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Department of Math. Statistics,

University of Bern

1



Content:

• Shocks and break downs

• Urn model approach to break downs

• Firms default

Joint work with A. Gut and P. Cirillo

2



1. Shocks and break downs

Simple models:

Xi, i ≥ 1, iid. F c.d.f., with upper endpoint xF (a cont. point)

A) Extreme shock model

Breakdown of a structure of a material if Xi ≥ α

τ stopping time: τ = min{i : Xi ≥ α}
P{τ > m} = Fm(α)

geometric distribution depending on F (α).

Asympt. result: Let α → xF , then

P{τ > z/F̄ (α)} → exp(−z) for any z ≥ 0.
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B) Cumulative shock models

Sn =
∑n

i=1 Xi, breakdown if Sn ≥ α

Assume µX exists

τ = min{n : Sn ≥ α} stopping time

Obviously: τ ≈ α/µx for large α

Some asymptotic known results:

i) τ/α → 1/µX a.s. as α →∞.

ii) Sτ/α → 1 a.s.

iii) (τ − α/µX)/
√

ασ2/µ3
X → Z ∼ N(0, 1) as α →∞.

4



C) Time of the shocks

time of occurence of a shock is not n, but Tn:

let Yi iid. r.v. with mean µY

interarrival times

define the partial sum Tn =
∑n

k=1 Yi

Failure time Tτ

But (Xi, Yi) iid., not independent components

Extreme shock model:

Result: F̄ (α)Tτ
d→ µY Exp(1) as α → xF

consider F̄ (α) τ × Tτ

τ
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Cumulative shock model:

Sn =
∑n

i=1 Xi, with breakdown if Sn ≥ α

τ stopping time and Tτ failure time

Asympt. result:

If µX > 0 and µY < ∞, then as α →∞
Tτ/α → µY /µX a.s.

(Tτ − µY α/µx)/σα
d→ N(0, 1)

where σ2
α = Var(µYX1 − µXY1)α/µ3

Y

(A. Gut and S. Janson)
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Extensions, more realistic models

• Delayed sums or recovering from shocks:

Sk,n =
∑n

i=n−k+1 Xj

• Fatal and non-fatal shocks

no effect if Xj < γ

non-fatal, harmful if α(L(j)) > X1 ≥ γ

fatal if X1 ≥ α(L(j))

where α(l) decreasing sequence with α(l) ≥ γ.

stopping time: τ = min{n : Xn ≥ α(L(n))}
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Exact distribution for the model with harmful shocks

Asympt. results:

If F̄ (α(k))/F̄ (γ) → ck and F̄ (γ) → 0

(γ and α(k) tend to the endpoint xF)

then

P{F̄ (γ)τ > z} →
∑
j≥0

e−zz
j

j!

j−1∏

k=0

(1−ck) = e−z+
∑
j≥1

e−zz
j

j!

j−1∏

k=0

(1−ck)

Note ck ∈ [0, 1], and
∏−1

k=0 = 1.
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Further extension

A certain stress improves the material at the beginning
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Exact distribution and asymptotic results:

for τ,N+(τ ), N−(τ ) and Tτ

where

N+(τ ) number of strengthening strokes

N−(τ ) number of harmful strokes

depending on conditions of αi, β and γ.

Extensions:

Mixed models: Mixture of sum and extreme shock models
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2. Urn model approach to break downs

Consider an urn containing balls of three different colors:

black, blue and red or

x, y, and w

each color represents a possible state of risk for the process:

x-balls – safe state,

y-balls – risky state and

w-balls – default state.
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Evolution of the process:

1. At time n a ball is random sampled from the urn, with the

content depending on the urn composition at time n− 1;

2. According to the color of the ball, the process Xn = x, y or w;

3. The urn is then changed according to the reinforcement matrix.
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The reinforcement matrix

To model the positive dependence between the risky and the de-

fault states, we choose a balanced matrix

constant over time:

RM =

x

y

w

x y w


θ 0 0

0 δ λ

0 0 θ


, where λ = θ − δ (1)

1. If an x-ball is sampled, θ balls of type x are added;

2. if an y-ball is sampled, the urn is reinforced with δ y-balls and

λ w-balls (to model dependence);

3. if a w-ball is picked up, θ balls of the same color are added.
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Example of a simulated urn process

with ak = a0 + kθ, bk = b0 + kδ and ck = c0 + kλ.
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Assumptions:

Condition 1:

Let θδ 6= 0, not to have degenerate cases.

Condition 2: Let λ = θ − δ ≥ 0,

to model the positive dependence between y and w balls.

Theory for discrete-time balanced urn process

with a 3× 3 reinforcement matrix

Relation (isomorphism) to ordinary differential equation system.

Generating function H of the urn history.
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Our model:

∑
=





ẋ = xθ+1

ẏ = yδ+1wλ

ẇ = wθ+1

with i.c.





x(0) = x0

y(0) = y0

w(0) = w0

, (2)

simple integration for x and y:

x(t) = x0(1− θxθ
0t)

−1
θ (3)

w(t) = w0(1− θwθ
0t)

−1
θ . (4)

Since ẏy−δ−1 = wλ, the solution is:

y(t) = y0(1− yδ
0

(
w−δ

0 −
[
w0(1− θwθ

0t)
−1

θ

]−δ
)−1

δ

.

Hence
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Proposition:

Consider an urn process with a reinforcement matrix RM as in 1,

that satisfies Conditions 1 and 2, and with an initial composition

(a0, b0, c0) of balls.

The 4-variables generating function of urn histories is:

H(z; x, y, w) = xa0yb0wc0(1− θxθz)−
a0
θ (1− θwθz)−

c0
θ

×
(
1− yδw−δ

(
1− (1− θwθz)

δ
θ

))−b0
δ
.
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Propostion for the moments:

Xn, Yn and Wn: number of x, y and w balls in the urn at time n.

Their moments: hypergeometric functions, finite linear combina-

tions of product and quotients of Euler Gamma functions.

In particular:

E [Xn] =
a0

t0
(t0 + nθ),

E [Yn] = b0

Γ
(

t0
θ

)

Γ
(

t0+δ
θ

)n
δ
θ + O(n

δ
θ−1),

E [Wn] =

[
(t0 − a0)

λ

θ

]
Γ

(
t0
θ

)

Γ
(

t0+λ
θ

)n
δ
θ + O(n

δ
θ−1),

where t0 = a0 + b0 + c0 and λ = θ − δ
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Limit result:

For any compact set S of R+ and any γ ∈ S such that γn
δ
θ is an

integer, we have that

P
[
Yn = b0 + δγn

δ
θ

]
= n−

δ
θg(γ) + O(n−2δ

θ) (5)

where the error term holds uniformly with respect to γ ∈ S.

Function g(·) (gen. Mittag-Leffler) is defined on R+ by

g(γ) =
Γ

(
t0
θ

)

Γ
(

b0
δ

)γ
b0
δ −1

∑

k≥0

(−1)k
γk

Γ(k + 1)Γ
(

c0−kδ
θ

).

An analogous reasoning is valid for Wn with a different g(γ)

or for Xn, as a standard Poly urn.
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Remarks

1. For c0 = 0, no w balls in the initial composition, no immediate

failing, the function g(γ) represents a Paretian stable law of

index δ
θ.

So Yn has a power law, asympt., in accordance with the Zipf’s

law in econometrics.

2. If c0 < θ, on the contrary, g(γ) becomes a Gamma distribution

(even an exponential for b0 = δ).
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Joint limit distribution:

Consider the whole process Un = (Xn, Yn,Wn) with U0 = (a0, b0, c0)

Then Un/(θn) converges to a random vector, depending on

(V1, V2, V3) has a Dirichlet distribution, whose density on the simplex

(ux ≥ 0, uy ≥ 0, uz ≥ 0, ux + uy + uw = 1) given by

Γ(
t0
θ

)
ua0+c0

x

Γ (a0 + c0)

ub0−c0
y

Γ (b0 − c0)

u
1
a [λc0−δa0]
w

Γ
(

1
θ [λc0 − δa0]

),

(ux: proportion of x balls in the urn)

and on the RM.
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3. Firms default

Example of a simulated urn process

with ak = a0 + kθ, bk = b0 + kδ and ck = c0 + kλ.
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Data

data from the CEBI database: CEBI

comprehensive database first developed by the Bank of Italy and

now maintained by Centrale dei Bilanci Srl.

biggest Italian industrial dataset, with firm-level observations and

balance sheets of thousands of firms.

Subset of 380 manufacturing firms with the conditions:

1. All firms’ data: active in the period 1982-2000;

2. Every firm: more than 100 employees with reliable information

about capital and financial ratios;

3. Under bank control for possible insolvency at least once.
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Selected firms are comparable with those originally used by

Altman (1968) (famous paper):

the benchmark for our work.

For every firm: standard balance ratios:

r1 : working capital / total assets

r2 : retained earnings / total assets

r3 : EBIT / total assets

r4 : market value of equity / book value of total liabilities

r5 : sales / total assets

r6 : equity ratio

r7 : debt ratio
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Initialization of the process

We need initialized values and RM?

RM:

We simply set θ = 3 and δ = 2 for every firm

’Best fit’ by a simple grid search.

A first attempt

RM has good properties, essentially a Poly urn.
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Initial composition of firms’ urns:

heuristic method,

based on well-known stylized facts of industrial economics.

First x-balls: equity ratio r6 as a proxy of the proportion of x−balls.

Firm with r6 ≥ 0.5 can be considered as financially robust

Hence, for every firm set a0 = [r6 ∗ 100].

Second: y and w-balls: risky and the default states,

combine debt ratio r7 and complement with equity ratio r6

a higher debt ratio: signal of danger for firms’ reliability

set b0 = [r7 ∗ (1− r6) ∗ 100] and c0 = [(1− r6)(1− r7) ∗ 100].

So, initial number of balls in the urn: 100.
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Examples:

Initial urn composition for some firms of the dataset

firm year equity ratio debt ratio a0 b0 c0 default

code r6 r7 in t + 1

IM223A 1982 0.42 0.71 42 41 17 0

IM298A 1982 0.62 0.52 62 20 18 0

IM567B 1982 0.68 0.37 68 12 20 1

IM1031B 1982 0.39 0.66 39 40 21 1

IM1988A 1982 0.72 0.57 72 16 12 0

All firms together:

average numbers of initialized x, y and w−balls: 48, 39, 13
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distributions for a0, b0 and c0 of all the firms:
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For every firm we can compute all the probabilities at an time n.

In this experiment assume that a firm fails at time n + 1 if

the probability of extracting a w-ball is ≥ 0.20 at time n,

very common threshold

For every firm, in every period, we can prediction failure,

compare it

– with actual data and

– with simple Altman’s ones.
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Altman’s Z-score (1968) popular measure,

based on discriminant analysis,

to classify firms’ riskiness.

In particular, using Altman’s original formulation we have

Z = 0.012r1 + 0.014r2 + 0.033r3 + 0.006r4 + 0.999r5.

According to this score, a firm is likely

to default if Z < 1.8,

safe if Z > 3,

’gray’ otherwise.

Estimated the Z-score on CEBI data set to understand its general

formulation on Italian data.
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using standard regression techniques

Z∗ = 0.014
(0.0062)

r1 + 0.013
(0.0057)

r2 + 0.052
(0.039)

r3 + 0.007
(0.0028)

r4 + 0.955
(0.3413)

r5,

(Z = 0.012r1 + 0.014r2 + 0.033r3 + 0.006r4 + 0.999r5).

Similar values

r3 EBIT larger, but not significant.

Use both Z-Scores, only small differences.

So Altman’s Z Scores used, traditional.
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Results:

For 245 firms from 380, both methods correctly predict firms’ de-

fault.

For 72 firms from 380, our model (UGESM) seems to behave bet-

ter.

Remaining 63 firms: both models do not predict default in the

right way.
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Comparison of the number of correctly predicted defaults for UGESM

and Altman’s Z-score

UGESM Z-score

correct 83% 66%

no correct 17% 34%

Remaining cases:

Altman’s method usually underestimates the possibility of a failure,

UGSEM seems to be more pessimistic: for 40 firms from 63 gen-

erally predict failure 2-3 periods before actual default.

Improve
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A good result with such a simple model, more prudent behavior is

required for banks and similar companies (e.g. Basel II).

Remaining 63 cases:

number of underestimated and overestimated defaults

before and after actual failure with averages of number of wrong

periods

UGESM Z-score

underestimated 63% (2.7) 28% (1.4)

overestimated 37% (3.2) 72% (2.3)
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Distributions of time of default ?

Kernel estimates using the Epanechnikov kernel
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