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Amalgams Definition

Definition of amalgam

φi : A→ Gi group homomorphisms. The amalgam ∗
A
Gi is the colimit of

the diagram:

G1

A

φ1

@@��������

φn ��========
...

Gn

malgams are familiar from Van Kampen’s theorem: X = U ∪ V ,
U,V ,U ∩ V connected. Then π1(X ) = π1(U) ∗

π1(U∩V )
π1(V ).
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Amalgams are familiar from Van Kampen’s theorem: X = U ∪ V ,
U,V ,U ∩ V connected. Then π1(X ) = π1(U) ∗

π1(U∩V )
π1(V ).

Aim: Compute the Pontryagin algebra H∗

(
∗
A
Gi

)
for φi inclusions.
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Amalgams Examples

Examples of amalgams

1. SL(2; Z) = Z/4 ∗
Z/2

Z/6

Figure: The tree of SL(2; Z).

2. Diff(S2 × S2, ω) ' colim(S1 × SO(3)← SO(3)
4−→ SO(3)× SO(3))

if ω(S2 × 1) = 1, ω(1× S2) ∈]1, 2].
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Amalgams Examples

More examples of amalgams

3. Diff(CP2#CP2, ω) ' colim(U(2)
(1,0)←−−− S1 (2,1)−−−→ U(2)) if

ω(CP1) = 1, ω(E ) = λ ∈ [1, 2[.

4. K simply connected unitary form of a Kač-Moody group. There is a
surjective homomorphism

∗
B
Pi

π−→ K

where Pi are the minimal parabolics and B is the Borel subgroup
[Kač-Peterson].

The homomorphism π induces a surjection on homology [Kitchloo].
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Amalgams Main result

Main theorem

Theorem: Consider the diagram F : I → TopGps described by

A
φ1

~~||||||||
φn

!!BBBBBBBB

G1
. . . Gn

Suppose the φi are inclusions and the projections Gi → Gi/A admit local
sections. Then

1 The following canonical map is a weak equivalence

hocolim
i∈I

TopGpsF (i)→ colimTopGps

i∈I
F (i) = ∗

A
Gi

2 There is a functor G : Πn → Spaces and a spectral sequence of graded
algebras

E 2
k,j = colimj

w∈Πn

HkG (w)⇒ Hj+k(∗
A
Gi ).
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Amalgams Main result

Remarks on the main Theorem

If A, Gi are discrete this is a well known theorem of J.H.C. Whitehead
in group cohomology.

If in addition to the hypothesis φi : A→ Gi induce inclusions on
homology, part 1 is a theorem of Śılvia Anjos and myself (2003).

In this case the E2 term of the spectral sequence is concentrated on
the 0-line which is given by

E 2
k,0 = colim

w∈Π
HkG (w) =

(
∗

H∗(A)
H∗(Gi )

)
k

.
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Homotopy colimits

Colimits

A functor F : I → C is called a diagram in C indexed by I .

The colimit of a diagram F is an object C ∈ C together with morphisms

F (i)
φi−→ C satisfying, for all morphisms α : i → j in I ,
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φi−→ C satisfying, for all morphisms α : i → j in I ,

F (i)
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φi

  AAAAAAAA
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F (j)
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Examples: Let C = Sets.

1 colim
(
X

f←− A
g−→ Y

)
= (X

∐
Y ) /f (a) ∼ g(a).

2 For I = G a (discrete) group,

colim

 X

G
��

 = X/G .
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Homotopy colimits

The trouble with colimits

They are not homotopy invariant.

Example: The two diagrams

Sn−1

��

� � // Dn

∗

Sn−1

��

// ∗

∗

are naturally homotopy equivalent. Their colimits

Sn ∗

are not homotopy equivalent.
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Homotopy colimits

Homotopy colimits

Let C be a category with a notion of homotopy equivalence (e.g. Spaces,
TopGps, Ch+

R = chain complexes of modules over a ring R).

Let CI = category of diagrams in C indexed by I .

1st definition of homotopy colimit: hocolim is the terminal homotopy
invariant functor mapping to colim

CI

hocolim

&&
⇓

colim

88 C
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Homotopy colimits

Homotopy colimits II

2nd definition of homotopy colimit: To give a map hocolim F (i)
i∈I

→ C

consists of giving

For each i ∈ I , a map φi : F (i)→ C ,

For each α : i → j , a homotopy F (i)× [0, 1]→ C between φi and
φj ◦ F (α),

For each i
α−→ j

β−→ k , homotopies F (i)×∆2 → C restricting to the
previous homotopies on the edges, etc...

This suggests a construction of the homotopy colimit.
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Homotopy colimits

Examples of homotopy colimits of spaces

hocolim
(
X

f←− A
g−→ Y

)
=

(X
∐

A× [0, 1]
∐

Y ) / ((a, 0) ∼ f (a), (a′, 1) ∼ g(a′)).

If f or g is a cofibration, the map hocolim→ colim is a weak
equivalence.

hocolim

 X

G
��

 = EG ×G X , usually called the Borel

construction, or the homotopy orbit space.
If the action is free the map EG ×G X → X/G is a weak equivalence.

Inclusions of topological groups are not cofibrations of topological
groups!
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Proof of theorem

Homotopy colimits of topological groups

Theorem [Kan]: There is an equivalence of homotopy theories

Ho(TopGps)↔ Ho(ConnectedSpaces)

given by the loop and classifying space functors.

This is how one would usually think of homotopy colimit of topological
groups.

New approach: For n ≥ 2, let Πn be the category with

Objects: finite ordered sets labeled with n colors

Morphisms: order preserving maps preserving the colors.

Πn is a monoidal category with product given by concatenation. The unit
is the empty word.
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Proof of theorem

Homotopy colimits of topological groups II

Given a diagram of topological groups

A

!!BBBBBBBB

~~||||||||

G1 · · · Gn

and w = (a1, . . . , ak) ∈ Πn with ai ∈ {1, . . . , n} define

G (w) = Ga1 ×A Ga2 ×A · · · ×A Gan

Define G (w → w ′) using multiplication and inclusions.

colim
w∈Πn

G (w) = ∗
A
Gi

G : Πn → (A− Spaces− A) is a monoidal functor, hence

hocolim
w∈Πn

G (w) is a monoid and the canonical map hocolim→ colim is

a map of monoids.
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Given a diagram of topological groups

A

!!BBBBBBBB

~~||||||||

G1 · · · Gn

and w = (a1, . . . , ak) ∈ Πn with ai ∈ {1, . . . , n} define

G (w) = Ga1 ×A Ga2 ×A · · · ×A Gan
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Proof of theorem

Homotopy colimits of topological groups III

Prop: hocolim
w∈Πn

G (w) is homotopy equivalent to

hocolimTopGps
A

!!BBBBBBBB

~~||||||||

G1 · · · Gn

Prop: If φi : A→ Gi are inclusions, the map

hocolim
w∈Πn

G (w)→ colim
w∈Πn

G (w) = ∗
A
Gi

is a weak equivalence.

This implies the first part of the Theorem.
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Proof of theorem

The spectral sequence

Given F : I → Spaces there is a standard spectral sequence

E 2
p,q = colimp

i∈I

Hq(F (i); R)⇒ Hp+q(hocolim
i∈I

F (i); R)

Example: For X

G
��

this is the usual spectral sequence
Hp(G ; Hq(X ; R))⇒ Hp+q(EG ×G X ; R).

Applying this to G : Πn → Spaces gives the spectral sequence in the
second part of the Theorem.

G monoidal ⇒ the spectral sequence is multiplicative.
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Kač-Moody groups

Rank 1 parabolics

Recall: K simply connected unitary form of a Kač-Moody group. There is
a surjective homomorphism

∗
B
Pi

π−→ K

where Pi are the minimal parabolics and B is the Borel subgroup.

B deformation retracts to the maximal torus T n.

The minimal parabolics have semisimple rank 1. They deformation retract
(in the simply connected case) to either

T n−1 × SU(2) or T n−2 × U(2).

Want to prove the algebra H∗( ∗
T n

Ki ) with Ki one of the two groups above

is finitely generated.
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Kač-Moody groups

Rank 1 parabolics

Recall: K simply connected unitary form of a Kač-Moody group. There is
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Kač-Moody groups

A cell decomposition of SU(2)

SU(2) =

{[
z1 −z2

z2 z1

]
: |z1|2 + |z2|2 = 1

}
.

has a cell decomposition

e0 ∪ e1 ∪ e2 ∪ e3

with e0 = {1},

e1 =

{[
z1 0
0 z1

]
: |z1| = 1, z1 6= 1

}
e2 =

{
(z1, z2) : 0 ≤ |z1| < 1, z2 =

√
1− |z1|2

}
.

e2 provides a transverse to both right and left actions of S1 on SU(2) \ S1.

e3 = e1e2
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Kač-Moody groups

The homology DGA of SU(2)

The cellular chains form a differential graded algebra

C∗(SU(2); Z) = Z〈x1, z2〉/〈x2
1 , z

2
2 , x1z2 + z2x1〉

with ∂(x1) = 0, ∂(z2) = x1.

T n has an obvious multiplicative cell decomposition. The adapted cell
decomposition for SU(2) gives a multiplicative cell decomposition for ∗

T n
Ki

when Ki are of type T n−1 × SU(2).

This gives a simple formula for the differential graded algebra of cellular
chains C∗( ∗

T n
Ki ; Z) in this case.
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Kač-Moody groups

A simple example

C∗(SU(2)× S1 ∗
T 2

S1 × SU(2); Z) = Z[x1, y1, z2,w2]/J

with J the ideal

J = 〈x2
1 , y

2
1 , z

2
2 ,w

2
2 , x1z2+z2x1, y1w2+w2y1, x1y1+y1x1, z2y1−y1z2,w2x1−x1w2〉,

It follows that

H∗(SU(2)× S1 ∗
T 2

S1 × SU(2); Z) = Z(A3,B3)⊗ Z[C4].

More generally one can prove in this way that the homology is finitely
generated when the factors are all of type T n−1 × SU(2).
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