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Coming Events

Thematic Term on Mathematics and Engineering

Coordinator

Isabel Maria Narra de Figueiredo (Uni. of Coimbra)

Dates

June-September 2003

The Thematic Term for 2003 will be dedicated to
Mathematics and Engineering. The application of
mathematics to engineering is crucial to knowledge and

the development of science. The main objective of the
thematic term for 2003 is to improve and emphasize
the interdependence between the most recent and im-
portant research fields in mathematics and the most im-
portant fields of contemporary engineering: informatics
engineering, chemical engineering, mechanical engineer-
ing, civil engineering and electronics engineering.

The thematic term 2003 consists of four events. The
first event is devoted to mathematics and informatics
engineering and focuses on soft computing and complex



systems. The second event deals with modelling and
simulation in chemical engineering. The third event is
related to modelling and numerical simulation in con-
tinuum mechanics. The fourth event is concerned with
mathematics and telecommunications.

Each one of these events is an Advanced School and
Workshop, where short courses, lectures and invited
talks will be given by well-known invited scientists. So
it is expected that the thematic term 2003 will attract
a large number of postgraduate students, mathemati-
cians and engineers, interested in contributing to the
development of mathematics and its applications to en-
gineering.

The programme of events is the following:

23-27 June: Workshop on Soft Computing and
Complex Systems

Organizers

António Dourado Correia (Univ. Coimbra), Ernesto
Jorge Costa (Univ. Coimbra), José Félix Costa (I.
Superior Técnico - Lisbon), Pedro Quaresma (Univ.
Coimbra).

Aims

The main scientific goal of the workshop is to intro-
duce recent developments in mathematical techniques
applied to complex engineering problems. In particu-
lar, the workshop will focus on different aspects of the
area called soft computing, including fuzzy and conex-
ionist systems, evolutionary computation, artificial life
and complex systems.

Harnessing complexity is an important aspect of today
problem solving. Complexity may be due to the pres-
ence of uncertain information or because the regulari-
ties of a system, we are trying to understand, cannot be
briefly described. We will discuss recent developments
in dealing with complexity, by means of introducing the
methods and their sound mathematical foundations, as
well as through the work of some difficult problems.

The workshop will be held at the Mathematics Depart-
ment - University of Coimbra.

Lectures

Multi-criteria Genetic Optimisation

Carlos Fonseca, University of Algarve, Portugal

Neural Computation and Applications in Time Series
and Signal Processing

Georg Dorffner, Department of Medical Cybernetics
and Artificial Intelligence, University of Vienna, Aus-
tria

Analog Computation

José Félix Costa, Department of Mathematics, Techni-
cal University of Lisbon, Portugal

Universal Learning Algorithms

Juergen Schmidhuber, IDSIA- Instituto Dalle Molle di
Studi sull’Intelligenza Artificiale, Switzerland

Neuro-Fuzzy Modelling

Intelligent Control

Robert Babuska, Delft University of Technology, Hol-
land.

For more information on this event, please visit the site

http://hilbert.mat.uc.pt/∼softcomplex/

30 June - 4 July: Workshop on Modelling and
Simulation in Chemical Engineering

Organizers

Aĺırio Eǵıdio Rodrigues (Univ. Porto), Paula Oliveira
(Univ. Coimbra), José Almiro Meneses e Castro†

(Univ. Coimbra), José Augusto Mendes Ferreira (Univ.
Coimbra), Maria do Carmo Coimbra (Univ. Porto).

Aims

The main objective is to bring together mathematicians
and chemical engineers to improve the understanding
of the problems encountered in process engineering and
tools available to solve them. To reach that objective
the Workhop is designed:

• To provide the basis for mathematical modelling
of chemical engineering systems

• To present some numerical methods to solve
model equations in particular in cases of steep
moving fronts

• To stress the use of dynamic simulators

• To introduce optimization techniques
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The workshop will be held at the CIM headquarters:
Complexo do Observatório Astronómico - Universidade
de Coimbra.

Short Courses

Modelling in Chemical Engineering

S. Sotirchos and A. Rodrigues, University Rochester,
USA and LSRE-FEUP, University of Porto, Portugal

Numerical Simulations with Advection-Diffusion-
Reaction Systems

W. Hundsdorfer, Center for Mathematics and Com-
puter Science, The Netherlands

Optimization and Control of Chemical Processes

N. Oliveira, University of Coimbra, Portugal

Invited talks

Adaptive finite element solutions of dependent partial
differential equations using moving grid algorithms

J. M. Baines, Department of Mathematics, University
of Reading, United Kingdom

Numerical analysis of the motion of glass under exter-
nal pressure

R.Mattheij, Department of Mathematics and Computer
Science, Tech. University of Eindhoven, The Nether-
lands

Adaptive numerical methods for sensitivity analysis of
differential-algebraic equations and partial differential
equations

Linda Petzold, UC Santa Barbara, USA

Splitting Methods for Advection-Diffusion-Reactions
Problems

J. G. Verwer, Center for Mathematics and Computer
Science, CWI, Amsterdam, The Neterlands

Numerical and Computational Challenges in Environ-
mental Modelling

Z. Zlatev, National Environmental Research Institute,
Denmark

For more information on this event, please visit the site

http://www.fe.up.pt/lsre/cim2msce/workshop.html

14-18 July: Advanced School and Workshop on
Modelling and Numerical Simulation in Contin-
uum Mechanics

Organizers

Lúıs Filipe Menezes (Univ. Coimbra), Isabel Maria
Narra de Figueiredo (Univ. Coimbra), Juha Videman
(I. Superior Técnico - Lisbon).

Aims

The scientific goals of this event are the following:

• to present some of the most important recent
fields of research in mathematics and its appli-
cations to civil and mechanical engineering

• to promote the interdisciplinary aspects of the
field by establishing contacts between mathemati-
cians and engineers

• to provide an opportunity for Portuguese scien-
tists to present and discuss their research work.

This event will take place at the Department of Me-
chanical Engineering - University of Coimbra.

Short Courses

Numerical analysis of discrete schemes approximating
grade-two fluid models. Recent results and open prob-
lems

Vivette Girault (Université Pierre et Marie Curie,
France)

Shape optimization

Patrick Le Tallec (École Polytechnique, France)

Advances in the finite point method for meshless anal-
ysis of problems in solid and fluid mechanics

Eugenio Oñate (CIMNE, Universitat Politècnica de
Catalunya, Spain)

Mathematics and numerics of shell problems

Juhani Pitkäranta (Helsinki University of Technology,
Finland)

Computational mechanics of solid materials at large
strains

Cristian Teodosiu (Université de Paris Nord, France)
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Invited Plenary Lectures

Finite element simulation of sheet metal forming

Kjell Mattiasson (Volvo Car Corporation, Göteborg,
Sweden)

A thermodynamic framework for dissipative processes

K.R. Rajagopal (Texas A&M University, USA)

Virtual metal forming

Karl Roll (Daimler Chrysler AG, Germany)

Analysis and simulation of non-newtonian models for
blood flow microvessels

Adélia Sequeira (Instituto Superior Técnico, Lisboa,
Portugal)

Numerical analysis and simulation of some contact
problems in visco-elasto-plasticity

Juan Viaño (Universidade de Santiago de Compostela,
Spain)

For more information on this event, please visit the site

http://www.math.ist.utl.pt/wmnscm/

8-12 September: Mathematical Techniques and
Problems in Telecommunications

Organizers

Carlos Salema (I. Superior Técnico - Lisbon), Joaquim
Júdice (Univ. Coimbra), Carlos Fernandes (I. Supe-
rior Técnico - Lisbon), Mário Figueiredo (I. Superior
Técnico - Lisbon), Lúıs Merca Fernandes (I. P. Tomar).

Aims

The goals are three fold. Firstly we will try to identify
and possibly provide solutions for a number of math-
ematical problems in the field of Telecommunications.
Secondly we intend to disseminate among telecommuni-
cations engineers some mathematical techniques which
are not widely known in this community even if they
are being applied in modern communication techniques.
Finally we would like to improve mutual understanding
and recognition between mathematicians and telecom-
munication engineers, one of the heaviest users of math-
ematical techniques in the field of engineering.

This event comes in the follow-up of rather successful,
even if less ambitious event, “Matemática em Teleco-
municações: Que Problemas?” with similar objectives
organized by IT in 1997.

This event will take place at the Instituto Politécnico
de Tomar.

Invited Lectures

Combinatorial Optimization in Telecommunications

Mauricio Resende, ATT, USA

Transforms, Algorithms and Applications

Joana Soares, U. Minho, Portugal

Controllability of PDE’s and its Discrete Approxima-
tions

Enrique Zuazua, U. A. Madrid, Spain

Evolutionary Computing

Eckart Zitzler, SFIT, Switzerland

Stochastic Processes in Telecommunications Traffic

Ivette Gomes, CEAUL, Portugal

For more information on this event, please visit the site

http://www.lx.it.pt/mtpt/
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Third Debate on Mathematical Research in Portugal

Porto, 25 October 2003

Organizers: José Ferreira Alves (Univ. Porto), José
Miguel Urbano (Univ. Coimbra).

This debate is a continuation of the two previous ones,
held on December 1997 and April 2000, whose proceed-
ings have been published by CIM.

Due to limitations of space, those interested in par-
ticipating should register, by sending an e-mail to
jfalves@fc.up.pt.

Themes

• The Challenge of Excellence

Jacob Palis (IMPA)
José Francisco Rodrigues (UL)
Rui Loja Fernandes (IST)

• Evaluation

Irene Fonseca (CMU)

José Basto Gonçalves (UP)

• Mathematical Research in Industry

Charles Tresser (IBM)

Pedro Lago (UP)

This event will take place at the Pure Mathematics De-
partment, University of Porto.

For more information on this event, please visit the site

http://www.fc.up.pt/cmup/jfalves/debate/

CIM News

CIM Events for 2004

The CIM Scientific Committee, in a meeting held in
Coimbra on February 8, approved the CIM scientific
program for 2004.

The Thematic Term for 2004 will be dedicated to

Mathematics and the Environment. The Organizers-
Coordinators are Juha Videman (IST, Lisbon, Portu-
gal) and José Miguel Urbano (University of Coimbra,
Portugal).

The list of events is the following:

School and Workshop on Dynamical Systems
and Applications

3-8 May 2004

Organizers:

José F. Alves, Univ. Porto, Portugal

Marcelo Viana, IMPA, Rio de Janeiro, Brasil

Workshop on Forest Fires

3-5 June 2004

Organizers:

Jorge C. S. André, University of Coimbra, Portugal

José Miguel Urbano, University of Coimbra, Portugal
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School on Atmospheric Sciences and Climate
Dynamics

12-16 July 2004

Organizers:

Didier Bresch, CNRS/Université Blaise-Pascal, France

José Miguel Urbano, University of Coimbra, Portugal

Juha Videman, IST, Lisbon, Portugal

School and Workshop on Oceanography,
Lakes and Rivers

19-25 July 2004

Organizers:

Didier Bresch, CNRS/Université Blaise-Pascal, France

José Miguel Urbano, University of Coimbra, Portugal

Juha Videman, IST, Lisbon, Portugal

Furthermore, the 2004 program will contain the following events:

Workshop on Nonstandard Mathematics

5-11 July, 2004

Organizers:

Imme van den Berg, University of Évora, Portugal

Francine Diener, Université de Nice, France

A. J. Franco de Oliveira, University of Évora, Portugal

Vı́tor Neves, University of Aveiro, Portugal

Keith D. Stroyan, University of Iowa, USA

João Paulo Teixeira, IST, Lisbon, Portugal

Summer School on Mathematics in Biology
and Medicine

20-24 September, 2004

Organizers:

Jorge Careneiro, IGC, Oeiras, Portugal

Francisco Diońısio, IGC, Oeiras, Portugal

José Faro, IGC, Oeiras, Portugal

Gabriela Gomes, IGC, Oeiras, Portugal

Isabel Gordo, IGC, Oeiras, Portugal

Autumn School & International Conference on
Stochastic Finance

20-30 September, 2004

Organizers:

Paulo Brito, ISEG, Lisbon, Portugal

Manuel L. Esqúıvel, New University of Lisbon, Portugal

Maria do Rosário Grossinho, ISEG, Lisbon, Portugal

João Nicolau, ISEG, Lisbon, Portugal

Paulo Eduardo Oliveira, University of Coimbra, Portugal

6



Research in Pairs at CIM

CIM has facilities for research work in pairs and wel-
comes applications for their use for limited periods.

These facilities are located at Complexo do Obser-
vatório Astronómico in Coimbra and include:

• office space, computing facilities, and some secre-
tarial support;

• access to the library of the Department of Math-
ematics of the University of Coimbra (30 minutes

away by bus);

• lodging: a two room flat.

At least one of the researchers should be affiliated with
an associate of CIM, or a participant in a CIM event.

Applicants should fill in the electronic application form

http://www.cim.pt/cim.www/cim app/application.htm

CIM on the WWW

Complete information about CIM and its activities can be found at the site

http://www.cim.pt

This is mirrored at

http://at.yorku.ca/cim.www/
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Feature Article

Profinite structures and dynamics

Jorge Almeida

Departamento de Matemática
Universidade do Porto

Surprising as it may be at first sight, there are a number
of connections between the theories of finite semigroups
and dynamical systems, both viewed in a broad sense.
For instance in symbolic dynamics, ideas or analogies
from the theory of finite automata find a natural setting
for application in sofic systems [10, 24] and, even though
not usually formulated in dynamical terms, the dynam-
ical behavior of various operators on finite groups has
been extensively studied. The purpose of this note is to
review some further connections that have emerged re-
cently driven mainly by work on finite semigroups and
thus perhaps open the path to new investigations in this
area.

The main tool underlying our approach is found
in profinite constructions, be it semigroups, groups,
graphs or categories. Generally speaking, profinite
structures are a way of encoding, with the help of an
additional topological structure, common properties of
a class of finite structures of the same type. This idea
can be found in various areas, from Galois theory [17]
to finite semigroup theory [6, 35, 4].

Results which are given without reference are an-
nounced here for the first time and will be proved else-
where.

A general framework for dynamics
in profinite structures

We start by quickly recalling some terminology from
model theory. See [27] for details.

Let L be a first-order language given by a finite set F
of operation symbols and a finite set R of relation sym-
bols together with a function α with nonnegative inte-
ger values describing the arity of each symbol. Let A
be an L-structure, which is determined by a choice of a
nonempty set A (the universe), for each operation sym-
bol f ∈ F an operation fA : Aα(f) → A, and for each
relation symbol R ∈ R a relation RA ⊆ Aα(R). For ex-
ample, semigroups are structures in the language with

one binary operation symbol and ordered semigroups
are structures in the language that has an additional
binary relation symbol, in both cases with the usual
properties bing assumed.

A homomorphism of L-structures A → B is a function
γ : A → B between the corresponding universes such
that, for every operation symbol f ∈ F with arity m,
and all a1, . . . , am ∈ A,

γ
(
fA(a1, . . . , am)

)
= fB

(
γ(a1), . . . , γ(am)

)
(1)

and for every relation symbol R ∈ R with arity n and
all a1, . . . , an,

(a1, . . . , an) ∈ RA ⇒
(
γ(a1), . . . , γ(an)

)
∈ RB. (2)

Note that the reverse implication of (2) is not assumed
in our definition of homomorphism. So, for the defini-
tion of isomorphism we take a bijective homomorphism
whose inverse is also a homomorphism.

A substructure of a structure A is a structure B such
that the corresponding universes satisfy the inclusion
B ⊆ A, and each operation fB and each relation RB is
the restriction to the set B of the corresponding opera-
tion fA and relation RA on A. Given a subset X of the
universe A of a structure A, the substructure generated
by X is the structure B with universe B the smallest
subset of A that contains X and that is closed under
every operation fA with f ∈ F . Direct products of
structures are defined by taking the Cartesian product
of their universes and interpreting operation and rela-
tion symbols component-wise.

From this point on we will abuse notation and talk
about structures rather than L-structures and a struc-
ture A with universe A will be referred simply as ‘the
structure A’ and we will talk of an operation f and a
relation R instead of fA and RA, respectively.

We say that a structure A is finite if the set A is fi-
nite. If the set A is endowed with a topology such that
each operation f is continuous and each relation R is
closed, then we say that A is a topological structure.
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Finite structures are viewed as topological structures
for the discrete topology. For a class C of topological
structures, a topological structure A is said to be resid-
ually in C if for any two distinct points a, b ∈ A there
is a continuous homomorphism γ : A → F into some
F ∈ C such that γ(a) 6= γ(b). A compact, Hausdorff,
residually in C, structure is called a pro-C structure.
In case C consists of all finite structures, then we talk
respectively of a residually finite and a profinite struc-
ture. Note that a structure is profinite if and only if it
embeds as a closed substructure in a product of finite
structures.

For instance, profinite groups have been extensively
studied in connection with Galois theory, number the-
ory, and model theory [17, 29], and free profinite semi-
groups play a prominent role in the theory of pseu-
dovarieties of finite semigroups [4, 6, 35], which will be
introduced in the next section.

We say that a topological structure A is finitely gener-
ated if there is a finite subset of A such that the sub-
structure it generates is dense in A.

We denote by End A the set of continuous endomor-
phisms of a topological structure A. Note that it is a
monoid under the operation of composition. Its group
of units is the group Aut A of continuous automor-
phisms of A.

For the study of a profinite structure A, it is useful to
have at hand a topology on EndA for which End A is
a profinite monoid and the evaluation mapping

End A×A → A
(γ, a) 7→ γ(a) (3)

is continuous. Two classical candidates are the point-
wise convergence topology, that is the induced topology
from the product topology in AA, and the compact-
open topology. These topologies do not always satisfy
the above requirements but we do have the following
result that extends well-known facts in the theory of
profinite groups [29].

Theorem 1. Let A be a finitely generated profinite
structure. Then EndA is a profinite monoid and AutA
is a profinite group under the point-wise convergence
topology, which coincides with the compact-open topol-
ogy, and the evaluation mapping (3) is continuous.

Dynamics of continuous endomor-
phisms

A topological dynamical system (T, f) is a topological
structure T for the language with only one operation
symbol f , which is unary, and no relation symbols. Two
topological dynamical systems (T, f) and (U, g) are said
to be conjugate if they are isomorphic as topological
structures; an isomorphism ϕ : T → U between them

is usually called a conjugacy, since it is a homoeomor-
phism which satisfies ϕ ◦ f = g ◦ ϕ.

For example, if A is a finitely generated profinite struc-
ture then, fixing γ ∈ End A, we have a topological
dynamical system (A, γ), which just says that A is a
topological space and γ is a continuous transformation
of A. For the infinite iteration of γ, we use Theorem 1
to introduce an operation that is well-known in finite
semigroup theory.

For an element m of a finite monoid M , the sequence
(mn!)n becomes constant for n ≥ |M |, therefore it con-
verges in M , and moreover this eventual constant value
is an idempotent. Since a profinite monoid embeds in
the product of its finite continuous homomorphic im-
ages, if m is an element of a profinite monoid M , then
the sequence (mn!)n also converges in M ; its limit is de-
noted mω and by the above it is an idempotent. Sim-
ilarly, we may define mω+k to be the limit of the se-
quence (mn!+k)n≥|k| for any integer k. Note that, if G

is a profinite group, then gω+k = gk for every g ∈ G
and integer k.

Going back to our dynamical system (A, γ), we have a
very special infinite iterate γω of γ, which is an idempo-
tent, namely the only idempotent in the (closed) sub-
semigroup of End A generated by γ. We proceed to
examine how the dynamics of the system is determined
by this particular iterate.

Recall that a point x of a topological dynamical system
(X, ϕ) is periodic if there exists k such that ϕk(x) = x;
the point x is recurrent if, for every neighborhood U of x
and every k, there exists ` ≥ k such that f `(x) ∈ U ;
and x is uniformly recurrent if there exists m such that,
for every neighborhood U of x and every k, there exists
` ∈ {k + 1, . . . , k + m} such that f `(x) ∈ U . Note that
periodicity implies uniform recurrence which in turn im-
plies recurrence.

Of course, if X is finite then the above three properties
are equivalent and the periodic points are the elements
of the image of ϕω (note that ϕ is an element of the
finite monoid of all transformations of X). So in par-
ticular, if A is a finite structure and γ ∈ End A, then the
three notions are equivalent for points of the dynamical
system (A, γ). For general topological dynamical sys-
tems, there are well-known examples in which no two
of the three notions are equivalent. But, what about
dynamical systems of the form (A, γ) with A a finitely
generated profinite structure? It is easy to construct
examples in which periodicity and uniform recurrence
are inequivalent but it turns out that the two forms
of recurrence coincide in such systems. The following
result improves [2, Proposition 3.1].
Proposition 1. Let A be a finitely generated profinite
structure and let γ be a continuous endomorphism of A.
Then every recurrent point of A under the action of γ
is uniformly recurrent and the set of all such points is
the image of γω.
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Relatively free structures and im-
plicit operations

We extend the notion of generating set X of a structure
A by allowing X to be a topological space for which
there is a continuous function X → A (the generat-
ing mapping) whose image generates A in the previous
sense. In general we will omit reference to the gen-
erating mapping although we always consider a spe-
cific one when we talk about a generating space. Note
that a generating mapping may not be injective. To
avoid degenerate cases, from hereon we will consider
only nonempty generating spaces.

We say that a structure A is weakly free with respect
to a generating mapping ι : X → A if every continuous
mapping ϕ : X → A extends (uniquely) to a continuous
endomorphism ϕ̂ of A in the sense that ϕ̂◦ι = ϕ. There
is a related notion of relatively free structure that we
proceed to introduce.

By a pseudovariety of finite structures (always of a fixed
first-order language) we mean a class of such struc-
tures that is closed under taking homomorphic images,
substructures and finite direct products. Note that, if
ϕ : A → B is an onto homomorphism, then we call B a
homomorphic image of A even though relation symbols
may be interpreted in B as larger sets than the images
of their interpretations in A. Pseudovarieties of finite
semigroups and monoids have been extensively stud-
ied in connection with applications to automata, for-
mal languages, circuit complexity, and temporal logic
[15, 1, 30] and embody at present the most developed
part of finite semigroup theory.

Let V be a pseudovariety of finite structures. We say
that a pro-V structure A is V-free with respect to a gen-
erating mapping ι : X → A if every continuous map-
ping ϕ : X → B into another pro-V structure extends
(uniquely) to a continuous homomorphism ϕ̂ : A → B
in the sense that ϕ̂ ◦ ι = ϕ. A profinite structure is
relatively free with respect to a generating mapping ι if
it is V-free with respect to ι for some pseudovariety V.
Elements of a generating set for a relatively free struc-
ture are often called letters. In case |X| = n, we will
usually presume an ordering x1, . . . , xn of the letters.

Proposition 2. A profinite structure A is relatively
free with respect to a generating mapping ι if and only
if A is weakly free with respect to ι.

From the definition of V-free structure A with respect
to a generating mapping ι : X → A it follows that, for
a fixed space X, it is unique up to isomorphism. The
existence of such a structure is established by observing
that it may be constructed as the projective limit of all
X-generated members of V. In general the generating
mapping is understood and we talk simply about the
relatively V-free structure on the space X. It will be

denoted ΩXV. In case X is a (nonempty) finite set, we
sketch an alternative construction of ΩXV. See [4] for
details.

Let F (X) denote the absolutely free structure on the
set X, whose algebraic structure is that of the alge-
bra of terms in X in the fixed first-order language L,
and where all relational symbols are interpreted as the
empty set. The intersection of all kernels of homomor-
phisms into members of V is a congruence θ on F (X).
Endow the quotient ΩXV = F (X)/θ with the struc-
ture in which, for an n-ary relational symbol R in L,
and w1, . . . , wn ∈ F (X), we set (w1/θ, . . . , wn/θ) ∈ R
in ΩXV if and only if (ϕ(w1), . . . , ϕ(wn)) ∈ R in B for
every B ∈ V and every homomorphism ϕ : F (X) → B.
Then, by construction, ΩXV is a minimal V-free ab-
stract structure in the sense that, for the natural map-
ping ι : X → ΩXV and any mapping ϕ : X → B with
B ∈ V, there is a unique homomorphism ϕ̂ : ΩXV → B
such that ϕ̂ ◦ ι = ϕ and any homomorphism of ΩXV
onto a structure with the same property is an isomor-
phism. It is an easy exercise to show that ΩXV embeds
in ΩXV as the substructure generated by X and this
partly explains the notation since this substructure is
dense. The letter Ω is meant to suggest that the ele-
ments of ΩXV may be viewed as polynomial operations
over V in the set X of variables. We also give below an
interpretation of the elements of ΩXV as operations.

We may define a metric structure on ΩXV by setting
d(u, v) = 2−r(u,v), for distinct u, v ∈ ΩXV, where
r(u, v) denotes the minimum cardinality of B ∈ V for
which there exists a homomorphism ϕ : ΩXV → B
such that ϕ(u) 6= ϕ(v), and taking d(u, u) = 0. In-
stead of proving the triangle inequality, it is more nat-
ural to establish the stronger ultra-metric inequality
d(u,w) ≤ max{d(u, v), d(v, w)}. A sequence in ΩXV
is a Cauchy sequence if and only if its image under any
homomorphism into a member of V converges. This
implies that, in ΩXV, L-operations are uniformly con-
tinuous with respect to d and that L-relations are closed
sets. Hence the completion of ΩXV with respect to the
metric d is a topological structure and one can show
that it is isomorphic with ΩXV.

The elements of ΩXV may also be viewed as opera-
tions as follows. Let A be a pro-V structure. For
w ∈ ΩXV, we define an operation wA : AX → A by
letting, for a function ϕ : X → A, wA(ϕ) = ϕ̂(w)
where ϕ̂ : ΩXV → A is the unique continuous homo-
morphism such that ϕ̂ ◦ ι = ϕ. Thus w becomes an
|X|-ary operation with a ‘natural’ interpretation on ev-
ery pro-V structure, and it is an easy exercise to show
that this interpretation commutes with continuous ho-
momorphisms between pro-V structures; such an oper-
ation is said to be an implicit operation (on the class
of pro-V structures). We say w ‘becomes’ an opera-
tion since the fact that ΩXV is residually in V implies
that already the natural interpretations of w as an op-
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eration in the members of V completely determine w.
Moreover, one can show that every implicit operation
on V arises in this way. In other words, the natural in-
terpretation determines a bijection between ΩXV and
the set of |X|-ary implicit operations on V and there-
fore we may think of the elements of ΩXV themselves
as implicit operations.

Since, up to isomorphism, ΩXV depends only on n =
|X| and V, we may write ΩnV instead of ΩXV.

Sometimes it is also useful to consider some structure
on the generating set X. Usually this is done by re-
ducing the first-order language by dropping some op-
eration or relation symbols. The case described above
in some detail corresponds to dropping all such sym-
bols, so that structures are plain sets. Of course then,
rather than considering functions from X into struc-
tures of the given language, one takes homomorphisms
in the reduced language. The above may be carried out
in this context, mutatis mutandis. A further restriction
which is sometimes useful is to assume that X is a topo-
logical structure of the reduced language, in which case
homomorphisms from X are also assumed to be con-
tinuous, as we already did in the definition of relatively
free profinite structure.

Dynamics of implicit operators

The implicit operation point of view is particularly
suited for iteration, and thus for a dynamical study.
It was basically as a result of this observation that the
author started getting involved with dynamical systems
[3].

Let us concentrate on the case of a finite generating set
X = {x1, . . . , xn}. Since ΩXV is weakly free, a continu-
ous endomorphism γ of ΩXV is completely determined
by the n-tuple (γ(x1), . . . , γ(xn)). Thus, giving an el-
ement of γ ∈ EndΩXV is equivalent to choosing an
n-tuple (w1, . . . , wn) of n-ary implicit operations on V.
We will abuse notation and write γ = (w1, . . . , wn).
Moreover, for any pro-V structure A, we have an as-
sociated transformation γA : An → An defined by the
natural interpretations of the wi as follows:

v ∈ An 7→ ((w1)A(v), . . . , (wn)A(v)).

Such a transformation of An is called an n-ary implicit
operator on A, as in [3] from where the following result
can be derived.

Proposition 3. The set of n-ary implicit operators on
a profinite structure A is a profinite monoid with respect
to the component-wise point-wise convergence topology
and the evaluation mapping is continuous. Moreover,
in case A is weakly free on n generators, this profi-
nite monoid is isomorphic with End A via the corre-
spondence described above.

One may thus consider an arbitrary pro-V structure
A and implicit operations w1, . . . , wn ∈ ΩnV and the
idempotent infinite iterate (w1, . . . , wn)ω on An. The
behavior of this operator may be closely linked with
structural properties of A. Examples of this situation
are explored in [2] for pseudovarieties of finite groups.
We present next a few examples of this phenomenon.

Denote by S the pseudovariety of all finite semigroups.
Note that the subclass G consisting of all finite groups is
also a pseudovariety. Define the commutator of x and y
to be [x, y] = xω−1yω−1xy, which determines a binary
implicit operation on finite semigroups that coincides
with the usual commutator on finite groups.

Example 2. Note that, on finite groups, the first com-
ponent of ([x, y], y)n is the usual iterated commutator
[x, ny]. Similarly, for an integer k, denote by [x, ω+ky]
the binary implicit operation defined by taking the first
component of ([x, y], y)ω+k. Then, by a theorem of
Zorn [37], a finite group G is nilpotent if and only if
G satisfies the operation equation [x, ωy] = 1.

In the preceding example, strictly speaking 1 is not an
operation in our chosen language but we could take any
idempotent like xω in its place. Or we could take, for
an implicit operation w, w = 1 to be an abbreviation
of the equations wy = yw = w where y is a new vari-
able. In general, an equation whose sides are implicit
operations on V (which can always be viewed as being
of the same arity) is called a pseudoidentity. It is said
to be valid in a pro-V structure A if the natural inter-
pretations in A of both sides coincide. For a set Σ of
pseudoidentities, the class of all structures from V that
satisfy all pseudoidentities from Σ is denoted [[Σ]]. It is
a pseudovariety and every pseudovariety W contained
in V is of the form W = [[Σ]] for some set Σ of pseu-
doidentities, in which case we also say that Σ is a basis
of pseudoidentities of W or that W is defined by Σ. This
is an extension of Reiterman’s Theorem [28] that has
been independently established in [26, 27].

Example 3. Let w denote the ternary operation de-
fined by (w, y, z) = ([[x, y], [x, z]], y, z)ω. B. Plotkin
has proposed a conjecture that translates into saying
that the pseudovariety of all finite solvable groups is
defined by the pseudoidentity w([x, y], x, y) = 1 [18]. In
the same vein the author [2] has proposed the follow-
ing alternative pseudoidentity: u = v where (u, v) =
([x, y], [xω−1, yω−1])ω. The proof that such characteri-
zations of solvability for finite groups hold is not likely
to be very simple since one consequence of them is that
a finite group is solvable if and only if all its 2-generated
subgroups are solvable. This property was first es-
tablished by Thompson [32] as a consequence of his
monumental classification of finite simple groups whose
proper subgroups are solvable, whose proof extends over
400 printed pages and which earned J. G. Thompson
the Fields Medal in 1970. A much shorter yet rather
involved proof of the 2-generator characterization of fi-
nite solvable groups has been given by Flavell [16].
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Figure 1: The Thuë-Morse operator on Z/70Z Figure 2: The Thuë-Morse operator on
(Z/2Z× Z/2Z) o Z/3Z

Figure 3: Action of the operator (yω−1xy, x) on D256 Figure 4: Action of the Thuë-Morse operator on A6

One may try to visualize the dynamical behavior of an
implicit operator on a finite structure. The examples in
Figures 1 through 4 were calculated using GAP [31] for
the group calculations and Mathematica [36] for con-
verting them into a picture of the action of a binary
implicit operator on a finite group G. The method used
was to draw a square grid of pixels, each pixel repre-
senting a point in G×G. Each pixel is colored with the
three basic colors green, red and blue. The intensity of
green represents the distance of the point to the cycle
in its orbit so that, in particular, pixels corresponding
to periodic points get no green color component. By
taking a total ordering of the cycles and associating
to each cycle an increasing intensity of blue and a de-
creasing intensity of red, according to its position in the
ordering, each pixel gets the blue and red tonality de-
termined by the cycle in its orbit. Of course, the final
picture will depend on the ordering of the elements of
the group G and the ordering of the cycles. We just
took the ordering of the groups given by GAP and the
ordering of cycles is by first appearance as the cycle in
the orbit of the successive elements of G.

The picture for the Thuë-Morse implicit operator
(x, y) 7→ (xy, yx) acting on the cyclic group Z/70Z is
shown on Figure 1, where the intensities of the basic

colors have been weighted to increase the spatial visual
effect. Figure 2 represents the action of the same op-
erator on the wreath product of the Klein 4-group by
the group of order 3. The fractal-like Figure 3 por-
trays the action of the iterated conjugation operator
(x, y) 7→ (yω−1xy, x) on the dihedral group D256 of or-
der 256. Finally, in contrast, with the above examples,
where one immediately recognizes patterns, the much
more “chaotic” Figure 4 represents the action of the
Thuë-Morse operator on the alternating group A6.

So far these examples have only been used to exper-
imentally explore the behavior of operators or simply
for their aesthetic appeal. They may be viewed as ap-
proximations or as representing a small portion of the
pictures of the action of the same operators on profi-
nite groups, which seems to explain their fractal-like
appearance.

Here is a small sample of other results concerning the
action of implicit operators on finite groups.

Theorem 4 (Širšov [34]). Consider the binary im-
plicit operations u and v defined by (u, v) = (xy, yx)ω,
the idempotent iterate of the Thuë-Morse operator.
Then a finite group satisfies the pseudoidentity u = v if
and only if it is an extension of a nilpotent group by a
2-group.
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Theorem 5. Let (u, v) = (yω−1xy, x)ω. Then the
pseudoidentity u = 1 defines the pseudovariety of all
finite nilpotent groups.

The following result provides partial information on fi-
nite groups for which the iterated commutator has pe-
riod 1. A structure A is said to divide a structure B if
A is a homomorphic image of a substructure of B.

Theorem 6. Let G be a finite group satisfying the pseu-
doidentity [x, ω+1y] = [x, ωy]. Then

a. G is supersolvable and G is a direct product of a
group of order relatively prime to 6 with a group of
order 2m3n which has a normal Sylow 3-subgroup
(Brandl [11]) ;

b. G is either nilpotent or divisible by the symmetric
group S3 (A. Costa [13]).

Dynamics of implicit operators on
free profinite semigroups

We first introduce briefly the most basic tools in semi-
group theory. Readers interested in more details might
wish to consult a book in the area such as [23].

In a semigroup S, say that an element s is a factor of
(or lies J -below) another element t if t can be written
as a product t = t1 · · · tr with r ≥ 1 and some ti = s.
Two elements are associates if they are factors of each
other. This defines an equivalence relation on S which
is one of Green’s relations, denoted J . Similarly, one
may consider left factors or prefixes, with correspond-
ing equivalence relation R, and right factors or suffixes,
with corresponding equivalence relation L. For a com-
pact semigroup, the smallest equivalence relation, de-
noted D, containing both R and L is precisely J . The
intersection R∩L provides the last of Green’s relations,
denoted H. The maximal subgroups of S are precisely
the H-classes that contain idempotents and any two of
them contained in the same D-class are isomorphic.

An element s of a semigroup S is regular if there exists
t ∈ S such that sts = s. All or none of the elements in
a D-class are regular, and the former condition holds if
and only if the D-class contains an idempotent.

Free pro-V semigroups have been computed for some
very special examples of pseudovarieties of semigroups,
often with numerous applications as in the case of the
pseudovariety

J = [[(xy)ω = (yx)ω, xω+1 = xω]]

which consists of all finite semigroups in which the J -
classes are singletons. It turns out that ΩnJ is a rel-
atively free structure in the language with a symbol
added for the ω-power operation, and a finite basis of
equations (that is, a finite presentation consisting of

universal relations) has been given and the word prob-
lem has been solved for this structure [1].

But for instance very little is known about the free profi-
nite semigroups ΩnS. As in the previous section, we
may use infinite iteration of implicit operators to define
complex implicit operations from simple ones. This has
been recently used as a tool to study the semigroups
ΩnS in [8]. We proceed to review a sample of results
from that paper.

The semigroup ΩnS is the free semigroup on n letters
and so its elements may be viewed as words on the let-
ters, for which an appropriate model is the sequence of
letters in the unique factorization into letters. Since im-
plicit operations are limits of sequences of finite words,
we may also call them profinite words. So, of course, a
profinite word w ∈ ΩnS is said to be finite if it belongs
to ΩnS and we will say it is infinite otherwise. The
length of a finite word is the length of the sequence of
letters that compose it.

An infinite profinite word w is said to be recurrent if
every finite factor of w is also a factor of every infinite
factor of w; and we say that w is uniformly recurrent
if every finite factor of w is also a factor of every suffi-
ciently long finite factor of w. One can easily show that
these two notions are equivalent. We prefer to refer to
uniformly recurrent profinite words for reasons that will
be made clear in the next section.

An implicit operator ϕ = (w1, . . . , wn) (wi ∈ ΩnS) is
finite if its components are finite words; we say that
ϕ is primitive if, for some finite exponent k, all com-
ponents of ϕk admit all letters as factors; and ϕ is G-
invertible if the induced operator on (ΩnG)n is invert-
ible. These notions are carried to continuous endomor-
phisms of ΩnS via the isomorphism of Proposition 3.
One can easily show that, for a primitive implicit op-
erator (w1, . . . , wn), all components of the idempotent
iterate (v1, . . . , vn) = (w1, . . . , wn)ω are J -equivalent
[8]. Moreover, in case the wi are finite, then the vi are
uniformly recurrent.

Theorem 7. [8] Let (w1, . . . , wn) be a primitive, G-
invertible, implicit operator all of whose components
start with the same letter and end with the same letter.
Let (v1, . . . , vn) = (w1, . . . , wn)ω. Then {v1, . . . , vn}
freely generates a profinite subgroup of ΩnS which is
a retract of ΩnS. Moreover, every retract subgroup iso-
morphic with ΩnG is obtained in this way.

For example, the components of (xyx, x)ω freely gener-
ate a profinite subgroup of Ω2S but those of the oper-
ator (xy, yx)ω do not even belong to the same H-class
although they are J -equivalent.

The interest in finding n-tuples (v1, . . . , vn) of profinite
words which freely generate profinite retract subgroups
of ΩnS, which are called group-generic, stands from
the fact that such n-tuples may be used to construct
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bases of pseudoidentities for pseudovarieties of semi-
groups which are derived from pseudovarieties of groups
as follows. Let H be a pseudovariety of groups. Then
the class H of all finite semigroups whose subgroups be-
long to H is a pseudovariety. To obtain a basis of pseu-
doidentities for H from a given basis for H simply trans-
form each pseudoidentity u(x1, . . . , xn) = w(x1, . . . , xn)
into u(v1, . . . , vn) = w(v1, . . . , vn) where (v1, . . . , vn) is
a group-generic n-ary implicit operator. As an example,
if Ab is the pseudovariety of all finite Abelian groups
and (v1, v2) = (xyx, x)ω, then Ab = [[v1v2 = v2v1]].
An alternative approach for the construction of group-
generic n-tuples of profinite words which involves idem-
potents from the minimal ideal of ΩnS is presented
in [7].

The iteration ϕω of finite implicit operators ϕ =
(w1, . . . , wn) is of special interest because the elements
of ΩnS with which we start are particularly simple and
because similar iterations take place in other areas of
Mathematics, from symbolic dynamics to the theory
of computation. In the case of a finite, primitive, G-
invertible, implicit operator, we have the following im-
provement of Theorem 7.
Theorem 8. Let ϕ be a finite, primitive, n-ary, im-
plicit operator and let J be the J -class of ΩnS con-
taining the ϕω(xi) (i = 1, . . . , n). If ϕ is G-invertible
then there is at least one maximal subgroup H of ΩnS
contained in J which satisfies H = ϕω(H). Moreover,
H is a free profinite group on n generators of the form
ϕω(u) with u ∈ ΩnS.

For example, taking ϕ = (xy, zx, yzx), with a little
additional calculation one can show that the profinite
words ϕω(x), ϕω+1(x), ϕω+2(x) freely generate a maxi-
mal subgroup of Ω3S. We do not know if this subgroup
is a retract of Ω3S although we conjecture it is not.

In general one cannot expect the retract subgroups of
ΩnS isomorphic with ΩnG to be maximal subgroups.
Indeed, by [7, 8] one can find such subgroups in the
minimal ideal and there one can show that maximal
subgroups are not n-generated for n > 1.

To show more generally that, for n > 1, the minimal
ideal of ΩnS cannot be reached through iteration of fi-
nite n-ary implicit operators, we introduce some numer-
ical parameters. We first consider the factor complexity
of a profinite word w ∈ ΩnS which is given by a function
qw that associates to a positive integer k the number of
factors of w of length k. One can easily show that the
limit

h(w) = lim
k→∞

1
k

logn qw(k)

exists for every infinite w ∈ ΩnS with n > 1 and we
call it the entropy of w. Note that J -equivalent in-
finite elements of ΩnS have the same complexity and
entropy.
Theorem 9. [8] Entropy does not increase by applying
an implicit operation nor by iteration. More precisely:

a. if u ∈ ΩmS and v1, . . . , vm ∈ ΩnS, then

h(u(v1, . . . , vm))
≤ max{h(u) logn m, h(v1), ..., h(vm)};

b. if w1, . . . , wn ∈ ΩnS and z1, . . . , zn are the com-
ponents of the iterate (w1, . . . , wn)ω, then

max
1≤i≤n

h(zi) ≤ max
1≤i≤n

h(wi).

We say that a subset X of ΩnS is closed under itera-
tion if, whenever w1, . . . , wn ∈ X, the components of
(w1, . . . , wn)ω also belong to X.

Consider the minimal ideal I of ΩnS. It is a J -class
and every element of I admits every element of ΩnS
as a factor. Hence elements of I have entropy 1 and,
conversely, one can show that every profinite word of
entropy 1 belongs to I. We thus obtain the following
corollary of Theorem 9 which in particular states that
the minimal ideal is inaccessible by iteration for n > 1.

Corollary 1. [8] For n > 1, the complement of the
minimal ideal I of ΩnS is closed under iteration and
under the application of implicit operations w ∈ ΩmS
with h(w) < 1

logn m .

Symbolic dynamics

We proceed to relate more closely free profinite semi-
groups with symbolic dynamics. Consider the pseu-
dovarieties defined by the following pseudoidentities:

K = [[xωy = xω]]
D = [[yxω = xω]]
LI = [[xωyxω = xω]]

In words: K consists of all finite semigroups in which
idempotents are left zeros; D is the left-right dual of K;
LI consists of all locally trivial finite semigroups in which
every submonoid is trivial and it is the smallest pseu-
dovariety containing both K and D.

The free pro-K semigroup ΩnK on n letters is the com-
pletion of ΩnK = ΩnS with respect to the metric d
defined by d(u, v) = 2−p(u,v) where p(u, v) is the length
of the longest common prefix of u and v. A sequence
of words which is not eventually constant is a Cauchy
sequence if and only if prefixes of any given length sta-
bilize for sufficiently large indices and the limit is com-
pletely determined by these successive prefixes, or in
other words it may be identified with a right infinite
word xi0xi1 . . . xir . . .. Such infinite words are one of
the objects studied in symbolic dynamics, precisely un-
der the metric resulting from d. Multiplication in ΩnK
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is by concatenation of words except that right infinite
words are declared to be left zeros.

Dually, ΩnD is a compactification of ΩnD = ΩnS
by adding all left infinite words . . . xir . . . xj2xj1 and
declaring words (finite or infinite) to be close if they
have a long common suffix. As for ΩnLI, it embeds
naturally in the product ΩnD × ΩnK as follows: add
to ΩnLI = ΩnS points at infinity consisting of pairs
(. . . xj2xj1 , xi0xi1 . . .) of a left infinite and a right infi-
nite word, which may also be identified with a doubly
infinite word . . . xj2xj1xi0xi1 . . . with a marked origin,
that is a function w ∈ XZ defined on the integers with
values in X = {x1, . . . , xn}. Two doubly infinite words
with marked origins are close if they coincide in a large
factor centered at the origin, which induces the product
topology on XZ.

The shift transformation sending w ∈ XZ to the func-
tion σ(w) : n 7→ w(n + 1) corresponds to a letter con-
jugation v 7→ a−1va in ΩnLI where a = w(0). The
shift defines the natural action of the cyclic group Z
on XZ. A symbolic dynamical system or subshift, is a
closed subset S of XZ which is stable under the group
action. It is easy to see that a subshift S is completely
determined by the language L(S) ⊆ ΩnS of its finite
factors and that the languages that arise in this way
are precisely the subsets L of ΩnS which are factorial,
that is they are closed under taking factors, and ex-
tendable, that is for any w ∈ L there are a, b ∈ X such
that aw,wb ∈ L. A subshift S ⊆ XZ is viewed as a
topological dynamical system (S, σ|S).

A subshift whose factors are the factors of the powers
of a finite word is said to be periodic. The subshift S
is said to be sofic if the language L = L(S) can be rec-
ognized by a homomorphism ϕ : ΩnS → S into a finite
semigroup S in the sense that L = ϕ−1ϕ(L). If, more-
over, S ∈ LI then L is said to be locally testable and S is
called a subshift of finite type. Equivalently, a subshift
S ⊆ XZ is of finite type if and only if there is a finite set
W of words such that L(S) consists of the finite words
over X which do not admit any word from W as a fac-
tor. A subshift S is irreducible if, for all u, v ∈ L(S),
there exists w ∈ ΩnS such that uwv ∈ L(S). A minimal
subshift is a nonempty subshift which does not properly
contain any other nonempty subshift. It is well known
that a subshift is minimal if and only if its language con-
sists of all finite factors of a uniformly recurrent doubly
infinite word.

A major open problem in symbolic dynamics is whether
conjugacy is decidable for sofic subshifts, or even just
for subshifts of finite type. There is a coarser equiv-
alence relation, the eventual conjugacy or shift-equiv-
alence, for which complete invariants are given by di-
mension groups [24]. These are ordered Abelian groups
which are effectively computable and so eventual con-
jugacy is decidable. To define eventual conjugacy, one
considers first the power Sn of a subshift S ⊆ XZ whose

alphabet is the set Xn of all length n words over X. El-
ements of S are considered as words over Xn by scan-
ning the successive non-overlapping factors of length n
that compose them. The so-called eventual conjugacy
of subshifts S and T means that their powers Sn and
T n are conjugate for all sufficiently large n. Eventual
conjugacy is known to be strictly coarser than conju-
gacy even for irreducible subshifts of finite type [21, 22].

Given a subshift S ⊆ XZ, we may consider the clo-
sure L(S) of its language of finite factors in ΩnS. The
set L(S) completely determines S since the language of
its finite factors is precisely L(S). This suggests doing
symbolic dynamics in ΩnS, an object that has a much
richer structure than XZ. The question that imme-
diately comes to mind is what transformation of ΩnS
should we consider. The shift transformation corre-
sponds to the conjugation χ : w 7→ a−1wa, where a
is the first letter of w, which means sending w = av to
va. However, a finite iterate of this transformation con-
jugates by a finite factor and coinciding in finite factors
corresponds to the completion ΩnLI of the free semi-
group ΩnS rather than the much richer structure ΩnS
which really interests us here. We do not know of any
single transformation which plays for ΩnS the role the
shift plays in the case of ΩnLI. Our connection between
ΩnS and subshifts proceeds in a different direction.

By Zorn’s Lemma and compactness, the closed set L(S)
must contain elements which are J -equivalent to all
other elements of L(S) of which they are factors. This
suggests studying the J -classes of such elements, which
we will call the minimal J -classes of S. The following
results provide the basis for this study.

Proposition 4. Let S ⊆ XZ be a subshift and let w
be a regular element of ΩnS. Then the following con-
ditions are equivalent:

a. w ∈ L(S);

b. w is J -equivalent to some element of L(S);

c. all finite factors of w belong to L(S).

Theorem 10. Let S ⊆ XZ be a subshift.

a. If S is sofic, then there are only finitely minimal
J -classes of S and L(S) is a union of J -classes.

b. The subshift S is irreducible if and only if S has
only one minimal J -class and it is regular. The
regular J -classes that appear in this way are those
that contain profinite words which are limits of se-
quences of finite factors.

c. The subshift S is minimal if and only if S has
only one minimal J -class J and J contains all
its regular factors. The J -classes that appear in
this way are those that contain uniformly recur-
rent profinite words or, equivalently the J -classes
which contain infinite profinite words and all their
regular factors.
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In terms of the factor (J -)ordering, minimal subshifts
are thus in bijective correspondence with J -maximal
regular J -classes. One might expect such J -classes to
have low entropy since they are far from the minimal
ideal, provided the alphabet has more than one letter.
However, it has been recently shown that there are uni-
formly recurrent doubly infinite words with arbitrarily
large entropy h < 1 [14].
Corollary 2. For n ≥ 2, there are J -maximal regular
J -classes in ΩnS of arbitrarily large entropy h < 1.

At the other end, we already know that there are J -
maximal regular J -classes of ΩnS with zero entropy,
such as the J -class containing the ϕω(xi) for any finite
primitive continuous endomorphism ϕ of ΩnS.

The study of sofic subshifts and of minimal subshifts
correspond to major subareas of symbolic dynamics. In
general, the dynamics of a sofic subshift is determined
by that of certain irreducible sofic subshifts associated
with it. Since minimal subshifts are irreducible (but not
sofic, unless they are periodic), irreducibility is usually
assumed and it is therefore not a serious restriction,
which we will assume from hereon.

In semigroup theory, when a semigroup has a nontriv-
ial minimal ideal, a lot of its structural properties are
reflected in the minimal ideal and in the action of the
semigroup on this ideal. Although L(S) is not in general
a subsemigroup of ΩnS, it does have a minimal J -class
J , which is regular, and so one may view it as a partial
semigroup, for which J plays the role of the minimal
ideal. One way to formalize this idea is to consider a
profinite category associated with S as follows.

By the transition graph Γ(S) of a subshift S ⊆ XZ we
mean the (directed) graph with vertex set S and an
edge v → σ(v) for each vertex v. As a purely com-
binatorial graph, this is a rather uninteresting graph
in which every vertex has in-degree and out-degree 1
and, for instance, all (nonempty) subshifts without
periodic points over finite alphabets have isomorphic
graphs. But both the sets of vertices S and edges
{(v, σ(v)) : v ∈ S} ⊆ S×S have a topological structure
induced from XZ and the partial operations of taking
the beginning and end vertices of an edge are continu-
ous.

This suggests coming back to the general framework
of structures of first-order languages at the beginning
of the paper. However, the treatment of partial oper-
ations, which has important applications for instance
in computer science, is much more delicate and appar-
ently has only be done in special cases in the sense
of obtaining Birkhoff/Reiterman-type theorems charac-
terizing certain classes of structures by means of equa-
tions [12]. One of the difficulties lies in the definition
of a suitable notion of substructure and homomorphic
image. For (small) categories, this has been done by
Tilson [33] with the profinite approach added in [20, 9].

For our present purposes we do not need Birkhoff/
Reiterman-type theorems, but rather just free profinite
constructions. This does carry through from the discus-
sion in earlier sections of this paper with a few minor
adjustments. For substructures we take subsets such
that whenever an operation is defined on elements of
the subset then the resulting value is also in the sub-
set. For a homomorphism, whenever an operation is
defined on elements of the domain, the corresponding
operation should also be defined on their images and
the usual relation (1) should hold. We assume further
that there are unary relations in the language which
are interpreted in structures so as to form partitions of
their universes (into sorts in the language of computer
science) and so that all operations take their arguments
in one sort and all their values are also of a single sort.
Note that this is a nontrivial restriction. It allows us
to define products of structures as subsets of the Carte-
sian product consisting of elements in which all com-
ponents have the same sort, and then define operations
and relations component-wise. Profinite structures are
defined as in the case of fully-defined operations and
free profinite structures may be constructed by taking
projective limits, which in turn are realized as appro-
priate substructures of products of finite structures.

In our case, we may view (small) categories as struc-
tures of a suitable first-order language, namely the lan-
guage with unary relation symbols V and E, unary
operation symbols α, ω and I, and binary operation
symbol π. Their interpretation in a category C is the
following: V is the set (sort) of vertices (or objects); E
is the set (sort) of edges (or morphisms); α is the par-
tial operation defined on edges where α(e) is the vertex
where the edge starts; ω is the partial operation defined
on edges where ω(e) is the vertex where the edge ends;
I is the partial operation defined on vertices where I(v)
is the identity at v; π is the partial associative opera-
tion defined on edges e, f such that ω(e) = α(f) and
the edge π(e, f) starts at α(e) and ends at ω(f).

Graphs may be viewed as structures of the reduced
language in which the symbols I and π are dropped.
Semigroupoids are structures of the language with the
symbol I dropped. The general framework gives us the
right notions of graph homomorphism, category homo-
morphism (or functor), topological graph, profinite cat-
egory, and so on.

Back to subshifts, with the above topology, not only
Γ(S) is a topological graph but, more precisely, we have
the following expected result.

Proposition 5. The graph Γ(S) is profinite.

Recall that a homomorphism (or functor) ϕ : C → D
between two categories is faithful if its restriction to
every set of edges of C with fixed beginning and end
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is injective. We say that a graph is strongly connected
if, for all vertices v and w, there is an edge v → w.
Groupoids are strongly connected categories in which
all morphisms are isomorphisms.

Note that the class Cat of all finite categories is a pseu-
dovariety. The free structure ΩΓCat on a graph Γ is
then the free category on Γ, whose edges are the finite
paths in Γ. In case Γ is a profinite graph, ΩΓCat may
be constructed as in an earlier section as the comple-
tion of ΩΓCat with respect to a suitable metric. We call
the edges of ΩΓCat profinite edges and we say they are
infinite if they do not lie in ΩΓCat.

Note that from the free profinite category ΩΓ(S)Cat one
can reconstruct the subshift S as a topological dynam-
ical system: the space S is the closed subspace V of
vertices and the shift transformation v → σ(v) is char-
acterized by the edges which are not local identities
and which cannot be factorized nontrivially. In par-
ticular, two subshifts are conjugate if and only if their
associated profinite graphs (respectively categories) are
isomorphic.

A subshift S ⊆ XZ further determines a labeling of
its associated profinite graph Γ(S): label the edge
v → σ(v) with the letter v(0) across which the shift
moves the origin of the doubly infinite word v. This la-
beling extends uniquely to a continuous homomorphism
λ : ΩΓ(S)Cat → ΩXM to the free profinite monoid on X,
which is obtained from ΩXS by adding an identity as an
isolated point, where monoids are seen as one (virtual)
vertex categories.

Proposition 6. The mapping λ is faithful.

We thus have another strong, “geometrical”, connection
between subshifts and free profinite semigroups. The
next result summarizes some relationships between the
profinite constructions associated with a subshift.

Theorem 11. Let S ⊆ XZ be a subshift.

a. The subshift S is irreducible if and only if the cate-
gory ΩΓ(S)Cat is strongly connected. In this case,
the labeling λ embeds the minimal ideal of each
local monoid of ΩΓ(S)Cat in the minimal J -class
of S as a union of maximal subgroups of ΩnS.

b. The subshift S is minimal if and only if the cat-
egory ΩΓ(S)Cat is strongly connected and its sub-
semigroupoid whose edges are the infinite profinite
paths of Γ(S) is a groupoid.

In particular, for an irreducible subshift S ⊆ XZ,
the maximal subgroups of the minimal ideals of local
monoids of the profinite category ΩΓ(S)Cat are mutu-
ally isomorphic and they are isomorphic to the maxi-
mal subgroups of the minimal J -class of S. This gives
a geometrical meaning to the groups computed in the
preceding section. We also obtain the following result.

For shortness, let us denote G(S) any of the maximal
subgroups of the minimal J -class of an irreducible sub-
shift S.

Corollary 3. The group G(S) is a conjugacy invariant
of S.

A subshift S ⊆ XZ is said to be generated by a finite
primitive endomorphism ϕ of ΩnS if L(S) is the set of
factors of the words of the form ϕn(xi) or, equivalently,
the finite factors of the profinite words ϕω(xi). Since
for such ϕ, ϕω(xi) is uniformly recurrent, we do always
generate a subshift in this way. The subshifts thus ob-
tained are also called substitution subshifts.

As a consequence of Theorem 8 we should note that
G(S) is a very rough conjugacy invariant. However,
it is easy to see that the action of the alphabet on the
minimal J -class of an irreducible subshift S is sufficient
to allow us to recover S. Hence, one should be able to
extract from this action enough information to charac-
terize the conjugacy class of S. At present it remains an
open problem how to do it and whether that may lead
to a solution of the conjugacy problem for subshifts of
finite type or even for sofic subshifts.

We end this section with a partial extension of The-
orem 8 to non-substitution subshifts. A subshift S is
said to be Sturmian if L(S) has exactly n + 1 elements
of length n for every n ≥ 1. It is well known that this is
the minimum possible value for a non-periodic subshift
and that Sturmian subshifts are minimal [19]. Taking
n = 1, we see that a Sturmian subshift involves only
two letters and so it may be considered as a subshift
over a two-letter alphabet.

The following result has also been announced in [5].

Theorem 12. Let S be a Sturmian subshift. Then the
group G(S) is a free profinite group on two generators.

For example, the continuous endomorphism of Ω2S de-
fined by ϕ = (xy, x) generates the so-called Fibonacci
subshift, which has many remarkable properties [25].
The name is justified since the number of occurrences
of y in ϕn(x) is the nth term of the Fibonacci sequence
1, 1, 2, 3, 5, 8, 13, . . . The associated group is a free profi-
nite group on two generators by Theorem 12.

Sturmian substitution subshifts have been character-
ized as those subshifts on two-letter alphabets which
are generated by finite primitive G-invertible contin-
uous endomorphisms of Ω2S [25, Chapter 2]. Hence
Theorem 12 is indeed an extension of Theorem 8 for
two-letter alphabets. The following partial extension
to larger alphabets has also been announced in [5].

We say that a word w is right special for a subshift S,
if there are at least two letters a, b such that wa, wb ∈
L(S). In this case, the number of such letters is called
the right-degree of w. The left analogues of this notion
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are defined dually. A subshift S ⊆ XZ is said to be
an Arnoux-Rauzy subshift if, for every positive integer
n, there is exactly one right special word of length n,
which is of right-degree |X|, and one left special word
of length n, which is of left-degree |X|. One can easily
show that an Arnoux-Rauzy subshift is minimal.
Theorem 13. Let S be an Arnoux-Rauzy subshift over
an alphabet with m letters. Then the group G(S) is a
free profinite group on m generators.
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What’s New in Mathematics

The Putnam in Time. “Crunching the Numbers”
is the title of a piece by Lev Grossman, in the De-
cember 23 2002 Time magazine, about the William
Lowell Putnam Mathematical Competition. “Every
year,” it begins, “on the first Saturday in December,
2,500 of the most brilliant college students in North
America take what may be the hardest math test in
the world.” Grossman gives a quick survey of the his-
tory of the exam, a summary of the daunting statis-
tics (“the median score on last year’s test was 1 point.
Out of a possible 120.”) and a Time-like glimpse of its
mystique (“think of it as a coming-out party for the
next generation of beautiful minds”). He interviews
Leonard Klosinski (Santa Clara; the competition di-
rector), Richard Stanley (coach of the MIT team) and
Kevin Lacker, one of last year’s winners, who remarks:
“Doing well on the Putnam and doing good math re-
search are two different tasks that take two different
kinds of intelligence.”

The piece includes a sample problem, labeled “An Easy
One.” “A right circular cone has a base of radius 1 and
a height of 3. A cube is inscribed on the cone so that
one face of the cube is contained in the base of the cone.
What is the length of an edge of the cube?” Check Time
for the answer.

Too much pi? Under the title “How to Slice the
Pi Very, Very Thin,” the December 7, 2002 New York
Times ran an AP dispatch from Tokyo reporting on the
calculation of π to 1.24 trillion places, “six times the
number of places recognized now.” A ten-person team
led by Yasumasa Kanada broke the trillion-place barrier
with the help of a Hitachi supercomputer at the Infor-
mation Technology Center of Tokyo University. The
report quotes David Bailey (Lawrence Berkeley Lab):
“It’s an enormous feat of computing, not only for the

sheer volume, but it’s an advance in the technique he’s
using. All known techniques would exceed the capacity
of the computer he’s using.” Which is, we are told, two
trillion calculations a second. Note that light travels
.15 mm in one two-trillionth of a second. This must be
a very small or very parallel computer.

The best ways to lace your shoes has been worked
out by Burkard Polster, a mathematician at Monash
University (Victoria, Australia). His report, in the De-
cember 5 2002 Nature, was picked up in the December
10 Boston Globe (via Reuters) and in Time magazine
for December 23.

The best way to lace depends on your criteria, but in
all allowable lacings each eyelet is connected to at least
one eyelet on the opposite side. The strongest lacings
with n pairs of eyelets are the “crisscross” (when the ra-
tio h of vertical eyelet spacing to horizontal is below a
certain value hn) and the “straight” (when h is greater
than hn). The shortest lacings are the “bowties”. There
is only one minimal bowtie lacing when n is even, but
there are (n+1)/2 when n is odd. The shortest “dense”
lacing (no vertical segments) is the crisscross.

Freak waves. BBC Two, on November 14, 2002, aired
a program on this phenomenon and its recent math-
ematical analysis. Freak waves, also “rogue waves,”
“monster waves,” are extraordinarily tall and steep
waves that appear sporadically and wreck havoc with
shipping. One is suspected to have washed away the
German cargo München which went down with all
hands in the midst of a routine voyage in 1978. More
recently, the cruise ship Caledonian Star was struck
by a 30m wave on March 2, 2001. The standard
analysis of ocean waves predicts a Gaussian-like dis-
tribution of heights; extreme heights, although pos-
sible, should be very rare - a 30m wave is expected
once in ten thousand years, according to the BBC.
But these waves occur much more frequently than pre-
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dicted. The program focused on new methods of anal-
ysis, and on the work of the mathematician A. R.
Osborne (Fisica Generale, Torino). Osborne has ap-
plied the inverse scattering transform, which he de-
scribes as “nonlinear Fourier analysis,” to the time se-
ries analysis of wave data. He conducted simulations us-
ing the nonlinear Schrödinger equation and found near
agreement with the standard analysis, except that “ev-
ery once in a while a large rogue wave rises up out
of the random background noise.” His paper, avail-
able online, gives an example of such a simulation:

Time series of a random wave train showing the

appearance of a large rogue wave with height 20m

occurring at 140 seconds.

Mathematical oncology. “Clinical oncologists and
tumor biologists posess virtually no comprehensive
model to serve as a framework for understanding, or-
ganizing and applying their data.” This statement is
featured in a box at the top of Robert A. Gatenby and
Philip K. Maini’s “Concepts” piece in the January 23
2003 Nature. They point out that despite the glut of
publication (over 21000 articles on cancer in 2001) on-
cology has not been pursuing “quantitative methods
to consolidate its vast body of data and integrate the
rapidly accumulating new information.” The explana-
tions they suggest are mostly cultural. For example: “...
medical schools have generally eliminated mathemat-
ics from admission prerequisites ...” They also blame
“those of us who apply quantitative methods to can-
cer” for not having “clearly demonstrated to our bi-
ologist friends a dominant theme of modern applied
mathematics: that simple underlying mechanisms may
yield highly complex observable behaviors.” An illustra-
tion from Wolframscience.com drives home the point.
They end with an apology for mathematical modeling,
showing how a verbal schema may be be enriched and
strengthened by incorporation into a mechanistic and
quantitative model which can handle, through compu-
tation, properties such as stochasticity and nonlinear-
ity which cannot be handled by verbal reasoning alone.
“As in physics, understanding the complex, nonlinear
systems in cancer biology will require ongoing, inter-
disciplinary, interactive research in which mathemati-
cal models, informed by extant data and continually
revised by new information, guide experimental design
and interpretation.”

4 log 3 - a new cosmic constant? John Baez (UC
Riverside) has a “news and views” piece in the Febru-
ary 13 2003 Nature entitled “The Quantum of Area?”.
We start by asking whether black holes have a discrete
spectrum of energy levels. According to Baez, a com-
plete answer would require an understanding of “how
quantum mechanics and general relativity fit together
– one of the great unsolved problems in physics.” But
two completely different ways of guessing have recently
come to the same answer: the spectrum of discrete en-
ergy levels is related to the surface area of the black
hole, and the quantum of surface area is exactly 4 times
the natural logarithm of 3 times the Planck area (which
itself is about 10−70 m2). The “surface” is actually the
event horizon - “the closest distance an object can ap-
proach a black hole before being sucked in,” so it is
an imaginary boundary, but nevertheless acts in many
ways “like a flexible membrane,” and has a geometry of
its own: it is flat except at points where it is punctured
by one of the “threads” postulated by loop quantum
gravity theory. Recent work by Shahar Hod (Hebrew
University), Olaf Dreyer (Penn State; available online
at http://arxiv.org/list/gr-qc/0211) and Lubos Motl
(Harvard; available online at http://arxiv.org/list/gr-
qc/0212) relates to earlier research by Hawking, Ashke-
tar and Baez himself.

The Poincaré Conjecture. The New York Times,
in their Science section for April 15, 2003, ran a piece
by Sara Robinson entitled “Celebrated Math Problem
Solved, Russian Reports.” The problem is the 100-year-
old Poincaré Conjecture; the Russian is Grigory Perel-
man of the Steklov Institute in St. Petersburg. As
Robinson describes it, Perelman is claiming even more:
a proof of a conjecture due to William Thurston, that
“three-dimensional manifolds are composed of ... ho-
mogeneous pieces that can be put together only in pre-
scribed ways.” The Poincaré Conjecture, about the pos-
sible topology of a three-dimensional manifold in which
every loop can be shrunk to a point, follows because
now it would be known what possible geometric struc-
ture such a manifold could have. Robinson comments
briefly on the method of proof. There is a natural way
for the geometry of a manifold to evolve in time: this
is the Ricci flow, “an averaging process used to smooth
out the bumps of a manifold and make it look more
uniform.” Its application to Thurston’s geometrization
conjecture was pioneered by Richard Hamilton (now at
Columbia) and carried out in full, we hope, by Perel-
man. Robinson remarks on the interesting parallels be-
tween Perelman’s odyssey and that of Andrew Wiles
(who recently proved Fermat’s Theorem) and also on
Perelman’s eligibility, if his proof sustains scrutiny, for
one of the Clay Mathematical Institute’s million-dollar
prizes. The Times picked up the story again in the
“Week in Review” section on Sunday, April 20: “A
Mathematician’s World of Doughnuts and Spheres,” by
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George Johnson. “Poincaré proof adds up to potential
payday” is the tack Nature chose to follow in a News
in Brief item (April 24, 2003). The math got mangled:
“Closed two-dimensional surfaces without holes can be
transformed onto the surface of a sphere, and Henri
Poincaré suggested that similar surfaces with higher di-
mensions should also transform back to spheres.” But
they did give a link to one of Perelman’s preprints.

“The Superformula”. Nature Science Update ran a
piece on April 3, 2002 by John Whitfield: “Maths gets
into shape.” Whitfield was reporting on an article by
Johan Gielis (Nijmegen) in the March 2003 American
Journal of Botany in which Gielis proposes his superfor-
mula (“A generic geometric transformation that unifies
a wide range of natural and abstract shapes”). The
superformula, in slightly different notation, is the fol-
lowing polar equation:

r(ϕ) = f(ϕ)(|A cosM |p + |B sinM |q)−1/n, (4)

which, for various values of the parameters
A, B, M, p, q, n and various choices of the function
f(ϕ) does in fact give a wide variety of interesting
shapes. Whether this mathematical unity is of any
botanical significance is harder to see. Whitfield quotes
Ian Stewart (Warwick): “I’m not convinced ... , but
it might turn out to be profound if it could be related
to how things grow” as is the case, for example, with
D’Arcy Thompson’s explanation of the logarithmic spi-
ral in mollusk shells. Gielis’ position, as quoted by
Whitfield: “Description always precedes ideas about
the real connection between maths and nature.” A
botanical Kepler awaiting his Newton. Meanwhile,
Gielis has applied for a patent on his discovery: Meth-
ods and devices for synthesizing and analyzing patterns
using a novel mathematical operator, USPTO patent
application No. 60/133,279 (1999).

Math in Nature. The May 15 2003 issue of Nature
has at least three articles with interesting mathematical
aspects.

* Astronomy. “Chaos-assisted capture of irregular
moons” is a comparative study of the irregular moon
systems of the gas giants Jupiter and Saturn. Irregu-
lar moons have highly inclined orbits (but never more
than 55 degrees) with respect to the planet’s equato-
rial plane. Their motion may be prograde, counter-
clockwise when viewed from above, like our Moon and
Jupiter’s Galilean moons, or retrograde. In fact in the
Jupiter system, the retrogrades outnumber the pro-
grades 26 to 6. The authors study the 3-dimensional
circular restricted three-body problem, focussing on the
Sun-Jupiter-moon system. They use a Monte Carlo
simulation to show how, in phase space, “the chaotic
layer selects for the sense of the angular momentum of

incoming and outgoing particles,” i.e. sorts them into
prograde and retrograde. (Authors: S. A. Astakhov, A.
D. Burbanks, S. Wiggins, D. Farrelly)

* Econophysics. “A theory of power-law distributions
in financial market fluctuations” sets up a model to ex-
plain the empirical probabilities:

P (|rt| > x) ∼ x−3

P (V > x) ∼ x−1.5

P (N > x) ∼ x−3.4

where rt is the change of the logarithm of stock price in
a given time interval ∆t (for a given stock), V is trad-
ing volume and N is the number of trades. The model
“is based on the hypothesis that large movements in
stock market activity arise from the trades of large par-
ticipants.” (Authors: X. Gabaix, P. Gopihrishnan, V.
Plerou, H. E. Stanley).

* Neurophysiology. In “Attractor dynamics of network
UP states in the neocortex” the authors report that in
analyzing the dynamics of spontaneous activity of neu-
rons in the mouse visual cortex, they detected “synchro-
nized UP state transitions” occurring in “spatially orga-
nized ensembles involving small numbers of neurons.”
(UP is short for the membrane potential depolarized
state). They argue that the these synchronized transi-
tions, or ’cortical flashes,’ are dynamical attractors, and
that “a principal function of the highly recurrent neo-
cortical networks is to generate persistent activity that
might represent mental states.” (Authors: R. Cossart,
D. Aronov, R. Yuste)

The Poincaré Conjecture (cont.) The recent de-
velopments were also covered by Science, in an April
18 2003 piece by Dana Mackenzie whose title, “Math-
ematics World Abuzz Over Possible Poincaré Proof,”
correctly suggests his Variety-style approach to the sub-
ject. “Furthermore, what was to keep the surgeries, like
plastic surgeries on a Hollywood star, from going on
endlessly?” Nevertheless Mackenzie gives the best lay-
man’s guide so far to the history of the problem and
to Perelman’s innovations. An excellent presentation,
ending in a lovely quote from Bennett Chow (UCSD):
“It’s like climbing a mountain, except in the real world
we know how high the mountain is. What Hamilton
did was climb incredibly high, far beyond what anyone
expected. Perelman started where Hamilton left off and
got even higher yet - but we still don’t know how high
the mountain is.” Nature came back to the story, after
last month’s “News in Brief” item, with a more elab-
orate, and mathematically substantial, report by Ian
Stewart (May 8, 2003). This account, also excellent, is
complementary to Mackenzie’s: they emphasize differ-
ent aspects of the problem and of the putative solution.

Originally published by the American Mathematical Society in What’s New in Mathematics, a section of e-MATH,
http://www.ams.org/index/new-in-math/home.html. Reprinted with permission.
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An Interview with with M. J. D. Powell

I am sure that our readers would like to know a bit
about your academic education and professional career
first. Why did you choose to go to the Atomic Energy
Establishment (Harwell) right after college in 1959?

When I studied mathematics at school, nearly all of my
efforts were applied to solving problems in text books,
instead of reading the texts. Then my teachers marked
and discussed my solutions instead of instructing me
in a formal way. I enjoyed this kind of work greatly,
especially when I was able to find answers to difficult
questions myself. Thus I gained a good understanding
of some fields of mathematics, but I became unwilling
to learn about new subjects at a general introductory
level, because I do not have a good memory, and to
me it was without fun. I also disliked the breadth of
the range of courses that one had to take at Cambridge
University as an undergraduate in mathematics. Fortu-
nately, I was able to complete that work adequately in
two years, which allowed me to study for the Diploma in
Numerical Analysis and Computation during my third
year. It was a relief to be able to solve problems again
most of the time, and the availability of the Edsac 2
computer was a bonus. I welcomed the use of analy-
sis and the satisfaction of obtaining answers. I wished
to continue this kind of work after graduating, but the
possibility of remaining in Cambridge for a higher de-
gree was not suggested to me. Contributing to aca-
demic research and publishing papers in journals were
not suggested either, although I developed a success-
ful algorithm for adaptive quadrature in a third year
project. Therefore in 1959 I applied for three jobs at
government research establishments, where I would as-
sist scientists with numerical computer calculations. I
liked the location of Harwell and the people who inter-
viewed me there, so it was easy for me to accept their
offer of employment.

You obtained your doctor of science only in 1979,
twenty years after your bachelors degree and three years
after being hired as a professor in Cambridge. Why was
that the case?

After graduating from Cambridge in 1959 with a BA
degree, I had no intention of obtaining a doctorate. All
honours graduates from Cambridge are eligible for an
MA degree after about 3 further years, without taking
any more courses or examinations, but from my point
of view that opportunity was not advantageous, partly
because one had to pay a fee. When I became the Pro-

fessor of Applied Numerical Analysis at Cambridge in
1976, I was granted all the privileges of an MA auto-
matically, and my official degree became BA with MA
status. Two years later, I was fortunate to be elected
as a Professorial Fellow at Pembroke College, and the
Master of Pembroke suggested that I should follow the
procedure for becoming a Master of Arts. Rather than
expressing my reservations about it, I offered to seek
an ScD degree instead, which required an examination
of much of my published work. Thus I became an aca-
demic doctor in 1979.

M. J. D. Powell

Was it hard to adapt to the academic life after so many
years in Harwell?

After about five years at Harwell, most of my time was
spent on research, which included the development of
Fortran software for general computer calculations, the
theoretical analysis of algorithms, and of course the
publication of papers. The purpose of the adminis-
trative staff there was to make it easier for scientists
to carry out their work. On the other hand, I found at
Cambridge that one had to create one’s own opportuni-
ties for research, which required some stubbornness and
lack of cooperation, because of the demands of teach-
ing, examining and admitting students, and also be-
cause administrative duties at universities can consume
the time that remains, especially during terms. This
change was particularly unwelcome, and is very differ-
ent from the view that most of my relatives and friends
have of university life. Indeed, when I was at Harwell
they did not doubt that I had a full time job, but they
assume that at Cambridge the vacations provide a life
of leisure.
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In your work in optimization we find several interesting
and meaningful examples and counter-examples. Where
did you get this training (assuming that not all is natu-
ral talent)? From your exposure to approximation the-
ory? From the hand calculations of the old computing
times?

The construction of examples and counter-examples is
a natural part of my strong interest in problem solving,
and of the development of software that I have men-
tioned. Specifically, numerical results during the test-
ing of an algorithm often suggest the convergence and
accuracy properties that are achieved, so conjectures
arise that may be true or false. Answers to such ques-
tions are either proofs or counter-examples, and often
I have tried to discover which of these alternatives ap-
plies. Perhaps my training started with my enjoyment
of geometry at school, but then the solutions were avail-
able. I am pleased that you mention hand calculations,
because I still find occasionally that they are very use-
ful.

Was exemplification a relevant tool for you when you
taught numerical analysis classes? Did your years as a
staff member at Harwell influence your teaching?

My main aim when teaching numerical analysis to stu-
dents at Cambridge was to try to convey some of the
delightful theory that exists in the subject, especially
in the approximation of functions. Only 36 lectures are
available for numerical analysis during the three un-
dergraduate years, however, except that there are also
courses on computer projects in the second and third
years, where attention is given to the use of software
packages and to the numerical results that they pro-
vide. Moreover, in most years I also presented a grad-
uate course of 24 lectures, in order to attract research
students. The main contribution to my teaching from
my years at Harwell was that I became familiar with
much of the relevant theory there, because it was devel-
oped after I graduated in 1959, but I hardly ever men-
tioned numerical examples in my lectures, because of
the existence of the Cambridge computer projects, and
because the mathematical analysis was more important
to my teaching objectives. Therefore my classes were
small. Fortunately, some of the strongest mathemati-
cians who attended them became my research students.
I am delighted by their achievements.

Could you tell us how computing resources evolved at
Harwell in the sixties and seventies and how that im-
pacted on the numerical calculations of those times?

Beginning in 1958, I have always found that the speed of
computers and the amount of storage are excellent, be-
cause of the huge advances that occur about every three

years. On the other hand, the turnaround time for the
running of computer programs did not improve steadily
while I was at Harwell. Indeed, for about four years
after I started to use Fortran in 1962, those programs
were run on the IBM Stretch computer at Aldermaston,
the punched cards being transported by car. Therefore
one could run each numerical calculation only once or
twice in 24 hours. Of course it was annoying to have
to wait so long to be told that one had written dimes-
nion instead of dimension, but ever since I have been
grateful for the careful attention to detail that one had
to learn in that environment. Moreover, it was easier
then to develop new algorithms that extend the range
of calculations that can be solved. Conveying such ad-
vances to Harwell scientists was not straightforward,
however, mainly because they wrote their own com-
puter programs, using techniques that were familiar to
them. The Harwell Subroutine Library, which I started,
was intended to help them, and to reduce duplication
in Fortran software. Often it was highly successful, but
many computer users, both then and now, prefer not
to learn new tricks, because they are satisfied by the
huge gains they receive from increases in the power of
computers.

You once wrote: “Usually I produced a Fortran program
for the Harwell subroutine library whenever I proposed
a new algorithm,...”1. In fact, writing numerical soft-
ware has always been a concern of yours. Could you
have been the same numerical analyst without your nu-
merical experience?

My principal duty at Harwell was to produce For-
tran programs that were useful for general calculations,
which justified my salary. My work on the theoretical
side of numerical analysis was also encouraged greatly,
and its purpose was always to advance the understand-
ing of practical computation. Indeed, without numeri-
cal experience, I would be cut off from my main source
of ideas. It is unusual for me to make progress in re-
search by studying papers that other people have writ-
ten. Instead I seek fields that may benefit from a new
algorithm that I have in mind. I also try to explain and
to take advantage of the information that is provided
by both good and bad features of numerical results.

Roger Fletcher wrote once that “your style of program-
ming is not what one might call structured”. Some peo-
ple think that a piece of software should be well struc-
tured and documented. Others that it should be primar-
ily efficient and reliable. What are your views on this?

I never study the details of software that is written by
other people, and I do not expect them to look at my

1A View of Nonlinear Optimization, History of Mathematical Programming: A Collection of Personal Reminiscences (J.K. Lenstra,
A.H.G. Rinnooy Kan, and A. Schrijver eds), North-Holland (Amsterdam), 119-125 (1991).
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computer programs. My writing of software always de-
pends on the discipline of subroutines in Fortran, where
the lines of code inside a subroutine can be treated as a
black box, provided that the function of each subroutine
is specified clearly. Finding bugs in programs becomes
very painful, however, if there are any doubts about the
correctness of the routines that are used. Therefore I
believe that the reliability and accuracy of individual
subroutines is of prime importance. If one fulfils this
aim, then in my opinion there is no need for programs to
be structured in a formal way, and conventional struc-
tures are disadvantageous if they do not suit the style
of the programmer who must avoid mistakes. Those
people who write reliable software usually achieve good
efficiency too. Of course it is necessary for the docu-
mentation to state what the programs can do, but oth-
erwise I do not favour the inclusion of lots of internal
comments.

And by the way, how do you regard the recent advances
in software packages for nonlinear optimization?

Most of my knowledge of recent advances in software
packages has been gained from talks at conferences. I
am a strong supporter of such activities, as they make
advances in numerical analysis available for applica-
tions. My enthusiasm diminishes, however, when a
speaker claims that his or her software has solved suc-
cessfully about 90% of the test problems that have been
tried, because I could not tolerate a failure rate of 10%.
Another reservation, which applies to my programs too,
is that many computer users prefer software that has
not been developed by numerical analysts. I have in
mind the popularity of simulated annealing and genetic
algorithms for optimization calculations, although they
are very extravagant in their use of function evaluations.

Many people working in numerical mathematics under-
value the paramount importance of numerical linear al-
gebra (matrix calculations). Would you like to comment
on this issue? How often was research in numerical lin-
ear algebra essential to your work in approximation and
optimization?

An optimization algorithm is no good if its matrix cal-
culations do not provide enough accuracy, but, when-
ever I try to invent a new method, I assume initially
that the computer arithmetic is exact. This point
of view is reasonable for the minimization of general
smooth functions, because techniques that prevent se-
rious damage from nonlinear and nonquadratic terms
in exact arithmetic can usually cope with the effects of
computer rounding errors, as in both cases one has to
restrict the effects of perturbations. Therefore I expect
my algorithms to include stability properties that allow
the details of the matrix operations to be addressed af-
ter the principal features of the algorithm have been
chosen. Further, I prefer to find ways of performing the

matrix calculations myself, instead of studying relevant
research by other people.

I read in one of your articles that “a referee suggested
rejection because he did not like the bracket notation”.
What is your view about the importance of refereeing?
How do you classify yourself as a referee?...

The story about the bracket notation is remarkable, be-
cause the paper that was nearly rejected is the one by
Roger Fletcher and myself on the Davidon–Fletcher–
Powell (DFP) algorithm. As a referee, I ask whether
submitted work makes a substantial contribution to its
subject, whether it is correct, and whether the amount
of detail is about right. I believe strongly that we can
rely on the accuracy of published papers only if some-
one, different from the author(s), checks every line that
is written, and in my opinion that task is the responsi-
bility of referees. When it is done carefully, then refer-
eeing becomes highly important. I try to act in this way
myself, but, because my general knowledge of achieve-
ments in my fields is not comprehensive, I often consider
submissions in isolation, although I should relate them
to published work.

Actually, in my previous question I had in mind the
difficulty that others might face to meet your high stan-
dards. This brings me to your activity as a Ph.D ad-
viser. What difficulties and what rewards do you en-
counter when advising Ph.D. students?

Of course I take the view that my requirements for the
quality of the work of my PhD students are reasonable.
I require their mathematics to be correct, I require rel-
evance to numerical computation, and I require some
careful investigations of new ideas, instead of a review
of a subject with some superficial originality. Further, I
prefer my students to work on topics that are not receiv-
ing much attention from other researchers, in order that
they can become leading experts in their fields. Some
of them have succeeded in this way, which is a great
reward, but two of them switched to less demanding su-
pervisors, and another one switched to a well paid job
instead of completing his studies. I also had a student
that I never saw after his first four terms. Eventually
he submitted a miserable thesis, that was revised after
his first oral examination, and then the new version was
passed by the examiners, but the outcome would have
been different if university regulations had allowed me
to influence the result. On the other hand, all my other
students have done excellent work and have thoroughly
deserved their PhDs. One difficulty has occurred in
several cases, namely that, because each student has to
gain experience and to make advances independently,
one may have to allow his or her rate of progress to be
much slower than one could achieve oneself. Another
difficulty is that my knowledge of pure mathematics has
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been inadequate for easy communication between my-
self and most of my students who have studied approx-
imation theory. Usually they were very tolerant about
my ignorance of distributions and properties of Fourier
transforms, for example, but my heart sinks when I am
asked to referee papers that depend on these subjects.

Most of your publications are single-authored. Why do
you prefer to work on your own?

I believe I have explained already why I enjoy working
on my own. Therefore, when I begin some new research,
I do not seek a co-author. Moreover, as indicated in the
last paragraph, I prefer my students to make their own
discoveries, so usually I am not a co-author of their
papers.

I have been trying to avoid technical questions but there
is one I would like to ask. What is your view on
interior-point methods (a topic where you made only
a couple — but as always relevant and significant —
contributions)?

My view of interior point methods for optimization cal-
culations with linear constraints is that it seems silly
to introduce nonlinearities and iterative procedures for
following central paths, because these complications are
not present in the original problem. On the other hand,
when the number of constraints is huge, then algorithms
that treat constraints individually are also unattractive,
especially if the attention to detail causes the number of
iterations to be about the number of constraints. It is
possible, however, to retain linear constraints explicitly,
and to take advantage of the situation where the bound-
ary of the feasible region has so many linear facets that
it seems to be smooth. This is done by the TOLMIN
software that I developed in 1989, for example, but the
number of variables is restricted to a few hundred, be-
cause quadratic models with full second derivative ma-
trices are employed. Therefore eventually I expect in-
terior point methods to be best only if the number of
variables is large. Another reservation about this field
is that it seems to be taking far more than its share of
research activity.

You published a book in approximation theory. Have you
ever thought about writing a book in nonlinear optimiza-
tion?

My book on Approximation Theory and Methods was
published in 1981. Two years later, my son died in an
accident, and then I wished to write a book on Nonlin-
ear Optimization that I would dedicate to him. I have
not given up this idea, but other duties, especially the
preparation of work for conferences and their proceed-
ings, have caused me to postpone the plan. Of course,
because of the circumstances, I would try particularly
hard to produce a book of high quality.

Let me end this interview with the very same questions
I asked T.R. Rockafellar (who, by the way, shared with
you the first Dantzig Prize in 1982). Have you ever felt
that a result of yours was unfairly neglected? Which?
Why? What would you like to prove or see proven that
is still open (both in approximation theory and in non-
linear optimization)? What was the most gratifying pa-
per you ever wrote? Why?

I was taught the FFT (Fast Fourier Transform) method
by J.C.P. Miller in 1959, and then it made Cooley and
Tukey famous a few years later. Moreover, my 1963 pa-
per with Roger Fletcher on the DFP method is mainly
a description of work by Davidon in 1959, and it has
helped my career greatly. Therefore, by comparison,
none of my results has been unfairly neglected. My
main theoretical interest at present is trying to estab-
lish the orders of convergence that occur at edges, when
values of a smooth function are interpolated by the ra-
dial basis function method on a regular grid, which is
frustrating, because the orders are shown clearly by nu-
merical experiments. In nonlinear optimization, how-
ever, most of my attention is being given to the devel-
opment of algorithms. Since you ask me to mention
a gratifying paper, let me pick “A method for nonlin-
ear constraints in minimization problems”, because it
is regarded as one of the sources of the “augmented
Lagrangian method”, which is now of fundamental im-
portance in mathematical programming. I have been
very fortunate to have played a part in discoveries of
this kind.

Interview by Lúıs Nunes Vicente (Uni. of Coimbra)

M.J.D. Powell completed his undergraduate studies at the University of Cambridge in 1959. From 1959 to 1976 he
worked at the Atomic Energy Establishment, Harwell, where he was Head of the Numerical Analysis Group from
1970. He has been John Humphrey Plummer Professor of Applied Numerical Analysis, University of Cambridge
since 1976 and a Fellow of Pembroke College, Cambridge since 1978.

He made many seminal contributions in approximation theory, nonlinear optimization, and other topics in numerical
analysis. He has written a book in approximation theory and more than one hundred and fifty papers.
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Gallery

José Tiago de Oliveira

José Tiago da Fonseca Oliveira was an eminent statis-
tician and university professor. His name is already
registered in the history of the 20th century Statistics
due to his important contributions to the development
of the theory of extreme values. As a Portuguese sci-
entist his name will remain forever associated to the
recognition of Statistics as a science in Portugal.

Tiago de Oliveira was born in Lourenço Marques,
Mozambique, on the 22th of December 1928. A very
interesting account of his times in Mozambique, where
he lived until 1945, is given by Eugénio Lisboa, one
of his friends from childhood, in Tiago de Oliveira, O
Homem e a Obra, 1993, eds. Colibri.

Tiago de Oliveira finished his high school education
in 1945. Because of his outstanding performance he
was awarded, that year, the prize for the best student
of Liceu Lourenço Marques. He also received a grant
from Caixa Económica Postal which helped him to leave
Mozambique and pursue his studies in Porto. His inten-
tion was to study Naval Engineering at the University
of Porto. However, during his trip back to the Conti-
nent he stopped in Lobito, Angola. A visit to a local
bookshop led him to buy a book on Statistics, written
in Spanish. It was then, according to his son José Car-
los Tiago de Oliveira (in Tiago de Oliveira, O Homem
e a Obra, 1993, eds. Colibri), that he found is vocation.
Instead of Naval Engineering he studied Mathematics
and finished his degree in 1949. In 1950 he got a degree
in Geographic Engineering, and in 1951 he received the
Rotary Club Prize for the best student of the Faculty
of Sciences.

Tiago de Oliveira’s political views against Salazar’s
regime were well known. As a consequence it was not
easy for him to get a job despite his achievements as a
student. Twice he was invited for the place of assistant
at the Faculty of Sciences in Porto, but twice he saw his
appointment denied for political reasons. He moved to
Lisbon in 1951 and got a job at the Institute of Marine
Biology as a research assistant in biometry and bio-
statistics. By the time he left the Institute in 1953 to
become an assistant lecturer at the Faculty of Sciences

at the University of Lisbon, he had already published
seven papers in Statistics. This was only the beginning
of an extraordinary career in the area of probability and
statistics.

Tiago de Oliveira

He entered the Faculty of Sciences as an assistant,
thanks to the influence of Prof. António Almeida e
Costa, a true scientist and a person with vision, who
knew how to separate science from politics. Tiago de
Oliveira studied under his supervision and in 1957 he
finished his doctoral thesis in the area of Algebra with
a dissertation entitled “Residuais de Sistemas e Radi-
cais de Anéis”. However, his interest in Statistics had
not died out and it was with a thesis on “Estat́ıstica de
Densidades; resultados Assintóticos” that he applied in
1965 for the position of Professor Extraordinário. He
studied probability and statistics as an autodidact. His
“bible”, as he used to call it, was the work of Kendall
and Stuart. In 1967, when he became a full profes-
sor, he had already 63 publications, some of them in
well-known periodicals such as Annals of Mathematical
Statistics and Bulletin of the International Statistical
Institute, among others.

It is not clear how Tiago de Oliveira got interested in
the theory of extreme values, his main area of research.
His first publication in this area, “Extremal Distribu-
tions”, dates back to 1959. In 1960 he went for the
first time to Columbia University, as Senior Research
Assistant, and there he had the opportunity to work
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with the most prominent scientist in the area, E. J.
Gumbel. This collaboration marked the beginning of a
very fruitful research career for Tiago de Oliveira. In
1961 he published some extensions of Gumbel’s results
in the theory of univariate extremes, to the bivariate
and multivariate cases. His pioneer work was followed
by many other important contributions and new devel-
opments in the area of multivariate extremes. He also
developed several methods for the estimation of the pa-
rameters of Gumbel, Fréchet and Weibull models and
for the estimation of high quantiles. Together with S.
B. Littauer he worked on prediction of extremal mod-
els. He also had important contributions in statistical
decision problems related to the Weibull distribution,
and in the study of univariate extremes in dependent
sequences. Another pioneer work of Tiago de Oliveira
was on the statistical choice of univariate extremal mod-
els. In a paper published in Statistical Distributions in
Scientific Work, vol. 6, in 1981, he developed locally
most powerful (LMP) tests for discrimination between
extremal models. This problem was approached from
a computational point of view in a joint paper with A.
Frasen, and with M. I. Gomes he studied exact and
asymptotic behaviour of alternative statistical tests to
the same problem.

Although Tiago de Oliveira is well known due to his
work in Extreme Value Theory, his research went well
beyond this particular area. He had important con-
tributions in many other themes such as Demography,
Quality Control, Outliers, Mixtures, Non-parametric
Statistics, Risk Theory, Actuarial Mathematics, just to
mention a few.

Tiago de Oliveira was also a man of broad interests,
both scientific and cultural. He had a deep under-
standing of history and Portuguese political culture. He
wrote several historical, philosophical and didactical ar-
ticles. Particularly interesting are his views on the de-
velopment of mathematics in Portugal from the XVI to
the XIX centuries (in Collected Works of J. Tiago de
Oliveira, vol. II). Overall, he published around 160 sci-
entific papers, 9 books, 22 historical and philosophical
papers, 18 didactic and expository articles, and 21 other
papers on miscellaneous subjects. At the time of his
death, on the 23th of June 1992, he had six papers and
four more books in preparation. His book Statistical
Analysis of Extremes was posthumously published due
to the efforts of his son, José Carlos Tiago de Oliveira,
who also compiled all his works in a six-volume series
entitled Collected Works of J. Tiago de Oliveira and
published by Pendor.

Tiago de Oliveira was not just a great scientist. He was
a man with strong views and strong convictions who
would fight for his own ideals. He fought for the auton-
omy of the area of Applied Mathematics in the Faculty

of Sciences at the University of Lisbon, and later for
the autonomy of Statistics and Operations Research,
founding in 1981 a Department of Statistics, Operations
Research and Computation, today the Department of
Statistics and Operations Research of the FCUL. He
was also a founder of the Center of Statistics and Appli-
cations of the University of Lisbon and the Portuguese
Statistical Society. Due to his trust in the younger gen-
erations and constant encouragement he brought, in the
late seventies and early eighties, many people to the
areas of Statistics, Operations Research and Computa-
tion. The “Portuguese Statistical School of Extremes”,
which today is internationally respected, owes its ex-
istence to him. Later, when in 1987 he left the Uni-
versity of Lisbon and went to the Faculty of Sciences
and Technology of the New University of Lisbon, he
again put all his efforts in bringing up a new group of
people working in his areas of choice. In that Faculty
he founded the Laboratory of Statistics and Actuarial
Mathematics. He also served the scientific community
as Secretary of State for scientific research from 1976
to 1978.

Tiago de Oliveira had been a Fellow of the Royal Statis-
tical Society since 1952. However, in 1987, in recogni-
tion of his merit and important contributions to the
area of Statistics, he was awarded the title of Hon-
orary Fellow of the Royal Statistical Society. He was
also a member of the International Statistical Insti-
tute, a member of the Bernoulli Society for Mathe-
matical Statistics, a Fellow of the Institute of Math-
ematical Statistics, a full member of the Academia das
Ciências de Lisboa, a corresponding member of the Real
Academia de las Ciencias Exactas, F́ısicas y Naturales
de Madrid, among many other scientific associations.

During his life he was awarded three prizes in recog-
nition of his outstanding scientific work. The A. Mal-
heiros Prize for Mathematical Sciences of the Academy
of Sciences of Lisbon, in 1969; the Calouste Gulbenkian
Foundation Prize for Sciences and Technology in 1984;
the Science Prize of the Oriente Foundation in 1992.

The sphere of activity of Tiago de Oliveira was not lim-
ited to the academic level. He was deeply interested
and involved in the problems of society in general and
of the Portuguese society in particular. As such he was
a founding member of the Socialist party, a member of
the Union of Teachers of Greater Lisbon (Sindicato dos
Professores da Grande Lisboa), a member of the As-
sociation of Statisticians for Human Rights, a member
of the Portuguese Association of Human Rights, and a
member of the Portuguese Section of the International
Amnesty.

For the outstanding scientific legacy Tiago de Oliveira
left behind, he deserves a very special place among the
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Great Portuguese Mathematicians of the 20th Century.

[To write this short sketch I based myself on the follow-
ing documents:

• J. Tiago de Oliveira: O Homem e a Obra, edições
Colibri, 1993 - a book organized by José Carlos
Tiago de Oliveira, and published to commemorate
the first aniversary of Tiago de Oliveira´s death.

• Special edition of the Boletim Informativo da So-
ciedade Portuguesa de Estat́ıstica in honour of
Tiago de Oliveira, 22 December 1998. This edi-
tion was specially organized to commemorate the
day of his 70th anniversary. It contains testi-

monies of his children (José Carlos and Luisa),
many of his friends, colleagues and former stu-
dents.

• The text “José Tiago de Oliveira - Um estat́ıstico
eminente” by Margarida Mendes Leal contained
in the book Memórias de Professores Cientistas,
published in 2001 to commemorate the 90th an-
niversary of the Faculty of Sciences of Lisbon.

• Collected Works of J. Tiago de Oliveira, vol II,
1995; compiled by José Carlos Tiago de Oliveira,
edições Pendor.]

Maria Antónia Amaral Turkman

Errata

Na versão impressa do boletim 13 de Dezembro de 2002, o artigo Warp Drive with Zero Expansion de José Natário,
continha erros em várias expressões. A razão desses erros é técnica (de transferência de ficheiros) da responsabilidade
dos editores do boletim. A versão electrónica (dispońıvel em http://www.cim.pt/cim.www/cimE/boletim.html)
encontra-se corrigida. Pelo facto pedimos desculpa ao autor e aos leitores.
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