On extreme shocks and generalizations for modelling the probability of firms' default

Jürg Hüsler

Department of Math. Statistics, University of Bern

Content:

- Shocks and break downs
- Urn model approach to break downs
- Firms default

Joint work with A. Gut and P. Cirillo

1. Shocks and break downs

Simple models:

 X_i , $i \ge 1$, iid. F c.d.f., with upper endpoint x_F (a cont. point)

A) Extreme shock model

Breakdown of a structure of a material if $X_i \ge \alpha$

$$\tau$$
 stopping time: $\tau = \min\{i : X_i \ge \alpha\}$

 $P\{\tau > m\} = F^m(\alpha)$

geometric distribution depending on $F(\alpha)$.

Asympt. result: Let $\alpha \to x_F$, then $P\{\tau > z/\bar{F}(\alpha)\} \to \exp(-z)$ for any $z \ge 0$.

B) Cumulative shock models

 $S_n = \sum_{i=1}^n X_i$, breakdown if $S_n \ge \alpha$

Assume μ_X exists $\tau = \min\{n : S_n \ge \alpha\}$ stopping time

Obviously: $\tau \approx \alpha/\mu_x$ for large α

Some asymptotic known results: i) $\tau/\alpha \to 1/\mu_X$ a.s. as $\alpha \to \infty$. ii) $S_{\tau}/\alpha \to 1$ a.s. iii) $(\tau - \alpha/\mu_X)/\sqrt{\alpha\sigma^2/\mu_X^3} \to Z \sim N(0,1)$ as $\alpha \to \infty$.

C) Time of the shocks

time of occurence of a shock is not n, but T_n : let Y_i iid. r.v. with mean μ_Y interarrival times define the partial sum $T_n = \sum_{k=1}^n Y_i$

Failure time T_{τ} But (X_i, Y_i) iid., not independent components

Extreme shock model:

Result: $\bar{F}(\alpha)T_{\tau} \xrightarrow{d} \mu_{Y} \operatorname{Exp}(1)$ as $\alpha \to x_{F}$

consider $\bar{F}(\alpha) \tau \times \frac{T_{\tau}}{\tau}$

Cumulative shock model:

 $S_n = \sum_{i=1}^n X_i$, with breakdown if $S_n \ge \alpha$ τ stopping time and T_{τ} failure time

Asympt. result:

If
$$\mu_X > 0$$
 and $\mu_Y < \infty$, then as $\alpha \to \infty$

$$T_{\tau}/\alpha \to \mu_Y/\mu_X$$
 a.s.
 $(T_{\tau} - \mu_Y \alpha/\mu_x)/\sigma_{\alpha} \xrightarrow{d} N(0,1)$

where $\sigma_{\alpha}^2 = Var(\mu_Y X_1 - \mu_X Y_1) \alpha / \mu_Y^3$

(A. Gut and S. Janson)

Extensions, more realistic models

• Delayed sums or recovering from shocks:

 $S_{k,n} = \sum_{i=n-k+1}^{n} X_j$

• Fatal and non-fatal shocks

no effectif $X_j < \gamma$ non-fatal, harmfulif $\alpha(L(j)) > X_1 \ge \gamma$ fatalif $X_1 \ge \alpha(L(j))$

where $\alpha(l)$ decreasing sequence with $\alpha(l) \geq \gamma$.

stopping time: $\tau = \min\{n : X_n \ge \alpha(L(n))\}$

Exact distribution for the model with harmful shocks

Asympt. results:

If $\overline{F}(\alpha(k))/\overline{F}(\gamma) \to c_k$ and $\overline{F}(\gamma) \to 0$ (γ and $\alpha(k)$ tend to the endpoint x_F) then

$$P\{\bar{F}(\gamma)\tau > z\} \to \sum_{j\geq 0} e^{-z} \frac{z^j}{j!} \prod_{k=0}^{j-1} (1-c_k) = e^{-z} + \sum_{j\geq 1} e^{-z} \frac{z^j}{j!} \prod_{k=0}^{j-1} (1-c_k)$$

Note $c_k \in [0, 1]$, and $\prod_{k=0}^{-1} = 1$.

Further extension

A certain stress improves the material at the beginning

Exact distribution and asymptotic results:

for $\tau, N_+(\tau), N_-(\tau)$ and T_{τ}

where

 $N_{+}(\tau)$ number of strengthening strokes $N_{-}(\tau)$ number of harmful strokes

depending on conditions of α_i , β and γ .

Extensions:

Mixed models: Mixture of sum and extreme shock models

2. Urn model approach to break downs

Consider an urn containing balls of three different colors:

black, blue and red or

x, y, and w

each color represents a possible state of risk for the process:

- *x*-balls safe state,
- y-balls risky state and
- *w*-balls default state.

Evolution of the process:

- 1. At time n a ball is random sampled from the urn, with the content depending on the urn composition at time n 1;
- **2.** According to the color of the ball, the process $X_n = x, y$ or w;
- 3. The urn is then changed according to the reinforcement matrix.

The reinforcement matrix

To model the positive dependence between the risky and the default states, we choose a balanced matrix constant over time:

$$RM = \begin{cases} x & y & w \\ x & \begin{bmatrix} \theta & 0 & 0 \\ 0 & \delta & \lambda \\ 0 & 0 & \theta \end{bmatrix}, \text{ where } \lambda = \theta - \delta$$
(1)

- **1.** If an *x*-ball is sampled, θ balls of type *x* are added;
- 2. if an y-ball is sampled, the urn is reinforced with δ y-balls and λ w-balls (to model dependence);
- **3.** if a *w*-ball is picked up, θ balls of the same color are added.

Example of a simulated urn process

with
$$a_k = a_0 + k\theta$$
, $b_k = b_0 + k\delta$ and $c_k = c_0 + k\lambda$.

Assumptions:

Condition 1:

Let $\theta \delta \neq 0$, not to have degenerate cases.

Condition 2: Let $\lambda = \theta - \delta \ge 0$,

to model the positive dependence between y and w balls.

Theory for discrete-time balanced urn process with a 3×3 reinforcement matrix

Relation (isomorphism) to ordinary differential equation system. Generating function H of the urn history. Our model:

$$\sum = \begin{cases} \dot{x} = x^{\theta+1} \\ \dot{y} = y^{\delta+1} w^{\lambda} \text{ with i.c. } \begin{cases} x(0) = x_0 \\ y(0) = y_0 \\ w(0) = w_0 \end{cases}$$
(2)

simple integration for x and y:

$$x(t) = x_0 (1 - \theta x_0^{\theta} t)^{-\frac{1}{\theta}}$$
(3)

$$w(t) = w_0 (1 - \theta w_0^{\theta} t)^{-\frac{1}{\theta}}.$$
 (4)

Since $\dot{y}y^{-\delta-1} = w^{\lambda}$, the solution is:

$$y(t) = y_0(1 - y_0^{\delta} \left(w_0^{-\delta} - \left[w_0(1 - \theta w_0^{\theta} t)^{-\frac{1}{\theta}} \right]^{-\delta} \right)^{-\frac{1}{\delta}}$$

Hence

Proposition:

Consider an urn process with a reinforcement matrix RM as in 1, that satisfies Conditions 1 and 2, and with an initial composition (a_0, b_0, c_0) of balls.

The 4-variables generating function of urn histories is:

$$\begin{split} H(z;x,y,w) &= x^{a_0} y^{b_0} w^{c_0} (1-\theta x^{\theta} z)^{-\frac{a_0}{\theta}} (1-\theta w^{\theta} z)^{-\frac{c_0}{\theta}} \\ & \times \left(1-y^{\delta} w^{-\delta} \left(1-(1-\theta w^{\theta} z)^{\frac{\delta}{\theta}}\right)\right)^{-\frac{b_0}{\delta}} \end{split}$$

Propostion for the moments:

 X_n , Y_n and W_n : number of x, y and w balls in the urn at time n. Their moments: hypergeometric functions, finite linear combinations of product and quotients of Euler Gamma functions. In particular:

$$E[X_n] = \frac{a_0}{t_0}(t_0 + n\theta),$$

$$E[Y_n] = b_0 \frac{\Gamma\left(\frac{t_0}{\theta}\right)}{\Gamma\left(\frac{t_0+\delta}{\theta}\right)} n^{\frac{\delta}{\theta}} + O(n^{\frac{\delta}{\theta}-1}),$$

$$E[W_n] = \left[(t_0 - a_0)\frac{\lambda}{\theta}\right] \frac{\Gamma\left(\frac{t_0}{\theta}\right)}{\Gamma\left(\frac{t_0+\lambda}{\theta}\right)} n^{\frac{\delta}{\theta}} + O(n^{\frac{\delta}{\theta}-1}),$$

where $t_0 = a_0 + b_0 + c_0$ and $\lambda = \theta - \delta$

Limit result:

For any compact set S of \mathbb{R}^+ and any $\gamma \in S$ such that $\gamma n^{\frac{\delta}{\theta}}$ is an integer, we have that

$$P\left[Y_n = b_0 + \delta\gamma n^{\frac{\delta}{\theta}}\right] = n^{-\frac{\delta}{\theta}}g(\gamma) + O(n^{-2\frac{\delta}{\theta}})$$
(5)

where the error term holds uniformly with respect to $\gamma \in S$.

Function $g(\cdot)$ (gen. Mittag-Leffler) is defined on \mathbb{R}^+ by $g(\gamma) = \frac{\Gamma\left(\frac{t_0}{\theta}\right)}{\Gamma\left(\frac{b_0}{\delta}\right)} \gamma^{\frac{b_0}{\delta}-1} \sum_{k \ge 0} (-1)^k \frac{\gamma^k}{\Gamma(k+1)\Gamma\left(\frac{c_0-k\delta}{\theta}\right)}.$

An analogous reasoning is valid for W_n with a different $g(\gamma)$ or for X_n , as a standard Poly urn.

Remarks

1. For $c_0 = 0$, no w balls in the initial composition, no immediate failing, the function $g(\gamma)$ represents a Paretian stable law of index $\frac{\delta}{\theta}$.

So Y_n has a power law, asympt., in accordance with the Zipf's law in econometrics.

2. If $c_0 < \theta$, on the contrary, $g(\gamma)$ becomes a Gamma distribution (even an exponential for $b_0 = \delta$).

Joint limit distribution:

Consider the whole process $U_n = (X_n, Y_n, W_n)$ with $U_0 = (a_0, b_0, c_0)$

Then $U_n/(\theta n)$ converges to a random vector, depending on (V_1, V_2, V_3) has a Dirichlet distribution, whose density on the simplex $(u_x \ge 0, u_y \ge 0, u_z \ge 0, u_x + u_y + u_w = 1)$ given by $\Gamma(\frac{t_0}{\theta}) \frac{u_x^{a_0+c_0}}{\Gamma(a_0+c_0)} \frac{u_y^{b_0-c_0}}{\Gamma(b_0-c_0)} \frac{u_w^{\frac{1}{a}[\lambda c_0-\delta a_0]}}{\Gamma(\frac{1}{\theta}[\lambda c_0-\delta a_0])},$

(u_x : proportion of x balls in the urn)

and on the RM.

3. Firms default

Example of a simulated urn process

with $a_k = a_0 + k\theta$, $b_k = b_0 + k\delta$ and $c_k = c_0 + k\lambda$.

Data

data from the CEBI database: CEBI comprehensive database first developed by the Bank of Italy and now maintained by Centrale dei Bilanci Srl. biggest Italian industrial dataset, with firm-level observations and balance sheets of thousands of firms.

Subset of 380 manufacturing firms with the conditions:

- 1. All firms' data: active in the period 1982-2000;
- 2. Every firm: more than 100 employees with reliable information about capital and financial ratios;
- 3. Under bank control for possible insolvency at least once.

Selected firms are comparable with those originally used by Altman (1968) (famous paper): the benchmark for our work.

For every firm: standard balance ratios:

- r_1 : working capital / total assets
- r_2 : retained earnings / total assets
- r_3 : EBIT / total assets
- r_4 : market value of equity / book value of total liabilities
- r_5 : sales / total assets
- r_6 : equity ratio
- r_7 : debt ratio

Initialization of the process

We need initialized values and RM?

RM:

We simply set $\theta = 3$ and $\delta = 2$ for every firm

'Best fit' by a simple grid search.

A first attempt

RM has good properties, essentially a Poly urn.

Initial composition of firms' urns:

heuristic method,

based on well-known stylized facts of industrial economics.

First *x*-balls: equity ratio r_6 as a proxy of the proportion of *x*-balls. Firm with $r_6 \ge 0.5$ can be considered as financially robust Hence, for every firm set $a_0 = [r_6 * 100]$.

Second: *y* and *w*-balls: risky and the default states, combine debt ratio r_7 and complement with equity ratio r_6 a higher debt ratio: signal of danger for firms' reliability set $b_0 = [r_7 * (1 - r_6) * 100]$ and $c_0 = [(1 - r_6)(1 - r_7) * 100]$.

So, initial number of balls in the urn: 100.

Examples:

Initial urn composition for some firms of the dataset

firm	year	equity ratio	debt ratio	\mathbf{a}_0	\mathbf{b}_0	\mathbf{c}_0	default
code		r_6	r_7				in $t + 1$
IM223A	1982	0.42	0.71	42	41	17	0
IM298A	1982	0.62	0.52	62	20	18	0
IM567B	1982	0.68	0.37	68	12	20	1
IM1031B	1982	0.39	0.66	39	40	21	1
IM1988A	1982	0.72	0.57	72	16	12	0

All firms together:

average numbers of initialized x, y and w-balls: 48, 39, 13

distributions for a_0 , b_0 and c_0 of all the firms:

For every firm we can compute all the probabilities at an time n.

In this experiment assume that a firm fails at time n + 1 if the probability of extracting a *w*-ball is ≥ 0.20 at time *n*, very common threshold

For every firm, in every period, we can prediction failure, compare it

- with actual data and
- with simple Altman's ones.

Altman's Z-score (1968) popular measure, based on discriminant analysis, to classify firms' riskiness.

In particular, using Altman's original formulation we have

 $Z = 0.012r_1 + 0.014r_2 + 0.033r_3 + 0.006r_4 + 0.999r_5.$

According to this score, a firm is likely

to default if Z < 1.8,

safe if Z > 3,

'gray' otherwise.

Estimated the Z-score on CEBI data set to understand its general formulation on Italian data.

using standard regression techniques

$$Z^* = \underbrace{0.014}_{(0.0062)} r_1 + \underbrace{0.013}_{(0.0057)} r_2 + \underbrace{0.052r_3}_{(0.039)} + \underbrace{0.007}_{(0.0028)} r_4 + \underbrace{0.955}_{(0.3413)} r_5,$$

 $(Z = 0.012r_1 + 0.014r_2 + 0.033r_3 + 0.006r_4 + 0.999r_5).$

Similar values

 r_3 EBIT larger, but not significant. Use both Z-Scores, only small differences.

So Altman's Z Scores used, traditional.

Results:

For 245 firms from 380, both methods correctly predict firms' default.

For 72 firms from 380, our model (UGESM) seems to behave better.

Remaining 63 firms: both models do not predict default in the right way.

Comparison of the number of correctly predicted defaults for UGESM and Altman's Z-score

	UGESM	Z-score
correct	83%	66%
no correct	17%	34%

Remaining cases:

Altman's method usually underestimates the possibility of a failure,

UGSEM seems to be more pessimistic: for 40 firms from 63 generally predict failure 2-3 periods before actual default.

Improve

A good result with such a simple model, more prudent behavior is required for banks and similar companies (e.g. Basel II).

Remaining 63 cases:

number of underestimated and overestimated defaults before and after actual failure with averages of number of wrong periods

	UGESM	Z-score
underestimated	63% (2.7)	28% (1.4)
overestimated	37% (3.2)	72% (2.3)

Distributions of time of default ?

Kernel estimates using the Epanechnikov kernel

