Optimal internal stabilization of the linear system of elasticity

Pablo Pedregal (joint work with A. Münch, F. Periago)

Universidad de Castilla-La Mancha

Coimbra, December, 2007

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Damped linear system of elasticity

$$\begin{cases} \mathbf{u}'' - \nabla_{\mathbf{x}} \cdot \boldsymbol{\sigma} + \mathbf{a}(\mathbf{x}) \, \mathcal{X}_{\omega}(\mathbf{x}) \, \mathbf{u}' = 0 & \text{in} \quad (0, T) \times \Omega, \\ \mathbf{u} = 0 & \text{on} \quad (0, T) \times \Gamma_0, \\ \boldsymbol{\sigma} \cdot \mathbf{n} = 0 & \text{on} \quad (0, T) \times \Gamma_1, \\ \mathbf{u}(0, \cdot) = \mathbf{u}_0, \quad \mathbf{u}'(0, \cdot) = \mathbf{u}_1 & \text{in} \quad \Omega, \end{cases}$$

- $\Omega \subset \mathbf{R}^N$: bounded, Lipschitz boundary $\partial \Omega = \Gamma_0 \cup \Gamma_1$. • $\mathbf{u} : [0, T] \times \Omega \to \mathbf{R}^N$ with derivatives $\mathbf{u}', \mathbf{u}'', \nabla_x \mathbf{u}$.
- arepsilon, $oldsymbol{\sigma}$: strain and stress tensors

$$\boldsymbol{\varepsilon}(\mathbf{u}) = \frac{1}{2} \left(\nabla_{\mathsf{x}} \mathbf{u} + (\nabla_{\mathsf{x}} \mathbf{u})^{\mathsf{T}} \right), \quad \boldsymbol{\sigma}(\mathbf{u}) = \left(\sigma_{ij} = a_{ijkl} \varepsilon_{kl} \right).$$

• $\omega \subset \Omega$, a = a(x): damping subset and potential

$$a(x) \geq a_0 > 0.$$

• **n**: outer normal to Γ_1 .

Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Well-posedness in appropriate spaces: well known, standard.

Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Well-posedness in appropriate spaces: well known, standard. Energy of the system:

$$E(t) = rac{1}{2} \int_{\Omega} \left(\left| \mathbf{u}' \right|^2 + \sigma(\mathbf{u}) : \varepsilon(\mathbf{u}) \right) dx.$$

Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Well-posedness in appropriate spaces: well known, standard. Energy of the system:

$$E(t) = rac{1}{2} \int_{\Omega} \left(\left| \mathbf{u}' \right|^2 + \sigma(\mathbf{u}) : \varepsilon(\mathbf{u}) \right) dx.$$

Decay of energy:

$$\frac{dE(t)}{dt} = -\int_{\Omega} a(x) \mathcal{X}_{\omega}(x) \left| \mathbf{u}' \right|^2 dx, \quad \forall t > 0.$$

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Well-posedness in appropriate spaces: well known, standard. Energy of the system:

$$E(t) = rac{1}{2} \int_{\Omega} \left(\left| \mathbf{u}' \right|^2 + \sigma(\mathbf{u}) : \varepsilon(\mathbf{u}) \right) dx.$$

Decay of energy:

$$\frac{dE(t)}{dt} = -\int_{\Omega} a(x) \mathcal{X}_{\omega}(x) \left| \mathbf{u}' \right|^2 dx, \quad \forall t > 0.$$

Interpretation.

Dissipative term $a(x) \mathcal{X}_{\omega}(x) \mathbf{u}' \mapsto$ feedback control mechanism

 \mathcal{X}_{ω} place and shape of sensors and actuators.

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Optimization problem

Find the best location for sensors and actuators to stabilize, globally in time, the vibrating structure.

Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Optimization problem

Find the best location for sensors and actuators to stabilize, globally in time, the vibrating structure.

$$\inf_{\omega \in \Omega_L} J(\mathcal{X}_{\omega}) = \frac{1}{2} \int_0^T \int_{\Omega} \left(|\mathbf{u}'|^2 + \sigma(\mathbf{u}) : \varepsilon(\mathbf{u}) \right) dx dt,$$
$$\Omega_L = \{ \omega \subset \Omega : |\omega| = L |\Omega| \}, \quad 0 < L < 1.$$

$$\Omega_L = \{ \omega \subset \Omega : |\omega| = L |\Omega| \}, \quad 0 < L < 0$$

u, solution of

$$\begin{cases} \mathbf{u}'' - \nabla_{\mathbf{x}} \cdot \boldsymbol{\sigma} + \boldsymbol{a}(\mathbf{x}) \, \mathcal{X}_{\omega}(\mathbf{x}) \, \mathbf{u}' = 0 & \text{in} \quad (0, T) \times \Omega, \\ \mathbf{u} = 0 & \text{on} \quad (0, T) \times \Gamma_0, \\ \boldsymbol{\sigma} \cdot \mathbf{n} = 0 & \text{on} \quad (0, T) \times \Gamma_1, \\ \mathbf{u}(0, \cdot) = \mathbf{u}_0, \quad \mathbf{u}'(0, \cdot) = \mathbf{u}_1 & \text{in} \quad \Omega, \end{cases}$$

Optimal stabilization

Problem formulation

Difficulties

Main result. relaxation

Numerical simulations

Ill-posedness

• Binary nature of design variable \mathcal{X}_{ω} .

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

III-posedness

- Binary nature of design variable \mathcal{X}_{ω} .
- Weak limits of \mathcal{X}_{ω_i} do not need to be of the same kind.

Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

III-posedness

- Binary nature of design variable \mathcal{X}_{ω} .
- Weak limits of \mathcal{X}_{ω_i} do not need to be of the same kind.
- Role played by the (micro)geometry.

Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Ill-posedness

- Binary nature of design variable \mathcal{X}_{ω} .
- Weak limits of \mathcal{X}_{ω_i} do not need to be of the same kind.
- Role played by the (micro)geometry.

Fact

Most of the time, this kind of optimal design problems are ill-posed: they do not have optimal solutions.

Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

III-posedness

- Binary nature of design variable \mathcal{X}_{ω} .
- Weak limits of \mathcal{X}_{ω_i} do not need to be of the same kind.
- Role played by the (micro)geometry.

Fact

Most of the time, this kind of optimal design problems are ill-posed: they do not have optimal solutions.

Main issue

How do we understand the nature of (some) minimizing sequences of designs?

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

III-posedness

- Binary nature of design variable \mathcal{X}_{ω} .
- Weak limits of \mathcal{X}_{ω_i} do not need to be of the same kind.
- Role played by the (micro)geometry.

Fact

Most of the time, this kind of optimal design problems are ill-posed: they do not have optimal solutions.

Main issue

How do we understand the nature of (some) minimizing sequences of designs?

Magic term RELAXATION. Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

New but related problem

$$\inf_{s \in L^{\infty}(\Omega)} J(s) = \frac{1}{2} \int_{0}^{T} \int_{\Omega} \left(|\mathbf{u}'|^{2} + \boldsymbol{\sigma}(\mathbf{u}) : \boldsymbol{\varepsilon}(\mathbf{u}) \right) dx dt,$$

$$\begin{cases} \mathbf{u}'' - \nabla_{x} \cdot \boldsymbol{\sigma} + \boldsymbol{a}(x) \, \boldsymbol{s}(x) \, \mathbf{u}' = 0 \quad \text{in} \quad (0, T) \times \Omega, \\ \mathbf{u} = 0 & \text{on} \quad (0, T) \times \Gamma_{0}, \\ \boldsymbol{\sigma} \cdot \mathbf{n} = 0 & \text{on} \quad (0, T) \times \Gamma_{1}, \\ \mathbf{u}(0, \cdot) = \mathbf{u}_{0}, \quad \mathbf{u}'(0, \cdot) = \mathbf{u}_{1} & \text{in} \quad \Omega, \end{cases}$$

$$0 \leq s(x) \leq 1 \quad \int_{\Omega} s(x) \, dx = L |\Omega|.$$

Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

New but related problem

$$\inf_{s \in L^{\infty}(\Omega)} J(s) = \frac{1}{2} \int_{0}^{T} \int_{\Omega} \left(|\mathbf{u}'|^{2} + \boldsymbol{\sigma}(\mathbf{u}) : \boldsymbol{\varepsilon}(\mathbf{u}) \right) dx dt,$$

$$\begin{cases} \mathbf{u}'' - \nabla_{x} \cdot \boldsymbol{\sigma} + \boldsymbol{a}(x) \, \boldsymbol{s}(x) \, \mathbf{u}' = 0 \quad \text{in} \quad (0, T) \times \Omega, \\ \mathbf{u} = 0 \qquad \qquad \text{on} \quad (0, T) \times \Gamma_{0}, \\ \boldsymbol{\sigma} \cdot \mathbf{n} = 0 \qquad \qquad \text{on} \quad (0, T) \times \Gamma_{1}, \\ \mathbf{u}(0, \cdot) = \mathbf{u}_{0}, \quad \mathbf{u}'(0, \cdot) = \mathbf{u}_{1} \qquad \text{in} \quad \Omega, \\ 0 \le s(x) \le 1 \qquad \int_{\Omega} s(x) \, dx = L |\Omega|. \end{cases}$$

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Some ideas

Theorem

Regularity on initial data: $(\mathbf{u_0}, \mathbf{u_1}) \in H^2(\Omega) \times H^1(\Omega)$. The second problem (*RP*) is a full relaxation of the first (*P*).

Pablo Pedregal (UCLM)

• (RP) admits optimal solutions.

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

- (RP) admits optimal solutions.
- Minimum of (RP) equals infimum of (P).

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

- (RP) admits optimal solutions.
- Minimum of (RP) equals infimum of (P).
- Description of minimizing sequences for (P) out of minimizers for (RP).

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

- (RP) admits optimal solutions.
- Minimum of (RP) equals infimum of (P).
- Description of minimizing sequences for (P) out of minimizers for (RP).

Surprising fact

Minimizing sequences for (P) correspond to sequences converging weakly to optimal solutions of (RP).

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

- (RP) admits optimal solutions.
- Minimum of (RP) equals infimum of (P).
- Description of minimizing sequences for (P) out of minimizers for (RP).

Surprising fact

Minimizing sequences for (P) correspond to sequences converging weakly to optimal solutions of (RP).

Underlying reason.

Theorem

 $(\mathbf{u_0}, \mathbf{u_1})$ have the appropriate regularity. \mathcal{X}_{ω_j} , minimizing for (P) with \mathbf{u}_j the associated displacement fields. $\mathcal{X}_{\omega_j} \rightharpoonup s$ weak- \star in $L^{\infty}(\Omega)$ implies $\mathbf{u}_j \rightarrow \mathbf{u}$ strong in $(H^1((0, T) \times \Omega))^N$.

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Algorithm and data

Typical descent algorithm

 $\eta \in \mathbb{R}^+$, $\eta \ll 1$, $s_1 \in L^{\infty}(\Omega)$, perturbation $s^{\eta} = s + \eta s_1$ of s. Derivative of J with respect to s in the direction s_1 :

$$\frac{\partial J(s)}{\partial s} \cdot s_1 = \lim_{\eta \to 0} \frac{J(s + \eta s_1) - J(s)}{\eta}.$$

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Algorithm and data

Typical descent algorithm

 $\eta \in \mathbb{R}^+$, $\eta \ll 1$, $s_1 \in L^{\infty}(\Omega)$, perturbation $s^{\eta} = s + \eta s_1$ of s. Derivative of J with respect to s in the direction s_1 :

$$rac{\partial J(s)}{\partial s} \cdot s_1 = \lim_{\eta \to 0} rac{J(s + \eta s_1) - J(s)}{\eta}.$$

This derivative can be computed through the adjoint problem (standard).

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Algorithm and data

Typical descent algorithm

 $\eta \in \mathbb{R}^+$, $\eta \ll 1$, $s_1 \in L^{\infty}(\Omega)$, perturbation $s^{\eta} = s + \eta s_1$ of s. Derivative of J with respect to s in the direction s_1 :

$$rac{\partial J(s)}{\partial s} \cdot s_1 = \lim_{\eta \to 0} rac{J(s + \eta s_1) - J(s)}{\eta}.$$

•
$$N=2$$
, $\Omega=(0,1)\times(0,1)$, $\Gamma_0=\partial\Omega$,

 $\boldsymbol{\sigma}(\mathbf{u}) = \lambda tr(\nabla_{\mathbf{x}} \cdot \mathbf{u}) \mathbf{I}_{\mathbf{N} \times \mathbf{N}} + 2\mu \boldsymbol{\varepsilon}(\mathbf{u}),$

 $\lambda, \mu > 0$, Lamé coefficients.

- $a(x) = a\mathcal{X}_{\Omega}(x)$: *a*, constant in Ω .
- Initial conditions:

$$\mathbf{u}_0 = (\sin(\pi x_1) \sin(\pi x_2), \sin(\pi x_1) \sin(\pi x_2)), \quad \mathbf{u}_1 = (0, 0).$$

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Influence of damping constant T = 1, $(\lambda, \mu) = (1/2, 1)$, $a(x) = aX_{\Omega}(x)$ Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Influence of damping constant T = 1, $(\lambda, \mu) = (1/2, 1)$, $a(x) = a \mathcal{X}_{\Omega}(x)$

a = 5:

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Influence of damping constant T = 1, $(\lambda, \mu) = (1/2, 1)$, $a(x) = aX_{\Omega}(x)$

a = 5:

a = 10:

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Influence of damping constant T = 1, $(\lambda, \mu) = (1/2, 1)$, $a(x) = a \mathcal{X}_{\Omega}(x)$

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Influence of damping constant T = 1, $(\lambda, \mu) = (1/2, 1)$, $a(x) = a \mathcal{X}_{\Omega}(x)$

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Some ideas

Optimal stabilization

Influence of Lamé coefficients

T = 1, $\mu = 1$, $a(x) = 5\mathcal{X}_{\Omega}(x)$

Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Influence of Lamé coefficients

$$T=1, \mu=1, a(x)=5\mathcal{X}_{\Omega}(x)$$

$$\lambda = 5$$

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Influence of Lamé coefficients

T = 1, $\mu = 1$, $a(x) = 5\mathcal{X}_{\Omega}(x)$

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Some ideas

 $\lambda = 5$

 $\lambda = 50$

Coimbra, 12/07 10 / 13

Optimal stabilization

Pablo Pedregal (UCLM)

Minimizing sequences through penalization T = 1, $(\lambda, \mu) = (1/2, 1)$, $a(x) = 50 \mathcal{X}_{\Omega}(x)$

Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Minimizing sequences through penalization T = 1, $(\lambda, \mu) = (1/2, 1)$, $a(x) = 50 \mathcal{X}_{\Omega}(x)$

N = 2

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Minimizing sequences through penalization T = 1, $(\lambda, \mu) = (1/2, 1)$, $a(x) = 50 \mathcal{X}_{\Omega}(x)$

Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Minimizing sequences through penalization T = 1, $(\lambda, \mu) = (1/2, 1)$, $a(x) = 50 \mathcal{X}_{\Omega}(x)$

Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Minimizing sequences through penalization T = 1, $(\lambda, \mu) = (1/2, 1)$, $a(x) = 50 \mathcal{X}_{\Omega}(x)$

Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Perspective and main ingredients

• \mathcal{X}_{ω_i} , minimizing.

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Perspective and main ingredients

- \mathcal{X}_{ω_i} , minimizing.
- Reformulation of state system:

$$\mathbf{\nabla}_{(t,x)}\cdot \ \left(\mathbf{u}_{j}^{\prime}+a\left(x
ight)\mathcal{X}_{\omega_{j}}\left(x
ight)\mathbf{u}_{j},-\boldsymbol{\sigma}
ight)=0,$$

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Perspective and main ingredients

- \mathcal{X}_{ω_i} , minimizing.
- Reformulation of state system:

$$abla_{(t,x)} \cdot \left(\mathbf{u}_{j}' + \boldsymbol{a}(x) \, \mathcal{X}_{\omega_{j}}(x) \, \mathbf{u}_{j}, -\boldsymbol{\sigma}
ight) = 0,$$

• Pairs of relevant fields:

$$\mathsf{F}_{j}=\left(\mathsf{u}_{j}^{\prime}+\mathsf{a}\left(x
ight)\mathcal{X}_{\omega_{j}}\left(x
ight)\mathsf{u}_{j},-\pmb{\sigma}_{j}
ight) \quad ext{and} \quad \mathsf{G}_{j}=\left(\mathsf{u}_{j}^{\prime},
abla_{x}\mathsf{u}_{j}
ight),$$

Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Perspective and main ingredients

- \mathcal{X}_{ω_i} , minimizing.
- Reformulation of state system:

$$\nabla_{(t,x)} \cdot \left(\mathbf{u}_{j}' + \boldsymbol{a}(x) \, \mathcal{X}_{\omega_{j}}(x) \, \mathbf{u}_{j}, -\boldsymbol{\sigma}
ight) = 0,$$

• Pairs of relevant fields:

$$\mathsf{F}_{j}=\left(\mathsf{u}_{j}^{\prime}+\mathsf{a}\left(x
ight)\mathcal{X}_{\omega_{j}}\left(x
ight)\mathsf{u}_{j},-\pmb{\sigma}_{j}
ight) \quad ext{and} \quad \mathbf{G}_{j}=\left(\mathsf{u}_{j}^{\prime},
abla_{x}\mathsf{u}_{j}
ight),$$

• Properties: $(\mathbf{F}_j, \mathbf{G}_j)$ is div-curl-free $(\nabla_{(t,x)} \cdot \mathbf{F}_j = 0$ and curl $\mathbf{G}_j = 0$)

Optimal stabilization Pablo Pedregal Problem formulation Difficulties

Main result: relaxation

Numerical simulations

Perspective and main ingredients

- \mathcal{X}_{ω_i} , minimizing.
- Reformulation of state system:

$$\nabla_{(t,x)} \cdot \left(\mathbf{u}_{j}' + \boldsymbol{a}(x) \, \mathcal{X}_{\omega_{j}}(x) \, \mathbf{u}_{j}, -\boldsymbol{\sigma} \right) = 0,$$

• Pairs of relevant fields:

$$\mathsf{F}_{j}=\left(\mathsf{u}_{j}^{\prime}+\mathsf{a}\left(x
ight)\mathcal{X}_{\omega_{j}}\left(x
ight)\mathsf{u}_{j},-\pmb{\sigma}_{j}
ight) \quad ext{and} \quad \mathbf{G}_{j}=\left(\mathsf{u}_{j}^{\prime},
abla_{x}\mathsf{u}_{j}
ight),$$

• Properties:
$$(\mathbf{F}_j, \mathbf{G}_j)$$
 is div-curl-free $(\nabla_{(t,x)} \cdot \mathbf{F}_j = 0$ and curl $\mathbf{G}_j = 0$)

•
$$(\mathbf{F}_j, \mathbf{G}_j) \in \Lambda_0 \cup \Lambda_{1,C} \ (C = a(x) \mathcal{X}_{\omega_j}(x) \mathbf{u}_j), A = (A_1, \overline{A})$$

$$A_{1,C} = \{(A,B) : A_1 = B_1 + C, \ \overline{A} = -\sigma(\overline{B})\}$$

$$\Lambda_0 = \left\{ (A,B) : A_1 = B_1, \ \overline{A} = -\sigma \left(\overline{B} \right) \right\}.$$

Optimal stabilization

Problem

formulation Difficulties Main result: relaxation Numerical

simulations Some ideas

Continuation

• Associated Young measure: $(\mathbf{F}_j, \mathbf{G}_j) \mapsto \nu = \{\nu_x\}_{x \in \Omega}$

Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Continuation

- Associated Young measure: $(\mathbf{F}_j, \mathbf{G}_j) \mapsto \nu = \{\nu_x\}_{x \in \Omega}$
- Main property. If \mathcal{X}_{ω_j} is minimizing, the projection of ν_x onto the second (gradient) component is trivial. This implies the strong convergence of \mathbf{G}_i .

Optimal stabilization

Pablo Pedregal

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations

Continuation

- Associated Young measure: $(\mathbf{F}_j, \mathbf{G}_j) \mapsto \nu = \{\nu_x\}_{x \in \Omega}$
- Main property. If \mathcal{X}_{ω_j} is minimizing, the projection of ν_x onto the second (gradient) component is trivial. This implies the strong convergence of \mathbf{G}_j .
- This main property depends in a fundamental way in the form of the cost (energy of the system) under the state law. It would not be true if we were to consider a different cost functional.

Optimal stabilization

Pablo Pedrega

Problem formulation

Difficulties

Main result: relaxation

Numerical simulations