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Heavy-tailed models are quite useful in several areas of application,

like computer science, telecommunication networks, insurance and

finance, among others. Power laws, such as the Pareto income

distribution [Pareto, 1965] and the Zipf’s law for city-size distribution,

[Zipf, 1941], have been observed a few decades ago in some important

phenomena in economics and biology and have seriously attracted

scientists in recent years.

In Statistics of Extremes, a model F is said to be heavy-tailed

whenever, for some γ > 0,

F := 1− F ∈ RV−1/γ ⇐⇒ U ∈ RVγ, with U(t) = F←(1− 1/t).

The notation RVα stands for the class of regularly varying functions

at infinity with index of regular variation equal to α, i.e., positive

measurable functions g such that lim
t→∞

g(tx)/g(t) = xα, for all x > 0.
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Then, we are in the domain of attraction for maxima of an Extreme

Value distribution function (d.f.),

EVγ(x) = exp(−(1 + γx)−1/γ), x ≥ −1/γ,

and we write F ∈ DM(EVγ>0). The parameter γ is the tail index,

the primary parameter of extreme events.

For the semi-parametric estimation of the tail index γ we need to

work with an intermediate number k of top order statistics (o.s.’s),

i.e., we should consider a sequence of integers k = kn, k ∈ [1, n),

such that

k = kn →∞, and kn = o(n), as n→∞.
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• In Statistics of Extremes, inference is often based on the ex-

cesses over a high random threshold Xn−k:n, represented by

Wik := Xn−i+1:n −Xn−k:n, 1 ≤ i ≤ k < n,

where Xi:n denotes, as usual, the i-th ascending o.s., 1 ≤ i ≤ n,
associated to a random sample (X1, X2, · · · , Xn).
• These excesses are approximately distributed as the whole set

of order statistics associated with a sample from a Generalized

Pareto (GP) model, with d.f.

GP (x; γ, α) = 1− (1 + α x)−1/γ , x > 0 (α, γ > 0),

a re-parametrization due to Davison [Davison, 1984]. Indeed,

αWik ≈ Y
γ
k−i+1:k − 1,

with Y a unit Pareto r.v., with d.f. FY (y) = 1− 1/y, y ≥ 1.
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• We then get the so-called “maximum likelihood” (ML) extreme

value index estimators [Smith, 1987; Drees, Ferreira and de Haan, 2004].

The ML estimator of γ has, with Davison’s re-parametrization,

an explicit expression as a function of the ML-estimator α̂ = α̂ML

of α and the sample of the excesses. We have

γ̂ML
n (k) = γ̂ML

n,α̂ (k) :=
1

k

k∑
i=1

ln (1 + α̂ Wik) ,

the PORT-ML tail index estimator, with PORT standing for

peaks over random threshold, a terminology introduced in Araújo

Santos, Fraga Alves and Gomes (2006).

• Dealing with heavy tails only, we are interested in the derivation

of the asymptotic distributional properties of a similar maximum

likelihood estimator, based also on the excesses over a high

random threshold, but with a trial of accommodation of bias on

the GP model underlying those excesses. 4



An obvious choice for an estimator of α is 1/Xn−k:n. If we consider

α̂ = 1/Xn−k:n,

1 + α̂ Wik = Xn−i+1:n/Xn−k:n,

and

γ̂ML
n,α̂ (k) :=

1

k

k∑
i=1

ln (1 + α̂ Wik)

=
1

k

k∑
i=1

{
lnXn−i+1:n − lnXn−k:n

}
=:

1

k

k∑
i=1

Vik

is the average of the log-excesses Vik, 1 ≤ i ≤ k, i.e., it is the

classical Hill estimator [Hill, 1975], denoted by γ̂Hn (k).
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Gomes, de Haan and Henriques Rodrigues (2008) suggested the use of an

adequate weighting of the log-excesses Vik instead of the Hill es-

timator. Analagously, we shall show here that there exist weights

pik = pik(β, ρ), converging towards 1, as k → ∞, dependent on a

vector of second order unknown parameters (β, ρ) ∈ R \ {0} × R−,
and such that, uniformly in i,

αWik −
(
Y
γ/p

ik
k−i+1:k − 1

)
= op

(
αWik −

(
Y
γ
k−i+1:k − 1

))
.

The validity of this result leads us to expect to possibly be able to

get a “better” estimator of γ if we apply the approximation

αWik ≈ Y
γ/p

ik
k−i+1:k − 1 instead of αWik ≈ Y

γ
k−i+1:k − 1, 1 ≤ i ≤ k,

used to support the PORT-ML.
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The maximization of the log-likelihood associated to the k excesses,

Wik, 1 ≤ i ≤ k, leads us to suggest the replacement of the PORT-ML

estimator by a weighted combination of the statistics ln(1+ α̂Wik),

1 ≤ i ≤ k, i.e., by

γ̂MP
n (k) ≡ γ̂MP

n,α̂,β̂,ρ̂
(k) :=

1

k

k∑
i=1

pik(β̂, ρ̂) ln(1 + α̂MPWik),

here called the PORT-MP tail index estimator, with MP standing

for modified Pareto. The estimators (β̂, ρ̂) need to be adequate con-

sistent estimators of the second order parameters (β, ρ), essentially

such that ρ̂− ρ = op(1/ lnn), as n→∞.
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• We shall present a few introductory details in the field of statis-

tics of extremes and introduce the new class of PORT-MP tail

index estimators.

• We further provide a motivation for their consideration,

assuming that all the model parameters, but the tail index γ,

are known.

• One of the interesting problems to be dealt with is related with

the estimation of the second order parameters β and ρ. We shall

only briefly review the estimation of the second order parame-

ters.
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• The asymptotic behaviour of the PORT-MP estimator, to-

gether with the asymptotic comparison of the PORT-ML and

the PORT-MP estimators at optimal levels, will be considered.

• We shall show the performance of the new PORT-MP esti-

mator, comparatively to the classical PORT-ML estimator,

through the use of simulation techniques.

• Finally, if time allows, we shall provide an overall comparison at

optimal levels of a few comparable tail index estimators.
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First and second order framework. In a context of heavy tails,

and with the notation

U(t) = F←(1− 1/t), t ≥ 1, F←(y) = inf{x : F (x) ≥ y}

the generalized inverse function of the underlying model F , the first

order parameter (or tail index) γ (> 0) appears, for every x > 0, as

the limiting value, as t→∞, of the quotient

γ = lim
t→∞

lnU(tx)− lnU(t)

lnx
[de Haan, 1970].

Indeed, with the usual notation RVα for the class of regularly varying

functions with index of regularly variation α, we can further say

F ∈ D(EVγ>0) ⇐⇒ U ∈ RVγ ⇐⇒ 1− F ∈ RV−1/γ [Gnedenko, 1943].
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In order to obtain information on the asymptotic behaviour of semi-

parametric tail index estimators, we need further assuming a second

order condition, ruling the rate of convergence in the first order

condition. The second order parameter, ρ (≤ 0), rules such a rate

of convergence, and is the parameter appearing in

lim
t→∞

lnU(tx)− lnU(t)− γ lnx

A(t)
=
xρ − 1

ρ
,

which we often assume to hold for every x > 0, and where |A| must

then be in RVρ [Geluk and de Haan, 1987]. This condition has been

widely accepted as an appropriate condition to specify the tail of

a Pareto-type distribution in a semi-parametric way, and it holds

for most common Pareto-type models. For technical simplicity, we

shall further assume that ρ < 0.
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Unless otherwise stated, we shall assume that we are working in

Hall-Welsh class of models [Hall and Welsh, 1985], with a tail function

F (x) := 1− F (x) =
(
x

C

)−1/γ(
1 +

β

ρ

(
x

C

)ρ/γ
+ o(xρ/γ)

)
, as x→∞,

with C > 0, β 6= 0 and ρ < 0. Equivalently, we can say that, with

(β, ρ) a vector of second order parameters, the general second order

condition holds with

A(t) = γ β tρ, ρ < 0.

Models like the log-gamma and the log-Pareto (ρ = 0) are thus

excluded from our study. The standard Pareto is also excluded.

But most heavy-tailed models used in applications, like the Fréchet,

the generalized Pareto, the Burr and the Student’s t d.f.’s belong

to Hall-Welsh class of distributions.
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Excesses over a high threshold and the GP model. On the basis

of the definition of U and the universal uniform transformation, we

get Xi:n
d
= U(Yi:n) again with Y a unit Pareto r.v. As for j > i,

Yj:n/Yi:n
d
= Yj−i:n−i, lnYi:n

d
= Ei:n,

where E denotes a standard exponential r.v., and Yn−k:n
p∼ n/k, we

may indeed write, whenever we are under the first order framework,

Wik
d
= Xn−k:n

{
U(Yn−i+1:n)

U(Yn−k:n)
− 1

}
p∼ U(n/k)

{
Y
γ
k−i+1:k − 1

}
.

Then, with α = 1/U(n/k) (and here is the justification for a possible

choice α̂ = 1/Xn−k:n), we have for intermediate k,

Wik = Xn−i+1:n −Xn−k:n ≈
(
Y
γ
k−i+1:k − 1

)
/α, 1 ≤ i ≤ k,

i.e., as mentioned before, the k excesses Wik, 1 ≤ i ≤ k, are approx-

imately the k o.s. from the above mentioned GP model. 13



Accommodating bias in the Paretian excesses. Under the gen-

eral second order framework, we may say that, for 1 ≤ i ≤ k,

α Wik
d
= Y

γ
k−i+1:k − 1 +A(n/k)Y γk−i+1:k

Y
ρ
k−i+1:k − 1

ρ
(1 + op(1)).

The use of Taylor’s formula for ex, as x → 0, and lnx, as x → 1,

enables us to rewrite this equation as

1 + α Wik
d
= Y

γ
k−i+1:k

(
1 +A(n/k)

Y
ρ
k−i+1:k − 1

ρ
(1 + op(1))

)

= e
γ lnYk−i+1:k+A(n/k)

Y
ρ
k−i+1:k

−1

ρ (1+op(1))

= e
γ lnYk−i+1:k

(
1+A(n/k)

γ

Y
ρ
k−i+1:k

−1

ρ lnYk−i+1:k
(1+op(1))

)

= Y
γ
(
1+A(n/k)

γ

Y
ρ
k−i+1:k

−1

ρ lnYk−i+1:k
(1+op(1))

)
k−i+1:k ≈ Y γ e

A(n/k)
γ

Y
ρ
k−i+1:k

−1

ρ lnYk−i+1:k

k−i+1:k
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Consequently,

αWik −
(
Y
γe

A(n/k)
γ

Y
ρ
k−i+1:k

−1

ρ lnYk−i+1:k

k−i+1:k − 1
)

= op
(
αWik −

(
Y
γ
k−i+1:k − 1

))
.

Since we can approximately write

Y
ρ
k−i+1:k − 1

ρ lnYk−i+1:k
≈ −

(i/k)−ρ − 1

ρ ln(i/k)
=: ψik ≡ ψ(i/k) ≡ ψik(ρ) [ψkk ≡ 1],

with ψik a limited function, we expect to get a less biased estimator

if we assume that the random excess Wik comes from a GP model

with a shape parameter not equal to γ, as it is usually done, but

dependent on i (and k) and given by

γik := γ eβ (nk)
ρ
ψik, 1 ≤ i ≤ k,

for models in Hall-Welsh class.
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We are thus going to base inference on the fact that there exists a

parameter α such that Wik = Xn−i+1:n −Xn−k:n comes from a GP

model, with d.f. GP (x; γik, α), for every 1 ≤ i ≤ k. The likelihood

function of W =
(
Wik, 1 ≤ i ≤ k

)
is then proportional to

L(γ, β, ρ; W ) =
αk

γk

k∏
i=1

e−β(n/k)
ρψik (1 + α Wik)

−1
γe
−β(n/k)ρψik−1

,

and consequently we have

lnL(γ, β, ρ; W ) = k lnα− k ln γ − β(n/k)ρ
k∑
i=1

ψik −
k∑
i=1

ln(1 + α Wik)

−
1

γ

k∑
i=1

e−β(n/k)
ρψik ln(1 + α Wik).

The maximization of lnL(γ, β, ρ; W ) leads us to an explicit expression

for the tail index estimator, given by
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γ̂MP
n (k) ≡ γ̂MP

n,α̂,β̂,ρ̂
(k) :=

1

k

k∑
i=1

e−β̂ (n/k)ρ̂ ψ̂ik ln(1 + α̂Wik),

with ψ̂ik = −(i/k)−ρ̂−1
ρ̂ ln(i/k) . Consequently, the weights pik(β, ρ) suggested

at the beginning are given by exp {−β(n/k)ρψik} , 1 ≤ i ≤ k. If we

now replace here α̂ by 1/Xn−k:n, we get the weighted log-excesses

or weighted-Hill (WH) estimator,

γ̂WH
n (k) ≡ γ̂WH

n,β̂,ρ̂
(k) :=

1

k

k∑
i=1

e−β̂ (n/k)ρ̂ ψ̂ik ln
(
Xn−i+1:n

Xn−k:n

)
,

introduced and studied in Gomes et al. (2008). This is a minimum-

variance second-order reduced-bias estimator, for adequate levels k

and an adequate external estimation of the second order parame-

ters. We shall next make explicit the estimators of the second order

parameters to be used in this paper. 17



An algorithm for the estimation of second order parameters β

and ρ. We propose the following Algorithm:

1. Given a sample (X1, X2, · · · , Xn), plot, for τ = 0 and τ = 1, the

estimates

ρ̂τ(k) := min
{
0,

(
3(T (τ)

n (k)− 1)
)
/

(
T

(τ)
n (k)− 3

)}
,

where, with M
(j)
n (k) :=

1

k

k∑
i=1

{
ln
Xn−i+1:n

lnXn−k:n

}j
, j = 1,2,3, and

the notation abτ = b ln a whenever τ = 0,

T
(τ)
n (k) :=

(
M

(1)
n (k)

)τ
−

(
M

(2)
n (k)/2

)τ/2
(
M

(2)
n (k)/2

)τ/2
−

(
M

(3)
n (k)/6

)τ/3, τ ∈ <.
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2. Consider {ρ̂τ(k)}k∈K, for large k, say values k ∈ K =([
n0.995

]
,

[
n0.999

])
, and compute their median, denoted ρτ . Next

choose the tuning parameter τ∗ := argminτ
∑
k∈K (ρ̂τ(k)− ρτ)2.

3. Work then with

(ρ̂τ∗, β̂τ∗) := (ρ̂τ∗(k1), β̂ρ̂τ∗(k1)), k1 =
[
n0.995

]
,

and

β̂ρ̂(k) :=
(
k

n

)ρ̂ dk(ρ̂) Dk(0)−Dk(ρ̂)
dk(ρ̂) Dk(ρ̂)−Dk(2ρ̂)

, dk(α) :=
1

k

k∑
i=1

(i/k)−α,

Dk(α) :=
1

k

k∑
i=1

(i/k)−αUi, Ui := i

{
ln
Xn−i+1n

Xn−i:n

}
.
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For asymptotic and finite sample details on these estimators of ρ, see

Fraga Alves, Gomes and de Haan (2003). The above-mentioned estimator

of β has been introduced in Gomes and Martins (2002), where conditions

that enable its asymptotic normality have been set, whenever ρ is

estimated at a level k1 of a larger order than the level k used for the

estimation of β. Details on the asymptotic distribution of β̂ρ̂(k)(k)

may be found in Gomes et al. (2008).

Steps 1. and 2. of the algorithm lead in almost all situations to the

tuning parameter τ∗ = 0 whenever |ρ| ≤ 1 and τ∗ = 1, otherwise.

Such an educated guess usually provides better results than a possi-

bly “noisy” estimation of τ , and it is highly recommended in practice.

For details on this and similar algorithms for the ρ-estimation, see

Gomes and Pestana (2007).
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Motivation for the new estimators — only γ is unknown. Let

us assume that everything is known, apart from γ. Then,

Theorem 1. For models in Hall-Welsh class, and for intermediate

levels k, we get for γ̂MP
n,α,β,ρ(k), with γ̂MP

n,α̂,β̂,ρ̂
(k) provided before, an

asymptotic distributional representation of the type

γ̂MP
n,α,β,ρ(k)

d
= γ +

γ√
k
Nk + op(A(n/k)),

where Nk is asymptotically a standard normal r.v. Conse-

quently
√
k

(
γ̂MP
n,α,β,ρ(k) − γ

)
is asymptotically normal not only when√

k A(n/k) −→ 0, but also when
√
k A(n/k) −→ λ 6= 0, finite, as

n→∞.

The main problems to be dealt with are related with the study of how the esti-

mation of (α, β, ρ) affects the asymptotic distributional behaviour of γ̂MP
n,α,β,ρ(k).
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Asymptotic behaviour of the PORT-MP tail index estimator.

Let us assume that we have access to the sample of the excesses,

W = (Wik,1 ≤ i ≤ k), and we are interested in the PORT-MP es-

timator γ̂MP
n,α̂,β̂,ρ̂

(k), an explicit function of α̂ = α̂MP , the PORT-MP

estimator of α in a modified generalized Pareto model, and external

estimators of the second order parameters (β, ρ). The asymptotic

behaviour of both the PORT-MP estimator depends essentially on

the behaviour of the r.v.’s:

B := 1
k

∑k
i=1 ln(1 + α Wik), B(j) :=

1

k

k∑
i=1

ψj−1
ik e−β(n/k)

ρψik ln(1 + α Wik),

C := 1
k

∑k
i=1

α Wik

1+αWik
, C(j) :=

1

k

k∑
i=1

ψj−1
ik e−β(n/k)

ρψik
α Wik

1 + αWik

,

D := 1
k

∑k
i=1

α Wik

(1+α Wik)2 , D(j) :=
1

k

k∑
i=1

ψj−1
ik e−β(n/k)

ρψik
α Wik

(1 + α Wik)2
.
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The log-likelihood associated to the MP-scheme can thus be written

as

lnL(γ, β, ρ; W ) = k lnα− k ln γ − β(n/k)ρ
k∑
i=1

ψik − kB −
kB(0)

γ
.

Notice next that, also for j ≥ 1,

∂B

∂α
=
C

α
,

∂C

∂α
=
D

α
,

∂B(j)

∂α
=
C(j)

α
,

∂C(j)

∂α
=
D(j)

α
.

∂B

∂β
=
∂C

∂β
= 0,

∂B(j)

∂β
= −

A(n/k) B(j+1)

βγ
,

∂C(j)

∂β
= −

A(n/k) C(j+1)

βγ
.

Consequently,

∂ lnL(γ, β, ρ; W )

∂α
=
k

α

(
1− C −

C(1)

γ

)
. 23



As the MP estimator of γ is, under the above mentioned assump-

tions, γ̂MP = B̂(1), the MP estimator of α is solution of the equation

Ĉ + Ĉ(1)/B̂(1) − 1 ≡ 0.

If we decide for an external consistent estimation of β, as well as of

ρ, with the additional condition ρ̂− ρ = op(1/ lnn), we may write:

γ̂MP
n,α̂,β̂,ρ̂

(k) = B̂(1) = B(1) + C(1)
α̂MP − α

α
(1 + op(1)),

and, since

∂
(
C + C(1)/B(1) − 1

)
∂α

=
D+D(1)/B(1) − (C(1)/B(1))

2

α
,

α̂MP ≡ α̂MP (k) is such that
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Ĉ + Ĉ(1)/B̂(1) − 1 ≡ 0

= C +
C(1)

B(1)
− 1 +

α̂MP − α
α

D+
D(1)

B(1)
−

C(1)

B(1)

2
 (1 + op(1)),

i.e.,

α̂MP − α
α

=
1− C − C(1)/B(1)

D+D(1)/B(1) − (C(1)/B(1))
2

(1 + op(1)),

and, as seen before,

γ̂MP (k) = B̂(1) = B(1) + C(1)
α̂MP − α

α
(1 + op(1)).

The asymptotic distributional behavior of the MP -estimators comes

then easily from the results above.
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• If only γ is unknown, Theorem 1 holds for γ̂MP
n,α,β,ρ, i.e., γ̂MP

n,α,β,ρ

is a MVRB estimator.

• The same result holds for γ̂MP
n,α,β̂,ρ̂

if we assume α known and we

estimate β and ρ externally, in an adequate way, i.e., so that

ρ̂−ρ = op(1/ lnn) and β̂−β = op(1) for all k on which we usually

base γ̂MP
n,α,β̂,ρ̂

(k), i.e., such that k = o(n) and
√
k A(n/k) = O(1),

as n→∞.

• If we estimate α and γ jointly through the maximum likelihood

procedure, we may state the following:
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Theorem 2. For intermediate k and in Hall-Welsh class of models,

then with Sk asymptotically standard normal r.v. and the notation

bMP := −
(1 + γ)(1 + 2γ)

γ3

(
1

ρ
ln

(1 + γ)(1− ρ)
1 + γ − ρ

+
γ

1 + γ − ρ

)
,

we have the asymptotic distributional representation,

γ̂MP
n,α̂,β̂,ρ̂

(k)
d
= γ +

(1 + γ)√
k

Sk + bMPA(n/k)(1 + op(1)).

For the estimator γ̂ML
n (k), we have the asymptotic distributional

representation

γ̂ML
n (k)

d
= γ +

(1 + γ)√
k

Mk +
(1 + γ)(γ + ρ) A(n/k)

γ(1− ρ)(1− ρ+ γ)
(1 + op(1)),

with Mk also asymptotically standard normal.
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Remark 1. As can be seen from Theorem 2, the PORT-MP tail

index estimator is no longer a MVRB estimator or even a second-

order reduced-bias tail index estimator, i.e., the estimation of α

through maximum-likelihood gives rise to a dominant component

of bias of the order of A(n/k).

Relatively to Smith’s result, rephrased in this context in Theorem

2 (i.e. with the replacement of a fixed threshold u by a random

threshold Xn−k:n), we have the same asymptotic variance, (1+γ)2,

but a change in bias, although both bias are of the same order if

γ + ρ 6= 0. If γ + ρ = 0 the PORT-ML estimator, being a second-

order reduced-bias estimator of γ, is expected to outperform the

PORT-MP estimator.
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Asymptotic comparison at optimal levels. We now proceed to

an asymptotic comparison of the estimators at their optimal levels

in the lines of de Haan and Peng (1998), Gomes and Martins (2001), Gomes

el al. (2005), Gomes el al. (2007) and Gomes and Neves (2007). Suppose

that γ̂•n(k) is a general semi-parametric estimator of the tail index

estimator, with distributional representation,

γ̂•n(k) = γ +
σ•√
k
Z•n + b•A(n/k) + op(A(n/k)),

which hold for any intermediate k, and where Z•n is an asymptotically

standard normal r.v.. Then we have,

√
k[γ̂•n(k)− γ]

d−→ N(λb•, σ2
•), as n→∞,

provided k is such that
√
kA(n/k)→ λ, finite, as n→∞.
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The Asymptotic Mean Square Error (AMSE) is given by

AMSE[γ̂•n(k)] :=
σ2
•
k

+ b2•A
2(n/k),

where Bias∞[γ̂•n(k)] := b•A(n/k) and V ar∞[γ̂•n(k)] := σ2
•/k.

Let k•0:=arg infkAMSE[γ̂•n(k)] be the optimal level for the estima-

tion of γ through γ̂•n(k), i.e., the level associated to a minimum

AMSE, and let us denote γ̂•n0 := γ̂•n(k
•
0(n)), the estimator computed

at its optimal level. The use of regular variation theory [Bingham,

Goldie and Teugels, 1987] enabled Dekkers and de Haan (1993) to prove

that, whenever b• 6= 0, ∃ ϕ(n) = ϕ(n; ρ, γ), dependent only on the

underlying model, and not on the estimator, such that

lim
n→∞ϕ(n)AMSE[γ̂•n0] =

2ρ− 1

ρ

(
σ2
•

)− 2ρ
1−2ρ

(
b2•

) 1
1−2ρ =: LMSE[γ̂•n0],
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It is then sensible to consider the following:

Definition 1. Given γ̂
(1)
n0 = γ̂•n(k

(1)
0 (n)) and γ̂

(2)
n0 = γ̂•n(k

(2)
0 (n)), two

biased estimators γ̂(1)
n and γ̂

(2)
n for which distributional representa-

tions of the above-mentioned type hold with constants (σ1, b1) and

(σ2, b2), b1, b2 6= 0, respectively, both computed at their optimal

levels, the Asymptotic Root Efficiency (AREFF) of γ̂(1)
n relatively

to γ̂
(2)
n is

AREFF1|2 ≡ AREFFγ(1)
n |γ

(2)
n

:=

√
LMSE

[
γ̂
(2)
n0

]
/LMSE

[
γ̂
(1)
n0

]
,

with LMSE given before.

Remark 2. Note that this measure was devised so that the higher

AREFF measure, the better the first estimator is.
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The AREFF of γ̂MP
n relatively to γ̂ML

n is presented in Figure 1.
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As may be seen, the gain in efficiency for the PORT-MP estimator

happens for two regions of values of (γ, ρ). In the first region we

have γ ≤ −aρ, with a < 1/2 and in the second one we have γ ≥ −bρ
with b ≥ 2.

In the region γ+ ρ = 0, the PORT-ML estimator is a second-order

reduced-bias tail index estimator and consequently is expected to

outperform the PORT-MP estimator at optimal levels.

These results claim for a semi-parametric test of the hypothesis

H0 : η = γ + ρ = 0. The non-rejection of such an hypothesis would

lead us to the consideration of the PORT-ML estimator, things

working in favor of the PORT-MP estimator, in case of rejection of

H0. This is however out of the scope of this seminar.
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Simulated behavior of the estimators. In order to obtain the

PORT-MP estimates, we have implemented a modified version of

Grimshaw’s method [Grimshaw, 1993].

Due to the high computation time of the general comparison algo-

rithm, we have based our simulations on a multi-sample simulation

of size 10 × 100, for samples with size n up to n = 1000, and we

have chosen the value 100 for the maximum number of iterations

in the modified Newton-Raphson algorithm.

In Figures 2 and 3 we show, on the basis of the first replicate, the

simulated patterns of mean values, E[.], and mean squared errors,

MSE[.], of the estimators under study for an underlying Burr par-

ent, F (x) = 1 − (1 + x−ρ/γ)1/ρ, x ≥ 0 with (γ, ρ) = (1.5,−0.5) and

(0.1,−0.5), respectively. In all figures, PORT-ML and PORT-MP

denote the estimators γ̂ML
n (k) and γ̂MP

n (k), respectively.
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The simulations show that the tail index estimator PORT-MP has,

in general, very stable sample paths and works quite well for values

of γ ≥ 1.0 and values of |ρ| < 1.0. For this (γ, ρ)-region the bias is

always smaller than the corresponding one of the PORT-ML esti-

mator, for all k. The mean square error of the PORT-MP estimator

is, in general, smaller than the mean square error of the PORT-ML

estimator for a large region of values of k, as well as at optimal

levels. When γ < 0.5 and |ρ| < 1, the PORT-MP estimator does

not work as expected, but it has a smaller bias and a smaller mean

squared error than the PORT-ML estimator, for all k. However,

both the PORT-ML and the PORT-MP are a long way from the

Hill, and the best performance is achieved by the WH-estimator.

In Figure 4 we present the mean value and mean squared of the

estimators for a Burr model with (γ, ρ) = (0.5,−0.5).
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When γ + ρ = 0 the PORT-ML estimator is second-order asymp-

totically unbiased for the estimation of γ, and we were indeed ex-

pecting such an out-performance of the PORT-ML comparatively

to the PORT-MP estimator. Indeed, for this model, the PORT-

ML estimator has a squared bias and a mean squared error smaller

than those of the PORT-MP, for all values of k. Also, the PORT-

ML, looking almost like a true “unbiased” estimator for large k and

for this particular model, outperforms the WH-estimator for large

values of k.
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Overall comparison at optimal levels of a few comparable tail

index estimators. Apart from the Hill we shall also consider the

moment estimator [Dekkers, Einmhal and de Haan, 1989],

γ̂Mn (k) := M
(1)
n (k) + 1

2

1−

 M
(2)
n (k)

[M(1)
n (k)]2

− 1

−1
 ,

and the mixed moment estimator [Fraga Alves, Gomes, de Haan and Neves,

2006], asymptotically equivalent to the ML-estimator if γ + ρ 6= 0,

and with the simple functional form:

γ̂MM
n (k) :=

ϕ̂n(k)− 1

1 + 2min (ϕ̂n(k)− 1,0)
, ϕ̂n(k) :=

M
(1)
n (k)− L(1)

n (k)(
L

(1)
n (k)

)2 ,

where

L
(1)
n (k) := 1− 1

k

k∑
i=1

Xn−k:n
Xn−i+1;n

. 40



The Moment can outperform the Hill . . .
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The MM(≡ML, unless γ + ρ 6= 0, (γ, ρ) 6= (0,0)) can outperform

the Moment and the Hill . . .
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The MP can outperform the MM . . .
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Overall . . .
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AND THAT’s ALL . . .
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