:
Gx := {g ∈ G : g · x = x} isotropy group at x ∈ O.
g ∈ Gx induces a map αg : M → M, y 7→ g · y that fixes x .

dxαg : TxM → TxM
⇒ ρ(g) : ν(O)x → ν(O)x where ν(O)x = TxM/TxO.
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Group actions: stability of orbits

linear normal isotropy representation:

ρ : Gx → GL(ν(O)x), ρ(g) := dxαg : ν(O)x → ν(O)x

Denote by H1(Gx , ν(O)x) the first group cohomology.

Theorem (Hirsch,Stowe)

Let O be a compact orbit and assume that

H1(Gx , ν(O)x) = 0.

Then O is stable.

Rui Loja Fernandes Stability of Leaves



Classical Results
Stability of symplectic leaves
Universal Stability Theorem

Summary

Flows
Foliations
Group actions

Group actions: stability of orbits

linear normal isotropy representation:

ρ : Gx → GL(ν(O)x), ρ(g) := dxαg : ν(O)x → ν(O)x

Denote by H1(Gx , ν(O)x) the first group cohomology.

Theorem (Hirsch,Stowe)

Let O be a compact orbit and assume that

H1(Gx , ν(O)x) = 0.

Then O is stable.

Rui Loja Fernandes Stability of Leaves



Classical Results
Stability of symplectic leaves
Universal Stability Theorem

Summary

Flows
Foliations
Group actions

Group actions: stability of orbits

linear normal isotropy representation:

ρ : Gx → GL(ν(O)x), ρ(g) := dxαg : ν(O)x → ν(O)x

Denote by H1(Gx , ν(O)x) the first group cohomology.

Theorem (Hirsch,Stowe)

Let O be a compact orbit and assume that

H1(Gx , ν(O)x) = 0.

Then O is stable.

Rui Loja Fernandes Stability of Leaves



Classical Results
Stability of symplectic leaves
Universal Stability Theorem

Summary

Flows
Foliations
Group actions

Stability of leaves versus orbits

In general, the two theorems are quite different (e.g.,
dimension of orbits can vary).
If Gx is discrete, dimension of orbits is locally constant.
If Gx is discrete and G is 1-connected then π1(O, x) = Gx .
=⇒ the theorem for actions follows from the theorem for
foliations.
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Hamilton’s Equations

R2n with coordinates (q1, . . . , qn, p1, . . . , pn)

Classical Poisson bracket:

{f1, f2} =
n∑

i=1

(
∂f1
∂qi

∂f2
∂pi
− ∂f2

∂qi

∂f1
∂pi

)

Hamilton’s equations:{
q̇i = ∂h

∂pi

ṗi = − ∂h
∂qi

(i = 1, . . . , n) ⇔ ẋa = {xa, h} (a = 1, . . . , 2n)
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Poisson brackets

{ , } : C∞(R2n)× C∞(R2n)→ C∞(R2n) is R-bilinear and
satisfies:

Skew-symmetry: {f , g} = −{g, f};
Jacobi identity: {{f , g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0;
Leibniz identity: {f · g, h} = {f , h} · g + f · {g, h};
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Poisson brackets

{ , } : C∞(M)× C∞(M)→ C∞(M) is R-bilinear and
satisfies:

Skew-symmetry: {f , g} = −{g, f};
Jacobi identity: {{f , g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0;
Leibniz identity: {f · g, h} = {f , h} · g + f · {g, h};

A manifold M furnished with a Poisson bracket is called a
Poisson manifold.
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Basic examples

Any symplectic manifold (M, ω) is a Poisson manifold:

{f , g} = −ω(Xf , Xg).

(Xf is the unique vector field such that ιXf ω = df .)
The dual of a Lie algebra M = g∗ is a Poisson manifold:

{f , g}(ξ) = 〈ξ, [dξf , dξg]〉.

Any skew-symmetric matrix (aij) defines a quadratic
Poisson bracket on Rn:

{xi , xj} = aijxixj .
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Symplectic foliation

Definition

On (M, { , }), the hamitonian vector field determined by
h ∈ C∞(M) is the vector field Xh ∈ X(M) given by:

Xh(f ) := {f , h}, ∀f ∈ C∞(M).

Write x ∼ y if there exists a piecewise smooth curve joining x
to y made of integral curves of hamiltonian vector fields:
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On (M, { , }), the hamitonian vector field determined by
h ∈ C∞(M) is the vector field Xh ∈ X(M) given by:

Xh(f ) := {f , h}, ∀f ∈ C∞(M).
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Symplectic foliation

Theorem (Weinstein)

The decomposition of (M, { , }) into equivalence classes of ∼:

M =
⊔
α∈A

Sα.

satisfies:
(i) Each Sα is a (immersed) submanifold of M;
(ii) Each Sα carries a symplectic structure ωα;
(iii) The inclusion iα : Sα ↪→ M is a Poisson map.
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Symplectic foliation
Example

M = sl∗(2, R) ' R3: {x , z} = y ; {x , y} = z; {z, y} = x .
Symplectic foliation: {(x , y , z)|x2 + y2 − z2 = c}.
Foliation is singular (dimension of leaves varies; e.g., cone
x2 + y2 = z2)
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Poisson bivector

Given Poisson bracket { , } define the Poisson bivector:

π(df , dg) := {f , g}.

π ∈ X2(M) = Γ(∧2TM) is a skew-symmetric contravariant
tensor;
In local coordinates (x1, . . . , xn):

π =
∑
i<j

πij(x)
∂

∂x i ∧
∂

∂x j .

Jacobi identity⇔ [π, π] = 0.
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Stability of symplectic leaves

Poiss(M) ←→ {π : M → ∧2(TM)| [π, π] = 0}.

=⇒ Poiss(M) has a natural Cr compact-open topology

Definition

A symplectic leaf S of π ∈ Poiss(M) is called stable if every
nearby Poisson structure in Poiss(M) has a nearby leaf
diffeomorphic to S.
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Stability of symplectic leaves
Main Theorem

Theorem (Crainic & RLF)

Let (M, π) be a Poisson structure and S ⊂ M a compact
symplectic leaf such that:

H2
π(M, S) = 0.

Then S is stable.

Again, this result is quite different from the previous ones;
The theorem has a more precise version that describes the
nearby symplectic leaves diffeomorphic to S;
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Stability of symplectic leaves
Example

M = su∗(3) ' su(3) (via the Killing form) with linear Poisson
structure:

Symplectic leaves are the conjugacy classes of SU(3):

A ∼

 iλ1 0 0
0 iλ2 0
0 0 iλ3

 (λ1+λ2+λ3 = 0, 0 ≤ λ1 ≤ λ2)

Leaves have:
(i) Dimension 6 (flag);
(ii) Dimension 4 (CP(2));
(iii) Dimension 0 (the origin);

All leaves satisfy criterion: H2(M, S) = 0.
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Stability of symplectic leaves
Example

All leaves of su∗(3) (including singular leaves) are stable;
The same result applies for g∗, where g is any semi-simple
Lie algebra of compact type;
This is related to (and explains!) a famous linearization
theorem of Conn;
If g is semi-simple and non-compact stability, in general,
does not hold (e.g., sl(2, R)).
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Poisson cohomology

Ordinary Geometry

Differential forms:
Ωk (M) = Γ(∧kT ∗M);
DeRham differential:
d : Ω•(M)→ Ω•+1(M),
ιX dω = LX ω − dιX ω;
DeRham cohomology:
H•

DR(M) := Ker d/ Im d;

Poisson Geometry

Multivector fields:
Xk (M) = Γ(∧kTM);
Lichnerowitz differential:
dπ : X•(M)→ X•+1(M),
dπθ := [θ, π];
Poisson cohomology:
H•

π(M) := Ker dπ/ Im dπ;
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Poisson cohomology

Geometric interpretations of H•
π(M) in low degrees:

H0
π(M) = Z (C∞(M)) - Casimirs;

H1
π(M) = {Poisson vect. fields}/{hamiltonian vect. fields} -

infinitesimal outer Poisson automorphisms;
H2

π(M) = Tπ Poiss(M) - infinitesimal (formal) deformations
of π;

Relative Poisson cohomology H•
π(M, S): replace X•(M) by

multivector fields along the symplectic leaf S:

X•(M, S) := Γ(∧•TSM).
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Basic problem

Is there a general setup to deal with these kind of stability
problems?

A positive answer to this question should lead to:
(i) A universal stability theorem which would yield the stability

theorems stated above.
(ii) A way to handle with stronger notions of stability.
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Lie algebroids

Definition

A Lie algebroid is a vector bundle A→ M with:
(i) a Lie bracket [ , ]A : Γ(A)× Γ(A)→ Γ(A);
(ii) a bundle map ρ : A→ TM (the anchor);

such that:

[α, fβ]A = f [αβ]A + ρ(α)(f )β, (f ∈ C∞(M), α, β ∈ Γ(A)).

Im ρ ⊂ TM is a integrable (singular) distribution
⇓

Lie algebroids have a characteristic foliation
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Lie algebroids
Examples

Flows. For X ∈ X(M), the associated Lie algebroid is:
A = M × R, [f , g]A := fX (g)− gX (f ), ρ(f ) = fX .

Leaves of A are the orbits of X .

Foliations. For F ∈ Folk (M), the associated Lie algebroid
is:

A = TF , [X , Y ]A = [X , Y ], ρ =id.
Leaves of A are the leaves of F .
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Lie algebroids
Examples

Actions. For α ∈ Act(G; M), the associated Lie algebroid is:
A = M × g, ρ =infinitesimal action,
[f , g]A(x) = [f (x), g(x)]g + Lρ(f (x))g(x)− Lρ(g(x))f (x).

Leaves of A are the orbits of α (for G connected).

Poisson structures. For π ∈ Poiss(M), the associated Lie
algebroid is:

A = T ∗M, ρ = π],
[df , dg]A = d{f , g}, (f , g ∈ C∞(M)).

Leaves of A are the symplectic leaves of π.
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Stability Theorem

For a fixed vector bundle A there is a natural compact-open
topology on the set Algbrd(A) of Lie algebroid structures
on A.

A leaf L of A is called stable if every nearby Lie algebroid
structure in Algbrd(A) has a nearby leaf diffeomorphic to L.

There are natural A-cohomology theories. For a leaf L, one
can define the relative A-cohomology with coefficients in
the normal bundle ν(L), denoted H•(A|L; ν(L)).
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Stability Theorem

Theorem (Crainic & RLF)

Let L be a compact leaf of a Lie algebroid A, and assume that
H1(A, L; ν(L)) = 0. Then L is stable.

The theorem says: infinitesimal stability⇒ stability.
Likewise, the proof is a “infinite dimensional transversality
argument”.

All other stability theorems can be deduced from this one.
This explains the appearence of different cohomologies.

The Lie algebroid approach allows the study of stronger
notions of stability...
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Moral: There is a general framework to deal with stability of
“leaf-type” problems.
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