On extreme shocks and generalizations

for modelling the probability of firms’ default

Jurg Husler

Department of Math. Statistics,

University of Bern



Content:

e Shocks and break downs
e Urn model approach to break downs

e Firms default

Joint work with A. Gut and P. Cirillo



1. Shocks and break downs

Simple models:

Xi, v > 1, iid. F c.d.f., with upper endpoint zr (a cont. point)

A) Extreme shock model
Breakdown of a structure of a material if X; > o
T stopping time: 7 = min{i : X; > a}

P{r>m} = F"(«)

geometric distribution depending on F(a).

Asympt. result: Let o — zp, then
P{t > 2/F(a)} — exp(—z) for any z > 0.
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B) Cumulative shock models

S, => 1, X;, breakdown if S, > «

Assume [y exists

T =min{n : S, > o} stopping time
Obviously: 7~ «/u, for large o

Some asymptotic known results:

i) 7/a— 1/ux a.s. as a — oo.

i) S;/a—1 a.s.

i) (7 —a/ux)/\/ac?/uy — Z ~ N(0,1) as o — oc.
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C) Time of the shocks

time of occurence of a shock is not n, but 7,,:
let Y; iid. r.v. with mean uy

interarrival times

define the partial sum 7, = >, Y,

Failure time 7.

But (X, Y;) iid., not independent components

Extreme shock model:

Result: F(a)T; < pyExp(l) as a — xp

_ T.
consider F(a) 7 X —
-



Cumulative shock model:

Sp = >, X;, with breakdown if S, > a

T stopping time and 7 failure time

Asympt. result:

If ux >0 and py < oo, then as a — oo
T, /oo — py/pux a.s.

(T — pya/ps) /o0 > N(0,1)

where o2 = Var(uyX; — puxY1)a/ 3,

(A. Gut and S. Janson)



Extensions, more realistic models

e Delayed sums or recovering from shocks:
— n .
Sk = Zi:n—k:Jrl X;

e Fatal and non-fatal shocks

no effect if X; <~
non-fatal, harmful if o(L(j)) > X1 > v
fatal if X1 > a(L(j))

where «(l) decreasing sequence with «(l) > ~.

stopping time: 7 = min{n : X,, > «a(L(n))}
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Exact distribution for the model with harmful shocks

Asympt. results:

If F(a(k))/F(v) — ¢ and F(y) — 0

(7 and «(k) tend to the endpoint x )
then

P{F(y)T > 2} — Z e_zf (1—cp) = 6_Z+Z e_zf.

Note ¢, € [0,1], and [],.}, = 1.



Further extension

A certain stress improves the material at the beginning
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Exact distribution and asymptotic results:
for 7, N.(7), N_(7) and T’

where
N, (7) number of strengthening strokes

N_(7) number of harmful strokes

depending on conditions of «;, 7 and ~.

Extensions:

Mixed models: Mixture of sum and extreme shock models

11



2. Urn model approach to break downs

Consider an urn containing balls of three different colors:
black, blue and red or

x, Yy, and w

each color represents a possible state of risk for the process:
x-balls — safe state,

y-balls — risky state and

w-balls — default state.
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Evolution of the process:

1. At time n a ball is random sampled from the urn, with the

content depending on the urn composition at time n — 1;
2. According to the color of the ball, the process X, = =,y or w;

3. The urn is then changed according to the reinforcement matrix.
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The reinforcement matrix

To model the positive dependence between the risky and the de-
fault states, we choose a balanced matrix

constant over time:

Ty w
c]o00

RM =y |06 A|, where A\=0—0 (1)
w0046

1. If an z-ball is sampled, 6 balls of type x are added;

2. if an y-ball is sampled, the urn is reinforced with ¢ y-balls and

A w-balls (to model dependence);

3. if a w-ball is picked up, 0 balls of the same color are added.
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Example of a simulated urn process

with a, = ag + k6, b = by + ko and ¢, = cg + k.

first ruin

default ®

risky ® *—© ® ® ®

safe 6—0—0—© *—0—© o—© @

0 1 5 10 15 time

Content of the urn after the nth-drawing
w-balls: ¢ ¢p . . . . . ¢ C3 C4 cs  c5+0
y—balls: b() b() . . bl . . . bg bg b4 b5 b5
z-balls: a; as a3 a4 a4 a5 as a7y a7y a7 ag a9 a9 Qg Q1o Gl
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Assumptions:

Condition 1:

Let 60 # 0, not to have degenerate cases.

Condition 2: Let A\ =60 —0 > 0,

to model the positive dependence between y and w balls.

Theory for discrete-time balanced urn process

with a 3 X 3 reinforcement matrix

Relation (isomorphism) to ordinary differential equation system.

Generating function H of the urn history.
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Our model:

( (

i = /! 2(0) = xo
Z =< y=19""w withic. < y(0)=yy ,
\ w — w9+1 \ w(O) = Wy

simple integration for x and y:

2(t) = zo(1 — 0alt)
w(t) = wo(l — Gwlt) 7.

I

Since yy°~! = w*, the solution is:

y(t) = yo(l — 4 (%5 - {wo(l - 9w3t>_ﬂ _5> -’

Hence

17



Proposition:
Consider an urn process with a reinforcement matrix RM as in 1,
that satisfies Conditions 1 and 2, and with an initial composition

<CLQ, b(), C()) of balls.

The 4-variables generating function of urn histories is:

H(z x,y, w) = %0y 0w0(1 — erz)_%o(l — 9w92>—%0

b

x (1 — gl (1 —(1- Qwez)g))%) .
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Propostion for the moments:
X, Y, and WW,: number of z, y and w balls in the urn at time n.
Their moments: hypergeometric functions, finite linear combina-

tions of product and quotients of Euler Gamma functions.

In particular:

where to=ag+by+cyoand A =60 — 0
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Limit result:

For any compact set S of R™ and any + € S such that vng is an
integer, we have that
p [Yn — b+ 5777,%} = n7g(7) + O(n %) (5)

where the error term holds uniformly with respect to v € S.

Function ¢(-) (gen. Mittag—Leferr) is defined on R™ by

_0 k:

bol
r(go) Y i (=)

g(y) =

An analogous reasoning is valid for IV, with a different g(v)

or for X,, as a standard Poly urn.
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Remarks

1. For ¢y = 0, no w balls in the initial composition, no immediate

failing, the function ¢(v) represents a Paretian stable law of
5
5-
So Y,, has a power law, asympt., in accordance with the Zipf's

index

law in econometrics.

2.If ¢y < 0, on the contrary, g(7) becomes a Gamma distribution

(even an exponential for by = 9).
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Joint limit distribution:
Consider the whole process U, = (X,,,Y,,, W,,) with Uy = (ay, by, ¢)

Then U, /(0n) converges to a random vector, depending on

(V1, V4, V3) has a Dirichlet distribution, whose density on the simplex
(uy > 0,uy > 0,u, > 0,uy +uy, +u, = 1) given by
t ugo+co ug()—c() ui[/\co—&zo]

0T (ag+ co) T (bg — o) T (% [Aco — &LOD’

(u,: proportion of = balls in the urn)

[(

and on the RM.
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3. Firms default

Example of a simulated urn process
with a, = ag + k0, b, = by + ko and ¢, = ¢y + k.

firm bankrupt

default ®
risky ® *—© ® ®
safe —0—0—© *o—0—© *o—© L
0 1 5 10 15 time
Content of the urn after the nth-drawing
w-balls: ¢ ¢y . . . . . C C3 . . ¢ . ¢ c5+0
y—balls: bo b() . . bl . . . bg bg . . b4 . b5 b5

r-balls: a; ay a3 a4+ aa a5 as a; a7y a7 ag a9 a9 Qg Qo Gl
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Data

data from the CEBI database: CEBI

comprehensive database first developed by the Bank of Italy and
now maintained by Centrale dei Bilanci Srl.

biggest Italian industrial dataset, with firm-level observations and

balance sheets of thousands of firms.

Subset of 380 manufacturing firms with the conditions:
1. All firms’ data: active in the period 1982-2000;

2. Every firm: more than 100 employees with reliable information

about capital and financial ratios;

3. Under bank control for possible insolvency at least once.
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Selected firms are comparable with those originally used by
Altman (1968) (famous paper):

the benchmark for our work.

For every firm: standard balance ratios:

r1 : working capital / total assets

ro : retained earnings / total assets

rs : EBIT / total assets

r, : market value of equity / book value of total liabilities
r; : sales / total assets

r¢ : equity ratio

r- : debt ratio
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Initialization of the process

We need initialized values and RM?

RM:

We simply set § = 3 and 0 = 2 for every firm
'Best fit’ by a simple grid search.
A first attempt

RM has good properties, essentially a Poly urn.
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Initial composition of firms’ urns:
heuristic method,

based on well-known stylized facts of industrial economics.

First z-balls: equity ratio r; as a proxy of the proportion of x—balls.
Firm with 5 > 0.5 can be considered as financially robust
Hence, for every firm set ay = [rg * 100].

Second: y and w-balls: risky and the default states,
combine debt ratio r; and complement with equity ratio 7

a higher debt ratio: signal of danger for firms’ reliability
set bo = [7"7* (]_ — 7“6) * 100] and Co — [(1 — 7"6)<1 — 7“7) * 100]

So, initial number of balls in the urn: 100.
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Examples:

Initial urn composition for some firms of the dataset

firm year | equity ratio | debt ratio | a;| by | ¢y | default

code T6 7 int+1
ITM223A | 1982 0.42 0.71 42141 |17 0
IM298A | 1982 0.62 0.52 6220 |18 0
IM567B | 1982 0.68 0.37 681220 1
IM1031B | 1982 0.39 0.66 39140 |21 1
ITM1988A | 1982 0.72 0.57 72116 |12 0

All firms together:

average numbers of initialized =, y and w—balls: 48, 39, 13
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distributions for

ag, by and ¢ of all the firms:

Kernel estimates for a0, b0 and c0
T T

0.0

Prob

0.04

0.0z

Mumber of balls

7o
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For every firm we can compute all the probabilities at an time n.

In this experiment assume that a firm fails at time n + 1 if
the probability of extracting a w-ball is > 0.20 at time n,

very common threshold

For every firm, in every period, we can prediction failure,

compare it
— with actual data and

— with simple Altman’s ones.
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Altman’s Z-score (1968) popular measure,
based on discriminant analysis,

to classify firms’ riskiness.

In particular, using Altman’s original formulation we have
Z =0.012r; + 0.014r9 + 0.033r5 + 0.00674 + 0.99975.

According to this score, a firm is likely
to default if 7 < 1.8,
safe if Z > 3,

‘'gray’ otherwise.

Estimated the Z-score on CEBI data set to understand its general

formulation on ltalian data.
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using standard regression techniques

7" = 0.0147r; + 0.0137r9 + 0.052r3 + 0.007 74 + 0.955 75,
(0.0062) (0.0057) (0.039) (0.0028) (0.3413)

(Z = 0.012r1 + 0.014r5 4 0.033r3 + 0.00674 + 0.999775).

Similar values
rs EBIT larger, but not significant.

Use both Z-Scores, only small differences.

So Altman’s Z Scores used, traditional.
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Results:

For 245 firms from 380, both methods correctly predict firms’ de-
fault.

For 72 firms from 380, our model (UGESM) seems to behave bet-

ter.

Remaining 63 firms: both models do not predict default in the

right way.
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Comparison of the number of correctly predicted defaults for UGESM

and Altman’s Z-score

UGESM | “Z-score
correct 83% 66%
no correct| 17% 34%

Remaining cases:
Altman’s method usually underestimates the possibility of a failure,

UGSEM seems to be more pessimistic: for 40 firms from 63 gen-

erally predict failure 2-3 periods before actual default.

Improve
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A good result with such a simple model, more prudent behavior is

required for banks and similar companies (e.g. Basel Il).

Remaining 63 cases:
number of underestimated and overestimated defaults
before and after actual failure with averages of number of wrong

periods

UGESM | Z-score
underestimated | 63% (2.7) | 28% (1.4)
overestimated | 37% (3.2) | 72% (2.3)
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Distributions of time of default ?

Kernel estimates using the Epanechnikov kernel

Kernel estimates of the df of the number of defaults over time
0.14 T T 2 T T T
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noak-
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Mumber of defaults over time
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CDF for the number of defaults over time
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