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Problem formulation

Damped linear system of elasticity


u′′ −∇x · σ + a (x)Xω (x)u′ = 0 in (0,T )× Ω,
u = 0 on (0,T )× Γ0,
σ · n = 0 on (0,T )× Γ1,
u(0, ·) = u0, u′(0, ·) = u1 in Ω,

• Ω ⊂ RN : bounded, Lipschitz boundary ∂Ω = Γ0 ∪ Γ1.

• u : [0,T ]× Ω → RN with derivatives u′, u′′, ∇xu.

• ε, σ: strain and stress tensors

ε (u) =
1

2

(
∇xu + (∇xu)T

)
, σ (u) = (σij = aijklεkl) .

• ω ⊂ Ω, a = a (x): damping subset and potential

a (x) ≥ a0 > 0.

• n: outer normal to Γ1.
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Problem formulation

Energy of the system and interpretation

Well-posedness in appropriate spaces: well known, standard.

Energy of the system:

E (t) =
1

2

∫
Ω

(∣∣u′∣∣2 + σ(u) : ε(u)
)

dx .

Decay of energy:

dE (t)

dt
= −

∫
Ω

a (x)Xω(x)
∣∣u′∣∣2 dx , ∀t > 0.

Interpretation.

Dissipative term a (x)Xω (x)u′ 7→ feedback control mechanism

Xω place and shape of sensors and actuators.
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Problem formulation

Optimization problem

Find the best location for sensors and actuators to stabilize,
globally in time, the vibrating structure.

inf
ω∈ΩL

J (Xω) =
1

2

∫ T

0

∫
Ω

(∣∣u′∣∣2 + σ(u) : ε(u)
)

dx dt,

ΩL = {ω ⊂ Ω : |ω| = L |Ω|} , 0 < L < 1.

u, solution of
u′′ −∇x · σ + a (x)Xω (x)u′ = 0 in (0,T )× Ω,
u = 0 on (0,T )× Γ0,
σ · n = 0 on (0,T )× Γ1,
u(0, ·) = u0, u′(0, ·) = u1 in Ω,
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Difficulties

Ill-posedness

• Binary nature of design variable Xω.

• Weak limits of Xωj do not need to be of the same kind.

• Role played by the (micro)geometry.

Fact

Most of the time, this kind of optimal design problems are
ill-posed: they do not have optimal solutions.

Main issue

How do we understand the nature of (some) minimizing
sequences of designs?

Magic term

RELAXATION.

Pablo Pedregal (UCLM) Optimal stabilization Coimbra, 12/07 5 / 13



Optimal
stabilization

Pablo Pedregal

Problem
formulation

Difficulties

Main result:
relaxation

Numerical
simulations

Some ideas

Difficulties

Ill-posedness

• Binary nature of design variable Xω.

• Weak limits of Xωj do not need to be of the same kind.

• Role played by the (micro)geometry.

Fact

Most of the time, this kind of optimal design problems are
ill-posed: they do not have optimal solutions.

Main issue

How do we understand the nature of (some) minimizing
sequences of designs?

Magic term

RELAXATION.

Pablo Pedregal (UCLM) Optimal stabilization Coimbra, 12/07 5 / 13



Optimal
stabilization

Pablo Pedregal

Problem
formulation

Difficulties

Main result:
relaxation

Numerical
simulations

Some ideas

Difficulties

Ill-posedness

• Binary nature of design variable Xω.

• Weak limits of Xωj do not need to be of the same kind.

• Role played by the (micro)geometry.

Fact

Most of the time, this kind of optimal design problems are
ill-posed: they do not have optimal solutions.

Main issue

How do we understand the nature of (some) minimizing
sequences of designs?

Magic term

RELAXATION.

Pablo Pedregal (UCLM) Optimal stabilization Coimbra, 12/07 5 / 13



Optimal
stabilization

Pablo Pedregal

Problem
formulation

Difficulties

Main result:
relaxation

Numerical
simulations

Some ideas

Difficulties

Ill-posedness

• Binary nature of design variable Xω.

• Weak limits of Xωj do not need to be of the same kind.

• Role played by the (micro)geometry.

Fact

Most of the time, this kind of optimal design problems are
ill-posed: they do not have optimal solutions.

Main issue

How do we understand the nature of (some) minimizing
sequences of designs?

Magic term

RELAXATION.

Pablo Pedregal (UCLM) Optimal stabilization Coimbra, 12/07 5 / 13



Optimal
stabilization

Pablo Pedregal

Problem
formulation

Difficulties

Main result:
relaxation

Numerical
simulations

Some ideas

Difficulties

Ill-posedness

• Binary nature of design variable Xω.

• Weak limits of Xωj do not need to be of the same kind.

• Role played by the (micro)geometry.

Fact

Most of the time, this kind of optimal design problems are
ill-posed: they do not have optimal solutions.

Main issue

How do we understand the nature of (some) minimizing
sequences of designs?

Magic term

RELAXATION.

Pablo Pedregal (UCLM) Optimal stabilization Coimbra, 12/07 5 / 13



Optimal
stabilization

Pablo Pedregal

Problem
formulation

Difficulties

Main result:
relaxation

Numerical
simulations

Some ideas

Difficulties

Ill-posedness

• Binary nature of design variable Xω.

• Weak limits of Xωj do not need to be of the same kind.

• Role played by the (micro)geometry.

Fact

Most of the time, this kind of optimal design problems are
ill-posed: they do not have optimal solutions.

Main issue

How do we understand the nature of (some) minimizing
sequences of designs?

Magic term

RELAXATION.

Pablo Pedregal (UCLM) Optimal stabilization Coimbra, 12/07 5 / 13



Optimal
stabilization

Pablo Pedregal

Problem
formulation

Difficulties

Main result:
relaxation

Numerical
simulations

Some ideas

Main result: relaxation

New but related problem

inf
s∈L∞(Ω)

J (s) =
1

2

∫ T

0

∫
Ω

(∣∣u′∣∣2 + σ(u) : ε(u)
)

dx dt,


u′′ −∇x · σ + a (x) s (x)u′ = 0 in (0,T )× Ω,
u = 0 on (0,T )× Γ0,
σ · n = 0 on (0,T )× Γ1,
u(0, ·) = u0, u′(0, ·) = u1 in Ω,

0 ≤ s (x) ≤ 1

∫
Ω

s (x) dx = L |Ω| .

Theorem

Regularity on initial data: (u0,u1) ∈ H2 (Ω)× H1 (Ω). The
second problem (RP) is a full relaxation of the first (P).
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Main result: relaxation

Meaning of relaxation result

• (RP) admits optimal solutions.

• Minimum of (RP) equals infimum of (P).
• Description of minimizing sequences for (P) out of

minimizers for (RP).

Surprising fact

Minimizing sequences for (P) correspond to sequences
converging weakly to optimal solutions of (RP).

Underlying reason.

Theorem

(u0,u1) have the appropriate regularity. Xωj , minimizing for
(P) with uj the associated displacement fields.
Xωj ⇀ s weak-? in L∞ (Ω) implies uj → u strong in(
H1 ((0,T )× Ω)

)N
.
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Numerical simulations

Algorithm and data

Typical descent algorithm

η ∈ R+, η << 1, s1 ∈ L∞(Ω), perturbation sη = s + ηs1 of
s. Derivative of J with respect to s in the direction s1:

∂J(s)

∂s
· s1 = lim

η→0

J(s + ηs1)− J(s)

η
.

This derivative can be computed through the adjoint
problem (standard).
• N = 2, Ω = (0, 1)× (0, 1), Γ0 = ∂Ω,

σ(u) = λtr(∇x · u)IN×N + 2µε(u),

λ, µ > 0, Lamé coefficients.
• a(x) = aXΩ(x): a, constant in Ω.
• Initial conditions:

u0 = (sin(πx1) sin(πx2), sin(πx1) sin(πx2)), u1 = (0, 0).
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Numerical simulations

Influence of damping constant

T = 1, (λ, µ) = (1/2, 1), a(x) = aXΩ(x)
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Perspective and main ingredients

• Xωj , minimizing.

• Reformulation of state system:

∇(t,x) ·
(
u′j + a (x)Xωj (x)uj ,−σ

)
= 0,

• Pairs of relevant fields:

Fj =
(
u′j + a (x)Xωj (x)uj ,−σj

)
and Gj =

(
u′j ,∇xuj

)
,

• Properties: (Fj ,Gj) is div-curl-free (∇(t,x) · Fj = 0 and
curl Gj = 0)

• (Fj ,Gj) ∈ Λ0 ∪ Λ1,C (C = a (x)Xωj (x)uj),A = (A1,A):

Λ1,C =
{
(A,B) : A1 = B1 + C , A = −σ

(
B

)}
Λ0 =

{
(A,B) : A1 = B1, A = −σ

(
B

)}
.
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Continuation

• Associated Young measure: (Fj ,Gj) 7→ ν = {νx}x∈Ω

• Main property. If Xωj is minimizing, the projection of νx

onto the second (gradient) component is trivial. This
implies the strong convergence of Gj .

• This main property depends in a fundamental way in
the form of the cost (energy of the system) under the
state law. It would not be true if we were to consider a
different cost functional.
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