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Introduction: Symplectic Reduction

Let (P, ω, G,J) be a Hamiltonian space, where

• (M, ω) is a symplectic manifold,

• G× P → P is a smooth and proper Hamil-

tonian action, and

• J : P → g∗ equivariant momentum map

ω(ξP , ·) = d〈J, ξ〉, ξ ∈ g.

Symplectic Reduction: If µ ∈ g∗ is a regular

value of J and Gµ acts freely on J−1(µ) then

the quotient space

Pµ = J−1(µ)/Gµ

is a smooth symplectic manifold. (Marsden

and Weinstein, 1974)
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The reduced symplectic form ωµ on Pµ is de-
fined by

i∗µω = π∗µωµ

where

• iµ : J−1(µ) ↪→ P is the inclusion, and

• πµ : J−1(µ) → Pµ : J−1(µ)/Gµ is the pro-
jection.

If µ is not regular or Gµ does not act freely
on J−1(µ) then Pµ is a symplectic stratified

space (it is partitioned in smooth symplectic
manifolds with reduced symplectic forms like
in the regular case).

Goal: Explain this symplectic stratification of
Pµ when µ is not regular (singular µ).
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Reduction in Mechanics and Geometry

• Symmetric Hamiltonian dynamics: The com-
ponents of J are conserved quantities (The-
orem of Nöether), Pµ is the space of sym-
metric equivalence classes of dynamical states
with fixed momentum µ.
The original dynamics on P can be dropped
to Pµ reducing the dimensionality of the
problem. (for example N-body problem,
P = T ∗(R3N), G = SO(3), J=angular mo-
mentum).

• Coadjoint orbits: P = T ∗G = G × g∗ with
action g · (g′, ν) = (gg′, ν) and momentum
J(g, ν) = Ad∗

g−1ν. Then Pµ = Oµ (coad-
joint orbit through µ and ωµ is the (−)
Konstant-Kirillov-Souriau form, i.e.

ωµ(λ)(adξλ,adηλ) = −〈λ, [ξ, η]〉,
for λ ∈ Oµ, adξλ, adηλ ∈ TλOµ, with ξ, η ∈ g.
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• Moduli space of flat connections: K com-
pact and ζ : K → M → Σ a principal bun-
dle over a closed oriented surface Σ. The
space A of connections of ζ has a symplec-
tic form

ω(A)(α, β) =
∫

Σ
κ(α ∧ β),

Gζ acts on A by g · A = g−1Ag + g−1dg.
with momentum map J(A) = FA. Then

P0 = {A ∈ A : FA = 0}/Gζ

has a reduced symplectic structure (Chern-
Simons theory, low-dimensional topology).

• Toric manifolds: Tn × Cn → Cn as

(θ1, . . . , θn)·(z1, . . . , zn) = (e2πiθnz1, . . . , e2πiθ1zn).

Tk ↪→ Tn subtorus acting on Cn by restric-
tion with momentum map J : Cn → Rk cor-
responding to ω = i

2Σkdzk ∧ dzk.

M = J−1(0)/G is a toric manifold for Tn−k

(Delzant construction).
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Bifurcation Lemma

Singular reduction starts with the Bifurcation

Lemma (Arms, Marsden, Gotay 1981):

range (TzJ) = (gz)
◦.

In other words: µ is a singular value of J iff

J−1(µ) contains a point with continuous sta-

bilizer.

The study of singularities of the momentum

map is equivalent to the study of singularities

of the Hamiltonian group action on P.
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Slice Theorem

Associated Bundle: Let H ⊂ G compact act
on a vector space A. H acts on G×A by

h · (g, a) = (gh−1, h · a)
We denote the quotient space as

G×H A := (G×A)/H.

• G×HA is an associated bundle to G → G/H
over G/H with fiber A.

• G acts on G×H A by g′ · [g, a] = [g′g, a].

• Slice Theorem: G × M → M proper ac-
tion. x ∈ M , S = TxM/g · x. Then

φ : G×Gx S → M

is an equivariant tubular neighborhood of
G · x (Palais 1961).
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Symplectic Slice Theorem

(P, ω, G,J) Hamiltonian G-space, J(z) = µ.

• N = ker TzJ/gµ·z (symplectic normal space).

(N, ω|N , H,JN) Hamiltonian linear H-space,

〈JN(v), ξ〉 =
1

2
ωN(ξ · v, v).

• φ : Y := G×Gz ((gµ/gz)∗ ⊕N) → P.
φ is a G-equivariant symplectomorphism with
respect to a natural symplectic form ωY .

• (Marle 1985, Guillemin and Sternberg 1984)
(Y, ωY , G,JY ) is a Hamiltonian G-space with

JY ([g, ν, v]) = Ad∗
g−1(µ + ν + JN(v)).

• Lerman-Bates Lemma (1997): There ex-
ists a neighborhood Y0 ⊂ Y such that

J−1
Y (µ) ∩ Y0 =

(
Gµ ×Gz (0× J−1

N (0))
)
∩ Y0.
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Stratified Spaces

X topological space. A locally finite disjoint
parition X =

∐

i

Xi is a stratification of X if

• smoothness: Xi are smooth manifolds,

• frontier condition:
Xi ∩Xj 6= ∅⇒ Xi ⊆ ∂Xj (∂Xj = Xj\Xj).

Application: G×M → M proper action. Then

M/G =
∐

(H)

M(H)/G, where

- (H) is the conjugacy class of H in G, and
- M(H) = {x ∈ M : Gx ∈ (H)} (orbit type).

Why?−→ use slices: near G · x with Gx = H,
M ' G×H S ' G/H × S. Then

M(H) ' (G×H S)(H) = G×H SH ' G/H × SH
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⇒ M(H) is a G-submanifold of M .

1. smoothness: Near [x] ∈ M(H)/G,

M(H)/G ' (G×H SH)/G = SH/H = SH ' Rk.

⇒ M(H)/G is a smooth manifold.

2. frontier conditions: Analogously,

M(H)/G ⊆ ∂(M(K)/G) ⇔ (K) < (H).

(isotropy stratification of M/G)

Strategy to study the symplectic stratification:

repeat this for a Hamiltonian G-space using the

Symplectic Slice Theorem instead.
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Symplectic Stratification of P0

(P, ω, G,J) Hamiltonian G-space. Suppose 0 is
a singular value of J : P → g∗. Then J−1(0)
and P0 = J−1(0)/G are singular spaces.

Theorem: (Sjamaar, Lerman 1991).

(i) The sets J−1(0)∩P(H) and (J−1(0)∩P(H))/G
are smooth manifolds, and

P0 =
∐

(H)

(
J−1(0) ∩ P(H)

)
/G

is a stratification of P0.

(ii) Each stratum P(H)
0 := (J−1(0)∩P(H))/G is

symplectic with a reduced symplectic form
ω

(H)
0 defined by

i
(H)
0 ω = π

(H)
0

∗
ω

(H)
0 , where

- i
(H)
0 : J−1(0) ∩ P(H) ↪→ P and

- π
(H)
0 : J−1(0) ∩ P(H) → P(H)

0 .
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- Sketch of proof of (i): z ∈ P with Gz = H.
Using Lerman-Bates Lemma, near G · z

J−1(0) ' J−1
Y0

(0) = G×H (0× J−1
N (0)).

• NH ⊆ J−1
N (0) (〈JN(v), ξ〉 = 1

2ωN(ξ · v, v))

• Then J−1(0) ∩ P(H) is a manifold:

J−1
Y0

(0) ∩ (Y0)(H) = G×H (0× (J−1
N (0))H)

= G×H (0×NH)
' G/H × (0×NH)
⊆ G/H × ((g/gz)∗ ⊕N) ' Y0

(i) smoothness: P(H)
0 is a manifold.

(J−1
Y0

(0) ∩ (Y0)(H))/G = NH/H = NH ' Rk

(ii) frontier conditions: follow from frontier
conditions for P/G since P(H)

0 ⊆ P(H)/G.

P(H)
0 ⊆ ∂P(K)

0 ⇔ (K) < (H).
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- Sketch of proof of (ii): Sjamaar Principle:

PH is a symplectic submanifold of P. N(H)/H

acts FREELY and Hamiltonially on (PH , ω|PH
)

with momentum map JPH
. Then there is a

diffeomorphism

f : P(H)
0 → J−1

PH
(0)/(N(H)/H).

(Sjamaar, Lerman 1991).

Then J−1
PH

(0)/(N(H)/H) is a Marsden-Weinstein

reduced manifold with reduced symplectic form

Ω. Then pull-back

ω
(H)
0 := f∗Ω

satisfies the requirements of the Sjamaar-Lerman

Theorem:

i
(H)
0 ω = π

(H)
0

∗
ω

(H)
0 .
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Cotangent Lifted Actions

• Q smooth manifold, (τ : T ∗Q → Q, ωQ) is

canonically a symplectic manifold:

for px ∈ T ∗xQ, V ∈ Tpx(T
∗Q),

ΘQ(px)(V ) = 〈px, Tpxτ(V )〉, ωQ = −dΘQ.

• G×Q → Q base action ⇒ G× T ∗Q → T ∗Q
lifted action. A lifted action is always

Hamiltonian.

• If G×Q → Q is free, proper, then

G× T ∗Q → T ∗Q is also free, proper.

• Momentum map 〈J(px), ξ〉 = 〈px, ξQ(x)〉.
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Regular Cotangent Bundle Reduction

G × Q → Q free and proper action. Then

every momentum value is regular. How are the

Marsden-Weinstein reduced spaces?→They are

bundles:

• (µ = 0): There is a symplectomorphism

(J−1(0)/G, ω0) → (T ∗(Q/G), ωQ/G) (Satzer

1977).

• (µ 6= 0): There is a symplectic embedding

(J−1(µ)/G, ωµ) → (T ∗(Q/Gµ), ωQ/Gµ
−τ∗Bµ)

onto a subbundle of T ∗(Q/Gµ).

Bµ is a closed differential 2-form on Q/Gµ

obtained from a principal connection on

Gµ → Q → Q/Gµ.

(Abraham, Marsden 1978).
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Singular Cotangent Bundle Reduction

Motivation: G × Q → Q not free ⇒ 0 ∈ g∗
singular momentum value: The smooth cotan-
gent bundle projection τ : T ∗Q → Q induces a
continuous projection τ0 : P0 → Q/G.

• In the regular case, P0 = T ∗(Q/G) and τ0 is
a smooth fibration (the cotangent bundle
projection τ0 : T ∗(Q/G) → Q/G).

• Everything is constructible from G×Q → Q.

• In the singular case we expect τ0 to be a
stratified fibration (maps strata to strata
and restricts to smooth fibrations). This
FAILS! since τ0(P(H)

0 ) = Q(H)/G 6= Q(H)/G.

Solution: Substitute the symplectic stratifica-
tion of P0 with the finer coisotropic stratifi-
cation.

15



Seams

Consider one orbit type submanifold Q(H) ⊂
Q. (T ∗Q(H), ωQ(H)

, G,J(H)) is a Hamiltonian G-

space obtained by restriction from (T ∗Q, ωQ, G,J).

N∗Q(H) ⊂ T ∗Q(H)
Q conormal bundle to Q(H),

inherits a G-action. Facts:

• (N∗Q(H))(K) 6= ∅⇔
Q(K) 6= ∅ and (K) ≤ (H).

• SH→K :=
J−1
(H)

(0)×(N∗Q(H))(K)

G → Q(H)/G is

a smooth bundle.

• SH→H = T ∗(Q(H)/G) (Emmrich-Romer 1991).

We call SH→K with (K) < (H) a seam.
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Decomposition of the Symplectic Strata

In the cotangent bundle case we can write
the following decomposition of every symplec-
tic stratum:

P(K)
0 = T ∗(Q(K)/G)

∐

(K)<(H)

SH→K

Furthermore:

• P(K)
0 6= ∅⇔ Q(K) 6= ∅.

• T ∗(Q(K)/G) is open and dense in P(K)
0 .

• The reduced symplectic form ω
(K)
0 is the

unique extension of ωQ(K)/G from T ∗(Q(K)/G)

to P(K)
0 .

• Seams SH→K are coisotropic in (P(K)
0 , ω

(K)
0 ).
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The Coisotropic Stratification of P0

Let IQ = {(H) : Q(H) 6= ∅}. Take every
cotangent bundle and seam of the form

• T ∗(Q(L)/G), (L) ∈ IQ,

• SK′→K, (K), (K′) ∈ IQ, (K) < (K′).

then

P0 =
∐

(L)

T ∗(Q(L)/G)
∐

(K)<(K′)
SK→K′

with (L), (K), (K′) ∈ IQ is a stratification of P0
(Perlmutter, Sousa-Dias, R-O 2003).

Notice: The strata are bundles over strata of
Q/G, indeed

T ∗(Q(L)/G) −→ Q(L)/G

SK→K′ −→ Q(K)/G.
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Properties of the Coisotropic

Stratification

- The continuous projection τ0 : P0 → Q/G IS

a stratified fibration with respect to the sec-

ondary stratification of P0 and the isotropy

stratification of Q/G.

- The frontier conditions: (gluing cotangent

bundles):

T ∗(Q(K)/G) ⊂ ∂ T ∗(Q(H)/G) ⇔ (H) < (K)

T ∗(Q(K)/G) ⊂ ∂ SK→H ⇔ (H) < (K)

SK→H ⊂ ∂ T ∗(Q(H)/G) ⇔ (H) < (K)

SK′→H ⊂ ∂ SK→H ⇔ (H) < (K) < (K′)
SK→H ′ ⊂ ∂ SK→H ⇔ (H) < (H ′) < (K)

- The strata are coisotropic submaifolds of their

respective symplectic strata.
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