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Amalgams Definition

Definition of amalgam

¢;: A — G; group homomorphisms. The amalgam XG,- is the colimit of

the diagram:
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Amalgams Definition

Definition of amalgam

¢;: A — G; group homomorphisms. The amalgam szi is the colimit of
the diagram:

Amalgams are familiar from Van Kampen's theorem: X = U U V,

U,V,UNV connected. Then m1(X) =m1(U) *  m(V).
TI‘]_(UﬂV)
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Amalgams Definition

Definition of amalgam

¢;: A — G; group homomorphisms. The amalgam j;G,- is the colimit of
the diagram:

Amalgams are familiar from Van Kampen's theorem: X = U U V,

U,V,UNV connected. Then m1(X) =m1(U) =  m(V).
7T1(UF‘IV)

Aim: Compute the Pontryagin algebra H, <>:\G,-> for ¢; inclusions.
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Examples of amalgams

1. SL(2,Z)=Z/4 * Z
SL(2iZ) = Z/4 3, 76

\/

o= tven

15

Figure: The tree of SL(2;Z).
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Examples of amalgams

1. SL(2,Z)=Z/4 * Z
SL(2iZ) = Z/4 3, 76

~

X

’ — \ [

s

=
[SPE S0

Figure: The tree of SL(2;Z).

)

2. DIff(52 x $2,w) ~ colim(S! x SO(3) — SO(3) 2> SO(3) x SO(3))
if w(S? x1)=1,w(lx S?) €]L,2].
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More examples of amalgams

3. DIff(CP2#CP2,w) ~ colim(U(2) &2 51 BN, oy i

w(CPY) =1,w(E)=X€[L,2].
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More examples of amalgams

3. DIff(CP2#CP2,w) ~ colim(U(2) &2 51 BN, oy i

w(CPY) =1,w(E)=X€[L,2].
4. K simply connected unitary form of a Ka&-Moody group. There is a

surjective homomorphism
s

*P,HK
B

where P; are the minimal parabolics and B is the Borel subgroup
[Ka&-Peterson].
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More examples of amalgams

3. DIff(CP2#CP2,w) ~ colim(U(2) &2 51 BN, oy i

w(CPY) =1,w(E)=X€[L,2].
4. K simply connected unitary form of a Ka&-Moody group. There is a

surjective homomorphism
s

*P,HK
B

where P; are the minimal parabolics and B is the Borel subgroup
[Ka&-Peterson].

The homomorphism 7 induces a surjection on homology [Kitchloo].
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Amalgams Main result

Main theorem

Theorem: Consider the diagram F: | — TopGps described by

A
2N
Gl Gn

Suppose the ¢; are inclusions and the projections G; — G;/A admit local
sections. Then
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Amalgams Main result

Main theorem

Theorem: Consider the diagram F: | — TopGps described by

A
2N
Gl Gn

Suppose the ¢; are inclusions and the projections G; — G;/A admit local
sections. Then

@ The following canonical map is a weak equivalence

hocolim T9PCPS F () — colimToPCPS F () G
iel icl

= X
A
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Amalgams Main result

Main theorem

Theorem: Consider the diagram F: | — TopGps described by

A
2N
Gl Gn

Suppose the ¢; are inclusions and the projections G; — G;/A admit local
sections. Then

@ The following canonical map is a weak equivalence

hocolim T9PCPS F () — colimToPCPS F () G
iel icl

= %
A
@ There is a functor G: I, — Spaces and a spectral sequence of graded
algebras
2 _ .
Ejj = colimjH, G(w) = Hj+k(jG,-).
well,
The homology of amalgams November 24, 2007 6 /20



Remarks on the main Theorem

o If A, G; are discrete this is a well known theorem of J.H.C. Whitehead
in group cohomology.
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Remarks on the main Theorem

o If A, G; are discrete this is a well known theorem of J.H.C. Whitehead
in group cohomology.

@ If in addition to the hypothesis ¢;: A — G; induce inclusions on
homology, part 1 is a theorem of Silvia Anjos and myself (2003).
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Remarks on the main Theorem

o If A, G; are discrete this is a well known theorem of J.H.C. Whitehead
in group cohomology.

@ If in addition to the hypothesis ¢;: A — G; induce inclusions on
homology, part 1 is a theorem of Silvia Anjos and myself (2003).

In this case the E> term of the spectral sequence is concentrated on
the O-line which is given by

EZ’O = cvcvvleil_rPHkG(W) = <H*>|(<A)H*(G;)>k .
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Colimits

A functor F: | — C is called a diagram in C indexed by |I.
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Homotopy colimits

Colimits

A functor F: | — C is called a diagram in C indexed by |I.
The colimit of a diagram F is an object C € C together with morphisms
F(i) kNN satisfying, for all morphisms «: i — j in [,
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Homotopy colimits

Colimits

A functor F: | — C is called a diagram in C indexed by |.
The colimit of a diagram F is an object C € C together with morphisms
F(7) % c satisfying, for all morphisms a.: i — j in /,

\\
F()—~>c-2>D
Examples: Let C = Sets.

@ colim (x LAk v) = (XIIY)/f(a) ~ g(a).

@ For | = G a (discrete) group,

G
)
colim | X~ = X/G.
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The trouble with colimits

They are not homotopy invariant.
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Homotopy colimits

The trouble with colimits

They are not homotopy invariant.
Example: The two diagrams

Sn—lCH. pn 5n—1 > %

| !

* *

are naturally homotopy equivalent.
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Homotopy colimits

The trouble with colimits

They are not homotopy invariant.
Example: The two diagrams

Sn—lCH. pn 5n—1 > %

| !

* *
are naturally homotopy equivalent. Their colimits
s" *

are not homotopy equivalent.
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Homotopy colimits

Let C be a category with a notion of homotopy equivalence (e.g. Spaces,
TopGps, ChJ,g: chain complexes of modules over a ring R).
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Homotopy colimits

Let C be a category with a notion of homotopy equivalence (e.g. Spaces,
TopGps, Ch,= chain complexes of modules over a ring R).

Let C'= category of diagrams in C indexed by /.
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Homotopy colimits

Homotopy colimits

Let C be a category with a notion of homotopy equivalence (e.g. Spaces,
TopGps, ChJRC: chain complexes of modules over a ring R).

Let C'= category of diagrams in C indexed by /.

1st definition of homotopy colimit: hocolim is the terminal homotopy
invariant functor mapping to colim

hocolim

colim
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Homotopy colimits |l

2nd definition of homotopy colimit: To give a map hocolim F(i) — C
iel
consists of giving

@ Foreach i€/, amap¢;: F(i) — C,
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Homotopy colimits |l

2nd definition of homotopy colimit: To give a map hocolim F(i) —
iel
consists of giving
@ Foreach i€/, amap¢;: F(i) — C,
e For each a: i — j, a homotopy F(i) x [0,1] — C between ¢; and
¢j o F(a),
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Homotopy colimits |l

2nd definition of homotopy colimit: To give a map hocolim F(i) — C
iel
consists of giving
@ Foreach i€/, amap¢;: F(i) — C,
e For each a: i — j, a homotopy F(i) x [0,1] — C between ¢; and
¢j o F(a),

e Foreachi % j LN k, homotopies F(i) x A% — C restricting to the
previous homotopies on the edges, etc...
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Homotopy colimits

Homotopy colimits |l

2nd definition of homotopy colimit: To give a map hocolim F(i) — C
consists of giving <!
@ Foreach i€/, amap¢;: F(i) — C,
e For each a: i — j, a homotopy F(i) x [0,1] — C between ¢; and
¢j o F(a),
e Foreachi % j £, k, homotopies F(i) x A% — C restricting to the
previous homotopies on the edges, etc...

This suggests a construction of the homotopy colimit.
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Examples of homotopy colimits of spaces

e hocolim (X £ A& v) =

(XTITAx[0,1]T1Y)/ ((2,0) ~ f(a), (1) ~ g(a')).
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Homotopy colimits

Examples of homotopy colimits of spaces

e hocolim (X £ A& v) =

(XITA X [0,1]]TY)/((a,0) ~ f(a), (a',1) ~ g(a)).
If f or g is a cofibration, the map hocolim — colim is a weak
equivalence.
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(XITA X [0,1]]TY)/((a,0) ~ f(a), (a',1) ~ g(a)).
If f or g is a cofibration, the map hocolim — colim is a weak
equivalence.

G

m| £
@ hocolim | X = EG x¢g X, usually called the Borel

construction, or the homotopy orbit space.
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Examples of homotopy colimits of spaces

e hocolim (X £ A& v) =

(XITA X [0,1]]TY)/((a,0) ~ f(a), (a',1) ~ g(a)).
If f or g is a cofibration, the map hocolim — colim is a weak
equivalence.

G

m| £
@ hocolim | X = EG x¢g X, usually called the Borel

construction, or the homotopy orbit space.
If the action is free the map EG x¢ X — X/G is a weak equivalence.
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Examples of homotopy colimits of spaces

e hocolim (X £ A& v) =

(XITA X [0,1]]TY)/((a,0) ~ f(a), (a',1) ~ g(a)).
If f or g is a cofibration, the map hocolim — colim is a weak
equivalence.

G

| 40
@ hocolim | X = EG x¢ X, usually called the Borel

construction, or the homotopy orbit space.
If the action is free the map EG x¢ X — X/G is a weak equivalence.

@ Inclusions of topological groups are not cofibrations of topological
groups!
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Homotopy colimits of topological groups

Theorem [Kan]: There is an equivalence of homotopy theories
Ho(TopGps) < Ho(ConnectedSpaces)

given by the loop and classifying space functors.
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Proof of theorem

Homotopy colimits of topological groups

Theorem [Kan]: There is an equivalence of homotopy theories

Ho(TopGps) < Ho(ConnectedSpaces)

given by the loop and classifying space functors.

This is how one would usually think of homotopy colimit of topological
groups.
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Proof of theorem

Homotopy colimits of topological groups

Theorem [Kan]: There is an equivalence of homotopy theories
Ho(TopGps) < Ho(ConnectedSpaces)

given by the loop and classifying space functors.

This is how one would usually think of homotopy colimit of topological
groups.

New approach: For n > 2, let I, be the category with
@ Objects: finite ordered sets labeled with n colors

@ Morphisms: order preserving maps preserving the colors.
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Proof of theorem

Homotopy colimits of topological groups

Theorem [Kan]: There is an equivalence of homotopy theories
Ho(TopGps) < Ho(ConnectedSpaces)

given by the loop and classifying space functors.

This is how one would usually think of homotopy colimit of topological
groups.

New approach: For n > 2, let I, be the category with
@ Objects: finite ordered sets labeled with n colors
@ Morphisms: order preserving maps preserving the colors.

I, is a monoidal category with product given by concatenation. The unit
is the empty word.
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Proof of theorem

Homotopy colimits of topological groups Il

Given a diagram of topological groups

N\,

and w = (a1,...,ak) € N, with a; € {1,..., n} define

G(W) = Gal XA Ga2 XA XA Ga,,
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Proof of theorem

Homotopy colimits of topological groups Il

Given a diagram of topological groups

/A\
G G,
and w = (a1,...,ak) € N, with a; € {1,..., n} define

G(W) = Gal XA Ga2 XA XA Ga,,

Define G(w — w’) using multiplication and inclusions.
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Proof of theorem

Homotopy colimits of topological groups Il

Given a diagram of topological groups

N\,

and w = (a1,...,ak) € N, with a; € {1,..., n} define
G(W) = Gal XA Gaz XA XA Ga,,
Define G(w — w’) using multiplication and inclusions.

e colimG(w) = xG;
well, A
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Proof of theorem

Homotopy colimits of topological groups Il

Given a diagram of topological groups

N\,

and w = (a1,...,ak) € N, with a; € {1,..., n} define
G(W) = Gal XA Gaz XA XA Ga,,
Define G(w — w’) using multiplication and inclusions.

e colimG(w) = xG;
well, A

e G:MN,— (A—Spaces — A) is a monoidal functor, hence
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Proof of theorem

Homotopy colimits of topological groups Il

Given a diagram of topological groups

N\,

and w = (a1,...,ak) € N, with a; € {1,..., n} define
G(W) = Gal XA Gaz XA XA Ga,,

Define G(w — w’) using multiplication and inclusions.

e colimG(w) = xG;
well, A
e G: M, — (A—Spaces — A) is a monoidal functor, hence

@ hocolimG(w) is a monoid and the canonical map hocolim — colim is
well,

a map of monoids.
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Proof of theorem

Homotopy colimits of topological groups IlI

Prop: hocolimG(w) is homotopy equivalent to

well,
/ A \
G G,

hocolim ToPGPs
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Proof of theorem

Homotopy colimits of topological groups IlI

Prop: hocohmG(W) is homotopy equivalent to

well,
/A\
Gl Gn

hocolim ToPGPs

Prop: If ¢;: A — G; are inclusions, the map

hocohmG(w) — colimG(w) = t‘G,-

well n Wenn

is a weak equivalence.
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Proof of theorem

Homotopy colimits of topological groups IlI

Prop: hocolimG(w) is homotopy equivalent to

well,
/ A \
G G,

hocolim ToPGPs

Prop: If ¢;: A — G; are inclusions, the map

hocolimG(w) — colimG(w) = *G;
Wenn Wenn A

is a weak equivalence.

This implies the first part of the Theorem.
The homology of amalgams November 24, 2007
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The spectral sequence

Given F: | — Spaces there is a standard spectral sequence

Epq = colimpHq(F(i); R) = Hpsq(hocolimF(i); R)

iel
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The spectral sequence

Given F: | — Spaces there is a standard spectral sequence

Epq = colimpHq(F(i); R) = Hpsq(hocolimF(i); R)

iel

G

Example: For ){> this is the usual spectral sequence
Ho(G; Hg(X; R)) = Hp1q(EG x¢ X; R).

Gustavo Granja (CAMGSD/IST) The homology of amalgams November 24, 2007

16 / 20



The spectral sequence

Given F: | — Spaces there is a standard spectral sequence

Epq = colimpHq(F(i); R) = Hpsq(hocolimF(i); R)

iel

G

Example: For ){> this is the usual spectral sequence
Ho(G; Hg(X; R)) = Hp1q(EG x¢ X; R).

Applying this to G: I1,, — Spaces gives the spectral sequence in the
second part of the Theorem.
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The spectral sequence

Given F: | — Spaces there is a standard spectral sequence

Epq = colimpHq(F(i); R) = Hpsq(hocolimF(i); R)

iel

G

Example: For ){> this is the usual spectral sequence
Ho(G; Hg(X; R)) = Hp1q(EG x¢ X; R).

Applying this to G: I1,, — Spaces gives the spectral sequence in the
second part of the Theorem.

G monoidal = the spectral sequence is multiplicative.
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Kat&-Moody groups

Rank 1 parabolics

Recall: K simply connected unitary form of a Kaé-Moody group. There is
a surjective homomorphism

*P,’LK
B

where P; are the minimal parabolics and B is the Borel subgroup.
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Kat&-Moody groups

Rank 1 parabolics

Recall: K simply connected unitary form of a Kaé-Moody group. There is
a surjective homomorphism

*P,’ 5 K
B
where P; are the minimal parabolics and B is the Borel subgroup.

B deformation retracts to the maximal torus T".
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Kat&-Moody groups

Rank 1 parabolics

Recall: K simply connected unitary form of a Kaé-Moody group. There is
a surjective homomorphism

*P,’ 5 K
B
where P; are the minimal parabolics and B is the Borel subgroup.

B deformation retracts to the maximal torus T".

The minimal parabolics have semisimple rank 1. They deformation retract
(in the simply connected case) to either

Tl SUQ2) or T"2x U(2).
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Rank 1 parabolics

Recall: K simply connected unitary form of a Kaé-Moody group. There is

a surjective homomorphism
*P,’ L K
B

where P; are the minimal parabolics and B is the Borel subgroup.

B deformation retracts to the maximal torus T".

The minimal parabolics have semisimple rank 1. They deformation retract
(in the simply connected case) to either

Tl SUQ2) or T"2x U(2).

Want to prove the algebra H*(7>_z<nK,-) with K; one of the two groups above

is finitely generated.
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A cell decomposition of SU(2)

su@ ={|2 2| P+ lak -1},

22
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A cell decomposition of SU(2)

22

su@ ={|2 2| P+ lak -1},

has a cell decomposition

eOUeluere3
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A cell decomposition of SU(2)

22

su@ ={|2 2| P+ lak -1},

has a cell decomposition
Queluelued

with e = {1},

Gustavo Granja (CAMGSD/IST) The homology of amalgams November 24, 2007

18 / 20



A cell decomposition of SU(2)

22

su@ ={|2 2| P+ lak -1},

has a cell decomposition

eOUeluere3

0
el = {[201 21] : |21|:1,21751}

with e = {1},
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A cell decomposition of SU(2)

su@ ={|2 2| P+ lak -1},

22

has a cell decomposition

eOUeluere3

0
el = {[201 21] : |21|:1,21751}

with e = {1},

e’ = {(21,22)3 0<|z1| <, zn = M}
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A cell decomposition of SU(2)

su@ ={|2 2| P+ lak -1},

22

has a cell decomposition

eOUeluere3

z7 O
61:{[01 21]1|21|:1721751}
e’ = {(21,22)3 0<|z1| <, zn = m}

e? provides a transverse to both right and left actions of S* on SU(2)\ S*.

with e = {1},
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The homology DGA of SU(2)

The cellular chains form a differential graded algebra
C.(SU(2);Z) = Z(x1, 22) | (x2, 23, x120 + zox1)

with 9(x1) = 0,9(22) = xi.
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The cellular chains form a differential graded algebra
C.(SU(2);Z) = Z(x1, 22) | (x2, 23, x120 + zox1)

with 9(x1) = 0,9(22) = xi.

T" has an obvious multiplicative cell decomposition.
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Kat&-Moody groups

The homology DGA of SU(2)

The cellular chains form a differential graded algebra

C.(SU(2);Z) = Z(x1, 22) | (x2, 23, x120 + zox1)

with 9(x1) = 0,9(22) = xi.

T" has an obvious multiplicative cell decomposition. The adapted cell
decomposition for SU(2) gives a multiplicative cell decomposition for k) K;

when K; are of type T"~! x SU(2).
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The homology DGA of SU(2)

The cellular chains form a differential graded algebra
C.(SU(2);Z) = Z(x1, 22) | (x2, 23, x120 + zox1)

with 9(x1) = 0,9(22) = xi.

T" has an obvious multiplicative cell decomposition. The adapted cell
decomposition for SU(2) gives a multiplicative cell decomposition for k) K;

when K; are of type T"~! x SU(2).

This gives a simple formula for the differential graded algebra of cellular
chains C*(7>|_<HK,-;Z) in this case.
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A simple example

C.(SU(2) x St kA S x SU(2);Z) = Z[x1, y1, 22, wa]/J
with J the ideal

2 2 2 9
J = (x{,yi, 25, W5, X120+ 2oX1, yiWa+Woy1, X1Y1+Y1X1, ZoY1— Y122, WaX] —X1 W
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Kat&-Moody groups

A simple example

C.(SU(2) x St kA S x SU(2);Z) = Z[x1, y1, 22, wa]/J

with J the ideal

2 2 2 9
J = (x{,yi, 25, W5, X120+ 2oX1, yiWa+Woy1, X1Y1+Y1X1, ZoY1— Y122, WaX] —X1 W

It follows that

H.(SU(2) x St %, S x SU(2); Z) = Z(As, B3) @ Z[C4].
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Kat&-Moody groups

A simple example

C.(SU(2) x St kA S x SU(2);Z) = Z[x1, y1, 22, wa]/J

with J the ideal

2 2 2 9
J = (x{,yi, 25, W5, X120+ 2oX1, yiWa+Woy1, X1Y1+Y1X1, ZoY1— Y122, WaX] —X1 W

It follows that

H.(SU(2) x St %, S x SU(2); Z) = Z(As, B3) @ Z[C4].

More generally one can prove in this way that the homology is finitely
generated when the factors are all of type T"1 x SU(2).
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