
P.B. Vasconcelos
U. PORTO

FEP $\begin{gathered}\text { faculdade de economia } \\ \text { universidade do porto }\end{gathered}$

Tardes de Matemática SPM/CIM, 21.10.2006
Análise Numérica

Aim

- In this work we consider the numerical solution of a radiative transfer equation for modeling the emission of photons in stellar atmospheres. APPLICATION
- Mathematically, the problem is formulated in terms of a weakly singular Fredholm integral equation defined on a Banach space. MATHEMATICS
- Computational approaches to solve the problem are discussed, using direct and iterative strategies that are implemented in open source packages. COMPUTATIONS

Outline

- Description of the astrophysics problem
- Numerical approach
- Projection method: Kantorovich
- Matrix formulation
- Approximate solution:
- iterative refinement methods
- state-of-the-art numerical linear algebra algorithms
- open source libraries
- Numerical results
- Conclusions

Description of the astrophysics problem

- Solve radiative transfer equation in stellar atmospheres

$$
T \varphi=z \varphi+f \quad \text { Fredholm integral equation } 2^{\text {nd }} \text { kind }
$$

- T integral operator defined on $X=L^{1}(I), I=\left[0, \tau^{*}\right]$

$$
(T x)(\tau)=\int_{\tau^{*}} g\left(\left|\tau-\tau^{\prime}\right|\right) x\left(\tau^{\prime}\right) d \tau^{\prime}
$$

$-\tau$ is the optical depth of a stellar atmosphere
$-\tau^{*}$ optical thickness of the atmosphere
$-z$ is on the resolvent set of T
$-f \in L^{1}(I)$ is the source term

Description of the astrophysics problem

- g is the kernel defined by $g(\tau):=\frac{\varpi}{2} E_{1}(\tau), 0<\tau \leq \tau^{*}$
$-\varpi \in] 0,1[$ is the albedo and
- E_{1} is the first exponential-integral function and it belongs to the family

$$
\begin{aligned}
& E_{v}(\tau):=\int_{1}^{\infty} \frac{\exp (-\tau \mu)}{\mu^{v}} d \mu, \tau>0, v \geq 1 \\
& E_{v+1}^{\prime}(\tau)=-E_{v}(\tau) ; E_{\nu}(0)=\frac{1}{v-1}, v>1
\end{aligned}
$$

-g is weakly singular in the sense that
$\left.\lim _{\tau \rightarrow 0^{+}} g(\tau)=+\infty ; g \in C^{0}\left(0, \tau^{*}\right]\right) \cap X ; \sup _{\tau \in\left[0, \tau^{*}\right]} \int_{0}^{\tau^{*}} g\left(\mid \tau-\tau^{\prime}\right) d \tau^{\prime}<\infty$ $g(\tau)>0$ for all $\left.\tau \in] 0, \tau^{*}\right] ; g$ decreasing function on $\left.] 0, \tau^{*}\right]$

Projection method: Kantorovich

- Approximate $T \varphi=z \varphi+f$ by $T_{n} \varphi_{n}=z \varphi_{n}+f$
- consider a grid $0=\tau_{n, 0}<\tau_{n, 1}<\cdots<\tau_{n, n-1}<\tau_{n, n}=\tau^{*}$
- define

$$
X_{n}=\operatorname{span}\left\{e_{n, j}, j=1, \ldots, n\right\}, e_{n, j} \in X
$$

- Let π_{n} be the projection op. $\pi_{n} x=\sum_{j=1}^{n}\left\langle x, e_{n, j}^{*}\right\rangle e_{n, j}$
$T_{n} x=\pi_{n} T x=\sum_{j=1}^{n}\left\langle x, T^{*} e_{n, j}^{*}\right\rangle e_{n j}$
- where $e_{n, j}^{*}$ is the adjoint basis of $e_{n, j}$ in X^{*}

JCAM 140 (2002) 13-26

Matrix formulation

- The solution of the approximate problem

$$
T_{n} \varphi_{n}=z \varphi_{n}+f
$$

- leads to the solution of a linear system with n eq's and n unknowns

$$
\left(A_{n}-z I_{n}\right) x_{n}=b_{n}
$$

$-A_{n}$ is the restriction of T_{n} to $X_{n}: A_{n}=\left(\left\langle e_{n, j}, T^{*} e_{n, i}^{*}\right\rangle\right)_{i, j=1}^{n}$

$$
b_{n}=\left(\left\langle f, T^{*} e_{n, i}^{*}\right\rangle\right)_{i=1}^{n} \quad x_{n}=\left(\left\langle\varphi_{n}, T^{*} e_{n, i}^{*}\right\rangle\right)_{i=1}^{n}
$$

- we recover φ_{n} from x_{n} by $\varphi_{n}=\frac{1}{z}\left(\sum_{j=1}^{n} x_{n}(j) e_{n, j}-f\right)$

Error estimates

$$
\text { for } n \text { large enough: } \frac{\left\|\varphi-\varphi_{n}\right\|_{1}}{\|\varphi\|_{1}} \leq \frac{8 c_{0}(z)}{q_{n}} \int_{0}^{h_{n}} g(\tau) d \tau
$$

$$
\exists n_{0}: \quad c_{0}(z)=\sup _{n>n_{0}}\left\|R_{n}(z)\right\|_{1}
$$

h_{n} max. amplit. of subintervals, $\mu_{n} \quad$ min. amplit. of subintervals

$$
q_{n}=\mu_{n} / h_{n}
$$

Error estimates

for n large enough:

$$
\begin{gathered}
\frac{\left\|\varphi-\varphi_{n}\right\|_{1}}{\|\varphi\|_{1}} \leq c\left(1-E_{2}\left(h_{n}\right)\right)=O\left(-h_{n} \ln h_{n}\right) \\
c \leq \frac{10}{q}\left(1+\frac{1}{q}\right)\left\|(T-I)^{-1}\right\|_{1} \\
q=\inf _{g r i d} \frac{\min \left\{h_{n, i}: i=1, \ldots, n\right\}}{h_{n}} \\
d_{n, i, j}=\left|\tau_{n, i}-\tau_{n, j}\right| ; h_{n, i}=d_{n, i, i-1} \\
h_{n}=\text { max. amplit. of subintervals }
\end{gathered}
$$

Matrix coefficients: A_{n}

$\operatorname{grid}\left(\tau_{n, j}\right)_{j=0}^{n}$ defined on $\left[0, \tau^{*}\right], \quad$ for $i, j \in[1, n]$
$A_{n}(i, j)=\frac{\varpi}{2 h_{n, i}} \int_{\tau_{n, i-1}}^{\tau_{n, i}} \int_{0}^{\tau^{*}} E_{1}\left(\left|\tau-\tau^{\prime}\right|\right) e_{n, j}\left(\tau^{\prime}\right) d \tau^{\prime} d \tau$

$$
\begin{aligned}
&=\left\{\begin{array}{l}
\frac{\varpi}{2 h_{n, i}}\left[E_{3}\left(d_{n, i-1, j}\right)-E_{3}\left(d_{n, i-1, j-1}\right)+E_{3}\left(d_{n, i, j-1}\right)-E_{3}\left(d_{n, i, j}\right)\right], i \neq j \\
\varpi\left(1+\frac{1}{h_{n, j}}\left[E_{3}\left(h_{n, j}-\frac{1}{2}\right)\right]\right), i=j
\end{array}\right. \\
& d_{n, i, j}=\left|\tau_{n, i}-\tau_{n, j}\right|, i, j \in[0, n] \quad h_{n, j}=\tau_{n, j}-\tau_{n, j-1}, j \in[1, n]
\end{aligned}
$$

RHS coefficients

for $i \in[1, n]$
$b_{n}(i)=\frac{\varpi}{2 h_{n, i}} \int_{\tau_{n, i-1}}^{\tau_{n, i}} \int_{0}^{\tau^{*}} E_{1}\left(\left|\tau-\tau^{\prime}\right|\right) f\left(\tau^{\prime}\right) d \tau^{\prime} d \tau, \quad f(\tau)=\left\{\begin{array}{rll}-1 & \text { if } & 0 \leq \tau \leq \frac{\tau^{*}}{2} \\ 0 & \text { if } & \frac{\tau^{*}}{2}<\tau \leq \tau^{*}\end{array}\right.$

Typical coefficient matrix

$$
A_{n}-z I_{n}, \quad z=1
$$

band and sparse matrix

strong decay in magnitude from the diagonal

Approximate solution

- How to solve $T_{n} \varphi_{n}=z \varphi_{n}+f$ when the associated coefficient matrix $A_{n}-z I_{n}$ has large dimension?
- one can use:
- direct methods,
- preconditioned nonstationary iterative methods, or
- iterative refinement method (defect correction):

$$
\left\{\begin{array}{c}
\text { given } x^{(0)} \\
x^{(k+1)}=x^{(k)}-(T-z I)^{-1}\left(T x^{(k)}-z x^{(k)}-f\right)
\end{array}\right.
$$

- sequential or parallel computations

Iterative refinement methods

- Jacobian $(T-z I)^{-1}$ can be approximated by
- scheme A (Atkinson's algorithm): $\quad R_{n}(z)=\left(T_{n}-z I\right)^{-1}$
- scheme B (Brakhage's algorithm): $\left(T\left(T_{n}-z I\right)^{-1}-I\right) / z$
- scheme C (Ahues algorithm): $\quad\left(\left(T_{n}-z I\right)^{-1} T-I\right) / z$

Iterative refinement methods: error estimates

for n large enough: $\frac{\left\|\varphi-x^{(k)}\right\|_{1}}{\|\varphi\|_{1}} \leq\left(\frac{c_{1}(z)}{q_{n}} \int_{0}^{h_{n}} g(\tau) d \tau\right)^{k+1}$

$$
\begin{aligned}
\exists n_{0}: \quad c_{0}(z)=\sup _{n>n_{0}} \| & R_{n}(z) \|_{1} \\
& c_{1}(z)=8 c_{0}(z) \max \left\{1,\|T\|_{1} / z\right\}
\end{aligned}
$$

h_{n} max.amplit. of subintervals,
$\mu_{n} \quad$ min. amplit. of subintervals, $\quad q_{n}=\mu_{n} / h_{n}$

Iterative refinement methods: error estimates

for n large enough:

$$
\begin{aligned}
\frac{\left\|\varphi-x^{(k)}\right\|_{1}}{\|\varphi\|_{1}} & \leq\left\|\left[R_{n}(z)\left(T-T_{n}\right)\right]^{k+1}\right\| & \text { scheme A } \\
\ldots & \leq\left\|\left[\frac{1}{z} R_{n}(z)\left(T-T_{n}\right) T\right]^{k+1}\right\| & \text { scheme B } \\
\ldots & \leq\left\|\left[\frac{1}{z} T R_{n}(z)\left(T-T_{n}\right)\right]^{k+1}\right\| & \text { scheme } \quad \text { C }
\end{aligned}
$$

Scheme A: $\left\{\begin{array}{l}x^{(0)}=\varphi_{n}=R_{n}(z) f \\ x^{(k+1)}=x^{(0)}+R_{n}(z)\left(T_{n} x^{(k)}-T x^{(k)}\right), \quad k \geq 0\end{array}\right.$
Scheme B: $\int x^{(0)}=\frac{1}{z}\left(R_{n}(z) T-I\right) f$

$$
\left\{x^{(k+1)}=x^{(0)}+\frac{1}{z}\left(R_{n}(z) T-I\right)\left(T_{n} x^{(k)}-T x^{(k)}\right), \quad k \geq 0\right.
$$

Scheme C:

$$
\left\{\begin{aligned}
x^{(0)} & =\frac{1}{z}\left(T R_{n}(z)-I\right) f \\
x^{(k+1)} & =x^{(0)}+\frac{1}{z}\left(T R_{n}(z)-I\right)\left(T_{n} x^{(k)}-T x^{(k)}\right), \quad k \geq 0
\end{aligned}\right.
$$

Iterative refinement methods

- In practice T is not used. The problem is restricted the to $X_{m}, m \gg n$, considering a finer projection discretization of T, T_{m}
- T_{m} restricted to X_{m} :
$A_{m}=\left(\left\langle e_{m, j}, T^{*} e_{m, i}^{*}\right\rangle\right)_{i, j=1}^{m} \quad(m \times m)$
- T_{m} restricted to X_{n} :

$$
C=\left(\left\langle e_{m, j}, T^{*} e_{n, i}^{*}\right\rangle\right)_{i, j=1}^{n, m} \quad(n \times m)
$$

- T_{n} restricted to $X_{m}: \quad D=\left(\left\langle e_{n, j}, T^{*} e_{m, i}^{*}\right\rangle\right)_{i, j=1}^{m, n} \quad(m \times n)$

Matrix coefficients: A_{m}, C and D

- Matrix A_{m} computed similarly to A_{n}
- We can compute matrices C and D :
- through the integral formulation (similar to A_{n} and A_{m})
- or by doing some matrix computations using A_{m}
$C=R A_{m}, \quad R(i, k)=\left\{\begin{array}{cc}\frac{h_{m, k}}{h_{n, i}} & r \times(i-1)+1 \leq k \leq r \times i \\ 0 & \text { otherwise }\end{array}\right.$
$D=A_{m} P, \quad P(k, j)=\left\{\begin{array}{cc}1 & r \times(j-1)+1 \leq k \leq r \times j \\ 0 & \text { otherwise }\end{array}\right.$

$$
r=\frac{m}{n}
$$

Atkinson's scheme

Problem specification

- grid τ^{*} : nonuniform grid (4 zones)
- parameters: $z=1, ~ \varpi=0.75$, tol : $\varepsilon \leq 10^{-7}$ and $\varepsilon \leq 10^{-12}$
- data:
- sparse and band structures
- machine:
- PIV 2.4 GHz CPU with 256 MB RAM.
- software:
- F77 \& F95, LAPACK, BLAS
- Iterative refinement formulæ are competitive with the nonstationary iterative methods (based on Krylov subspaces) applied directly to the large linear system.
- For dense matrix discretizations all three iterative refinement schemes are faster than Krylov methods and than LU factorization even for small values of m.
- In the sparse case, for which Krylov methods are very well suited, iterative refinement execution times are comparable or even better in some cases (lower residual tolerances).
- And what about parallel computations?

Data distribution

- Distributed memory environement with p processors: $p=0, \ldots, p-1$

Matrix coefficients: C

Matrix coefficients: D

$$
D=A_{m} P, \quad P(k, j)=\left\{\begin{array}{lc}
1 & r \times(j-1)+1 \leq k \leq r \times j \\
0 & \text { otherwise }
\end{array}\right.
$$

Matrix coefficients: \boldsymbol{D}

$$
\begin{aligned}
& D(i, j)=\frac{\sigma}{2 h_{m, i}} \int_{\tau, i, 1}^{\tau_{m, i}} \int_{\tau, j,-1}^{\tau_{n, j i}} E_{1}\left(\left|\tau-\tau^{\prime}\right|\right) d \tau^{\prime} d \tau \\
& {\left[\frac { \sigma } { 2 h _ { m , i } } \left[-E_{3}\left(\tau_{n, j}-\tau_{m, i}\right)+E_{3}\left(\tau_{n, j}-\tau_{m, i-1}\right)+E_{3}\left(\tau_{n, j-1}-\tau_{m, i}\right)-\right.\right.} \\
& \left.-E_{3}\left(\tau_{n, j-1}-\tau_{m, i-1}\right)\right] \quad, \quad \tau_{m, i-1} \leq \tau_{m, i} \leq \tau_{n, j-1} \leq \tau_{n, j} \\
& =\left\{\frac { \varpi } { 2 h _ { m , i } } \left[-E_{3}\left(\tau_{m, i}-\tau_{n, j}\right)+E_{3}\left(\tau_{m, i-1}-\tau_{n, j}\right)+E_{3}\left(\tau_{m, i}-\tau_{n, j-1}\right)+\right.\right. \\
& \begin{array}{c}
\left.-E_{3}\left(\tau_{m, i-1}-\tau_{n, j-1}\right)\right], \quad \tau_{n, j-1} \leq \tau_{n, j} \leq \tau_{m, i-1} \leq \tau_{m, i} \\
{\left[1+\frac{1}{2 h_{m, i}}\left(-E_{3}\left(\tau_{n, j}-\tau_{m, i}\right)+E_{3}\left(\tau_{n, j}-\tau_{m, i-1}\right)+E_{3}\left(\tau_{m, i}-\tau_{n, j-1}\right)-\right.\right.} \\
\left.\left.-E_{3}\left(\tau_{m, i-1}-\tau_{n, j-1}\right)\right)\right], \quad \tau_{n, j-1} \leq \tau_{m, i-1} \leq \tau_{m, i} \leq \tau_{n, j}
\end{array}
\end{aligned}
$$

may lead to scability problems
Atkinson's parallel scheme
for large number of processors

- grid τ^{*} : nonuniform grid (4 zones)
- parameters: $z=1, ~ \varpi=0.75$, tol $: \varepsilon \leq 10^{-12}$
- Machine located at FEUP ${ }^{\text {(out of service) }}$
- Beowulf cluster: 20 PIII 450 MHz processors (128 Mb RAM) connected via fast Ethernet switch (100 Mpbs)
- software:
- MPI, F77 \& F95, LAPACK, SPARSEKIT2

Nb. of iterations and elapsed times
 for the 3 iterative refinement methods

- $m=10000, n=1000$
scheme A scheme B scheme C

p	43 iterations	21 iterations	21 iterations
1	3472.7	3472.4	3472.2
2	1749.4	1749.0	1748.9
4	885.0	884.4	884.4
5	714.1	713.6	713.6
10	375.3	375.1	375.1

- $m=100000, n=5000$

20	14859.7	14855.0	14854.2

- $m=10000, n=1000$
$S_{p}=\frac{t_{1}}{t_{p}} ; \quad E_{p}=\frac{S_{p}}{p} ; \quad t_{p}=$ elapsed time using p processors

	schemes A, B and C	
p	S_{p}	E_{p}
1	1	1.00
2	1.99	0.99
4	3.93	0.98
5	4.86	0.97
10	9.26	0.93

Speedup up to 10 processors
for the 3 iterative refinement methods
$t_{p}=$ elapsed time using p processors
$S_{p}=\frac{t_{1}}{t_{p}}$
$m=10000$
$\frac{m}{n}=10$

- Isoefficiency or isogranularity (ScaLAPACK sense)
- a constant memory use per node allows efficiency to be maintained
time for several
size problems
using up to 20
processors
$\frac{m}{n}=20$

Solving the problem in the m-D space

- We can solve $T_{m} \varphi_{m}=z \varphi_{m}+f$ for the finer grid approximated matricial problem $A_{m}-z I_{m}=b_{m}$
- Our goal is to experiment with robust and portable algorithm implementations from the:

ACTS Collection - Advanced CompuTational Software

- LBNL and DOE
- Direct methods: SuperLU
- Preconditioned nonstationary iterative methods: PETSc

Problem specification

- grid τ^{*} : nonuniform grid (4 zones)
- parameters: $z=1, ~ \varpi=0.75$ and $\varpi=0.9$; tol: $\varepsilon \leq 10^{-12}$
- machines located at LBNL/NERSC
- SGI Altix 350: 32 64-bit 1.4 GHz Intel Itanium-2 processors, with 192

GBytes of shared memory

- AMD Opteron Cluster: 356 dual-processor nodes, $2.2 \mathrm{GHz} /$ node, 6 $\mathrm{GB} /$ node, interconnected with a high-speed InfiniBand network
- IBM SP: 380 compute nodes with 16 Power 3+ processors/node, 16 GB memory/node
- machine located at IRIC.UP
- AMD Opteron Cluster: 24 64-bit dual-processor nodes, 2.4 Ghz/node, $4 \mathrm{~GB} /$ node, interconnected with a Gigabit Ethernet
- software:
- MPI, F77 \& F95, LAPACK, SPARSEKIT2, SuperLU, PETSc

Normalized times for the generation phase and system solution for various matrix sizes (m), on the SGI Altix and using SuperLU

$\varpi=0.75$	generation	solution	
		factor	solve
1000	$3.26 \mathrm{E}+03$	$6.95 \mathrm{E}+01$	$1.00 \mathrm{E}+00$
2000	$2.12 \mathrm{E}+04$	$1.65 \mathrm{E}+02$	$3.00 \mathrm{E}+00$
4000	$9.71 \mathrm{E}+04$	$3.59 \mathrm{E}+01$	$6.00 \mathrm{E}+00$
8000	$4.26 \mathrm{E}+05$	$7.51 \mathrm{E}+02$	$1.80 \mathrm{E}+01$
16000	$1.80 \mathrm{E}+06$	$1.54 \mathrm{E}+03$	$3.00 \mathrm{E}+01$
32000	$7.36 \mathrm{E}+06$	$3.12 \mathrm{E}+03$	$5.35 \mathrm{E}+01$

Normalized times and nb. it. for various matrix sizes (m) on up to 32 processors (p), on the Opteron cluster and using PETSc a constant memory use per node allows efficiency to be maintained				
$\varpi=0.75$		generation	GMRES	BiCGStab
m	p		22 iterations	14 iterations
10000	1	$5.40 \mathrm{E}+03$	$7.54 \mathrm{E}+00$	$7.95 \mathrm{E}+00$
	2	$2.67 \mathrm{E}+03$	$4.02 \mathrm{E}+00$	$4.58 \mathrm{E}+00$
	4	$1.39 \mathrm{E}+03$	$2.32 \mathrm{E}+00$	$2.56 \mathrm{E}+00$
	8	$6.90 \mathrm{E}+02$	$1.80 \mathrm{E}+00$	$1.97 \mathrm{E}+00$
	16	$3.51 \mathrm{E}+02$	$1.15 \mathrm{E}+00$	$1.25 \mathrm{E}+00$
	32	$1.79 \mathrm{E}+02$	$1.15 \mathrm{E}+00$	$1.36 \mathrm{E}+00$
25000	4	$8.41 \mathrm{E}+03$	$5.42 \mathrm{E}+00$	$5.61 \mathrm{E}+00$
		$4.28 \mathrm{E}+03$	$3.02 \mathrm{E}+00$	$3.15 \mathrm{E}+00$
	16	$2.16 \mathrm{E}+03$	$2.05 \mathrm{E}+00$	$1.83 \mathrm{E}+00$
	32	$1.07 \mathrm{E}+03$	$1.00 \mathrm{E}+00$	$1.15 \mathrm{E}+00$
50000	16	$8.57 \mathrm{E}+03$	$3.14 \mathrm{E}+00$	$3.20 \mathrm{E}+00$
		$4.24 \mathrm{E}+03$	$1.53 \mathrm{E}+00$	$1.86 \mathrm{E}+00$
$1.00 E+00=5.9 E-02$				

Speedup up to 32 processors on the Opteron cluster

$t_{p}=$ elapsed time using p processors
$S_{p}=\frac{t_{1}}{t_{p}}$
$m=10000$

- Compared to Iterative Refinement Techniques, the approach using parallel nonstationary iterative methods (GMRES, BiCGstab from PETSc), and for $m=50000$ and $p=5$
- leads to 40% savings in time in the generation phase
- reduces the number of communications required for mapping the coarse problem into the fine one
- up to 5 x for Atkinson and
- up to 4 x for Brakhage and Ahues' schemes
- To improve the performance of IRM:
- parallelize the moderate size dimensional system (n - D linear systems)
- explore the performance of 32 bit floating point arithmetic to obtain 64 bit accuracy $=>$ mixed-precision iterative refinement

Conclusions

- We discussed the numerical solution of a radiative transfer equation for modelling the emission of photons in stellar atmospheres.
- A good knowledge of the:
- mathematics of the problem,
- numerical methods, as well as,
- computational aspects,
were crucial for the implementation of an efficient and reliable solution.
- The parallelization of the generation phase greatly reduces the computation time and enables the solution of large dimensional problems.
- The selection of appropriate linear solvers is important for delivering performance and portability. The use of state-of-the-art linear algebra building blocks can ensure this task.
- Further work: using iterative refinement techniques and developing new algorithms for spectral computations

Main references

- M. Ahues, F. D. d'Almeida, A. Largillier, O. Titaud and P. Vasconcelos

An L^{1} refined projection approximate solution of the radiation transfer equation in stellar atmospheres
J. Comput. Appl. Math., 140 13-26, 2002

- P.B. Vasconcelos and F. D. d'Almeida

A Parallel Code for Integral Equations on a Cluster of Computers
Integral methods in Science and Engineering: Analytic and Numerical, Techniques, Birkhaüser, 261-266, 2004

- B. Rutily

Multiple scattering theoretical and integral equations
Integral methods in Science and Engineering: Analytic and Numerical, Techniques, Birkhaüser, 211-231, 2004

- L.A. Drummond and O. Marques

An Overview of the Advanced CompuTational Software (ACTS) Collection ACM TOMS, 31:282-301, 2005

- P.B. Vasconcelos and F. D. d'Almeida

Performance evaluation of a parallel algorithm for a radiative transfer problem LNCS, 3732: 864-871, 2006

- M. Ahues, F. D. d'Almeida, A. Largillier, O. Titaud and P. Vasconcelos Defect correction for spectral computations for a singular integral operator Comm. on Pure and Appl. Anal., 5:2, 241-250, 2006

