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1 Introduction

For almost four decades, the canonical bases of certain
quantum algebras have been at the core of representation
theory. Historically, the first ones were the Kazhdan-
Lusztig bases of Hecke algebras associated to Coxeter
groups [8]. For lack of space in this review, we will mostly
concentrate on these, although the canonical bases of quan-
tum groups form another interesting class of examples.

The KL bases, and the associated KL polynomials, have
remarkable positive integrality properties, which were conjec-
tured by Kazhdan and Lusztig in [8]. For example, the
multiplication constants of the Hecke algebra w.r.t. the
KL basis belong to ℕ[v, v−1], where v is a formal parameter.
(We assume that theHecke algebras and theirmodules are
defined over ℂ(v).)

In a subsequent paper [9], Kazhdan and Lusztig
proved their conjectures for finite and affineWeyl groups,
by interpreting the KL bases in terms of the local intersec-
tion cohomology of Schubert varieties. In that approach,
the aforementioned multiplication constants become di-
mensions of cohomology groups and are therefore positive
integral. Eventually, a geometric proof for Weyl groups of
symmetrizable Kac-Moody algebras was found [1, 2, 7].
However, the geometric arguments do not work for other
Coxeter groups.

Therefore, Soergel [17, 18] introduced an alge-
braic/combinatorial approach, using certain bimodules,
designed to prove that the KL positive integrality proper-
ties hold for any Coxeter group. This huge project, after
important partial results by himself and others [17, 18, 5, 4],
was eventually completed by Elias andWilliamson [3].

Following standard terminology in this field, we say
that Soergel’smonoidal categories, resp. the indecompos-
able bimodules, categorify the Hecke algebras, resp. the KL
basis elements. Alternatively, we can say that the latter de-
categorify the former.

Since the interest in Hecke algebras stems from
their representation theory, it is natural to study the
2-representation theory of Soergel’s monoidal categories,
in which modules are replaced by their categorical ana-
logue, called 2-modules.

In their systematic approach to 2-representation the-
ory, Mazorchuk andMiemietz [16] proved a categorical
version of the Jordan-Hölder theorem. This led them
to define the notion of a simple transitive 2-module, which
is the correct categorical analogue of a simple module, al-
though its decategorification is often not simple. Thus
arises naturally the problem of classifying all simple tran-
sitive 2-modules of Soergel’s monoidal category for any
finite Coxeter type.

In this review, we will recall what is known about this
classification.

2 Coxeter groups and Hecke algebras

In this section we will briefly recall some well-known facts
about Coxeter groups, Hecke algebras and Kazhdan-
Lusztig bases. More material and proofs can be found
in [6, 8, 12].

2.1 Coxeter groups

Let S be a finite set. A Coxeter matrix (mst)s,t∈S is a sym-
metric matrix such that mss = 1 for all s ∈ S, and mst ∈
{2, 3, …} ∪ {∞} for all s ≠ t ∈ S. Furthermore, let W be a
group.

Definition 1.— We say that (W , S) is a Coxeter system
if there exists a Coxeter matrix (mst)s,t∈S such that W ≅
F(S)/N, where F(S) is the free group generated by S and
N◃F(S) the normal subgroup generated by the elements

(st)mst (1)

1

for all s, t ∈ S with mst < ∞.
We call W the Coxeter group and S the set of simple

reflections of the Coxeter system (W , S).

By definition, the rank of (W , S) is the order of S, which is
finite by assumption. However, this does not necessarily
imply that W is of finite order.

The only Coxeter group of rank 0 is the trivial group,
and the only one of rank 1 is ℤ/2ℤ. But there is an infinite
family of rank 2Coxeter groups, indexed bymst = mts = n ∈
{2, 3, 4… , } ∪ {∞} with S = {s, t}. These are isomorphic
to the dihedral groups of order 2n (which can be infinite),
with st corresponding to a rotation of degree 2𝜋𝜋/nwhen n is
finite.

The finite Coxeter groups are classified by the finite
type Coxeter diagrams [6, Sections 2.4 and 6.4], which
are a generalization of the Dynkin diagrams of finite-
dimensional complex semisimple Lie algebras.

For example, for any n ∈ ℕ, the symmetric group on
n + 1 letters can be seen as a Coxeter group of type An,
with S = {s1, … , sn} the set of simple transpositions. Its
Coxeter diagram is

• • • • •⋯ .

Numbering the vertices of the diagram from left to right by
1, 2, … , n, andwriting si for the simple reflection associated
to the vertex i, we have

mij =
⎧
⎪
⎨
⎪
⎩

3 if |i − j| = 1,
2 if |i − j| > 1,
1 if |i − j| = 0.

This is the general rule for obtaining the Coxeter matrix
from a Coxeter diagram and vice-versa, with one excep-
tion: ifmst > 3 for two neighboring vertices in the diagram,
then that number is written above the corresponding edge.

For example, for any n > 3, the dihedral group of or-
der 2n can be seen as a Coxeter group of type I2(n) with
Coxeter diagram

• •
n

.

Note that I2(3) = A2, since they have the same Coxeter
diagram.

For anyw ∈ W , a reduced expression forw is by definition
a shortest string s1, … , sℓ ∈ S such that w = s1 ⋯ sℓ. We
call ℓ the length of the string. In general, there can be more
than one reduced expression for w, but two of them can al-
ways be related by applying (3) a finite number of times, as
shown by Matsumoto and Tits’ theorem (see [12, Thm.
1.9]).

This allows us to define the length function
ℓ∶ W → ℤ≥0, which associates to each w ∈ W the length
of a reduced expression for w (see [6, Sect. 1.6]).

Furthermore, it allows us to define the Bruhat order ⪯
onW , which is a partial order defined by: u ⪯ w iff u can be
obtained as a (not necessarily reduced) subexpression of a
reduced expression for w (see [6, Sect. 5.9 and 5.10]).

If W is finite, then it has a unique longest element, de-
noted w0, which is also maximal w.r.t. the Bruhat order.

2.2 Hecke algebras

Let (W , S) be any Coxeter system. In the group algebra
ℂ[W], the relations s2 = e and (st)mst = e can be rewritten as

(s + e)(s − e) = 0, (2)

sts⋯⏟
mst

= tst ⋯⏟
mst

. (3)

The next definition is obtained by v-deforming the relation
in (2).

Definition 2.— The Hecke algebra ℋ associated to
(W , S) is the unital associative ℂ(v)-algebra generated by Ts,
for s ∈ S, subject to the relations

(Ts + 1)(Ts − v−2) = 0,
TsTtTs ⋯⏟⏟⏟

mst

= TtTsTt ⋯⏟⏟⏟
mst

, (4)

for all s, t ∈ S. By convention, we write Te = 1.

Note that T2
s = (v−2 − 1)Ts + v−2 and T−1

s = v2Ts + v2 − 1.
For any w ∈ W , choose a reduced expression w =

s1 ⋯ sℓ(w), with si ∈ S, and define

Tw ∶= Ts1
⋯ Tsℓ(w)

.

By Matsumoto and Tits’ theorem, the element Tw does
not depend on the choice of reduced expression. Moreover,

{Tw ∣ w ∈ W} is a linear basis of ℋ, called the standard ba-
sis (see [12, Prop. 3.3]). In particular, this implies that ℋ is
a flat deformation of the group algebra of W .

The KL basis {bw ∣ w ∈ W} is harder to define. Let − be
the bar involution on ℋ, which is the ℂ-linear involution
given by

v ∶= v−1 and Tw ∶= T−1
w−1.

The KL basis elements bw ∈ ℋ are uniquely determined by
the two properties [8, Thm 1.1]:

bw = bw, (5)

bw = vℓ(w)
∑
y⪯w

Py,wTy, (6)

where Py,w ∈ ℤ[v−2] has negative v-degree strictly less than
ℓ(w) − ℓ(y) for y ≺ w and Pw,w = 1.

Note that the matrix (Py,w)y,w∈W is unitriangular, so the
fact that the bw form a basis follows immediately from the
fact that the Tw form a basis.
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In general, there is no simple formula expressing bw in
terms of the Ty. Only the KL generators are easy to com-
pute:

be = 1 and bs = v(Ts + 1) for all s ∈ S. (7)

However, in type I2(n) we can write down all KL basis ele-
ments explicitly [12, Ch. 7]:

bw = vℓ(w)
∑
y⪯w

Ty for all w ∈ W .

A short calculation shows that, in any Coxeter type, we
have

b2s = (v + v−1)bs for all s ∈ S. (8)

It is also easy to see that bsbt = bst for all s ≠ t ∈ S. But,
in general, the product of a finite number of KL basis ele-
ments is not a KL basis element, e.g. in type I2(3) = A2 we
have

bsbtbs = bsts + bs and btbsbt = btst + bt,

where bsts = btst because sts = tst in W . Nevertheless, if we
choose a reduced expression w = s1 ⋯ sℓ(w) for each w ∈ W ,
and define bw ∶= bs1 ⋯ bsℓ(w)

, then {bw ∣ w ∈ W} is yet
another basis of Hv(W), called the Bott-Samelson basis.
This follows from the fact that bw = vℓ(w)Tw + l.o.t., where
l.o.t. is a linear combination of Ty with y ⪯ w. Note, how-
ever, that bw depends on the choice of reduced expression
for w.

3 Soergel bimodules

For any Coxeter group W , take 𝔥𝔥 to be the complexifica-
tion of Soergel’s finite-dimensional realW-module in [18,
Prop. 2.1], which generalizes the usual representation of an
affineWeyl group on the Cartan subalgebra of an affine
Kac-Moody algebra.

Let R be the complex algebra of regular functions on 𝔥𝔥,
equipped with a ℤ-grading such that deg(𝔥𝔥⋆) = 2. The ac-
tion ofW on𝔥𝔥 extends naturally to an action onR by degree-
preserving automorphisms.

Let R−fmod−R be the monoidal category of all finitely
generated graded R−R bimodules, where the monoidal
product is given by the tensor product overR. By definition,
the morphisms are the degree-preserving bimodule maps.
Note that R−fmod−R is additive, because we can also take
the direct sum of two bimodules. Furthermore, the homo-
geneous direct summands of the hom-spaces are all finite-
dimensional complex vector spaces and composition is bi-
linear, so R−fmod−R is ℂ-linear.

For any s ∈ S, let Rs be the graded subalgebra of
s-invariant polynomials and define

Bs ∶= R ⊗Rs R{1},

where {1} indicates a downward grading shift of 1. This is
a graded R − R bimodule with left and right actions given
by a ⋅ (x ⊗ y) ⋅ b ∶= (ax) ⊗ (yb), for any a, b, x, y ∈ R.

We have R ≅ Rs ⊕ Rs{−2} as Rs-bimodules, so

Bs ⊗ Bs ≅ Bs{+1} ⊕ Bs{−1} for all s ∈ S.

This isomorphism categorifies the equality in (8).
More generally, for any finite number of simple reflec-

tions s1, … , sm ∈ S, the corresponding Bott-Samelson
bimodule is defined as

Bs1
⊗R Bs2

⊗r ⋯ ⊗R Bsm
.

Let w ∈ W and suppose w = s1 ⋯ sℓ(w) is a reduced expres-
sion. Thenwedenote the correspondingBott-Samelson
bimodule by Bw.

Definition 3.— The monoidal category of Soergel bi-
modules 𝒮𝒮 is the full subcategory of R−fmod−R containing
all direct sums of direct summands of Bott-Samelsonbi-
modules with grading shifts.

The additive category 𝒮𝒮 is idempotent complete and
Krull-Schmidt [18, Rem. 1.3].

Before we state the categorification theorem for So-
ergel bimodules, recall that the split Grothendieck alge-
bra of 𝒮𝒮, denoted [𝒮𝒮 𝒮, is by definition the ℂ(v)-vector space
spanned by the isoclasses of the Soergel bimodules, sub-
ject to the relations:

[U ⊕ V𝒮 = [U𝒮 + [V𝒮 and [U{t}𝒮 = vt[U𝒮

for all Soergel bimodules U, V and t ∈ ℤ. It becomes an
algebra after putting

[U ⊗R V𝒮 ∶= [U𝒮[V𝒮

for all Soergel bimodules U, V . By the above, it follows
that {[Bw𝒮 ∣ w ∈ W} is a basis of [𝒮𝒮 𝒮.

The first three points in the following theorem are due
to Soergel [18, Thm. 1.10 and Satz 6.16]. The fourth point
is due to Elias andWilliamson [3, Thm. 1.1].

Theorem 4.— Let (W , S) be an arbitrary Coxeter sys-
tem. Then

1. there is a well-defined isomorphism of ℂ(v)-algebras
𝜌𝜌S ∶ ℋ → [𝒮𝒮 𝒮 uniquely determined by

bs ↦ [Bs𝒮 for all s ∈ S;

2. for every w ∈ W , there exists an indecomposable Bw

in 𝒮𝒮, unique up to degree-preserving isomorphism,
that is a direct summand of the Bott-Samelson bi-
module Bw, for any reduced expression for w, and is
not a direct summand of Bu{t} for any u ≺ w and
t ∈ ℤ; in particular, the isoclass of Bw does not de-
pend on the choice of reduced expression for w;

3
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3. every indecomposable Soergel bimodule is isomor-
phic to Bw{t} for some w ∈ W and t ∈ ℤ;

4. for every w ∈ W , we have 𝜌𝜌S(bw) = [Bw].

Note that this theorem immediately implies that the KL ba-
sis of ℋ is positive integral: for any u, v ∈ W , we have

bubv ∶= ∑
w∈W

𝛾𝛾w
u,vbw

such that 𝛾𝛾w
u,v ∈ ℕ[v, v−1], because thesemultiplication con-

stants are equal to the graded decomposition numbers of
[Bu ⊗ Bv] in terms of the [Bw]

4 2-Representation theory

From now on, let (W , S) be an finite type Coxeter system,
i.e. we assume that W is a finite group.

Recall that a category is graded finitary if it is addi-
tive, ℂ-linear, idempotent complete and Krull-Schmidt,
such that the homogeneous direct summands of its hom-
spaces are finite-dimensional and it has finitely many iso-
classes of indecomposable objects up to grading shifts, e.g.
the category of finitely generated graded projective mod-
ules over a non-negatively graded algebra which is finite-
dimensional in each degree.

Let 𝒮𝒮 be the monoidal category of Soergel bimodules
for (W , S). A2-module of 𝒮𝒮 is by definition a graded finitary
category ℳ on which the Soergel bimodules act as linear
endofunctors and the bimodule maps as natural transfor-
mations, such that all structures (including the grading)
are preserved. In general, the 2-action is allowed to beweak
in a restricted sense, but this is not the right place to explain
such technical details.

A 1-intertwiner between two 2-modules of 𝒮𝒮 is by def-
inition a degree-preserving ℂ-linear functor between the
underlying categories which commutes with the 2-action.
Again, we suppress all technical conditions which control
the level of weakness that is allowed. Two 2-modules are
calledequivalent if there is afully faithful andessentially
surjective 1-intertwiner between them.

Finally, there is a next layer of structure, formed by nat-
ural transformations between 1-intertwiners which satisfy
additional conditions. We call these 2-intertwiners.

Together, the 2-modules of 𝒮𝒮 and the 1 and
2-intertwiners between them form a 2-category, which we
denote by 𝒮𝒮-2fmod.

Note that we only consider additive 2-modules. In
this review, we do not discuss abelian or triangulated
2-modules.

4.1 Cell modules

The decategorified story of cell modules of Hecke algebras
is due to Kazhdan and Lusztig [8].

Definition 5.— We define the left pre-order ≥L on W by
putting w ≥L v if 𝛾𝛾w

u,v ≠ 0 for some u ∈ W .
We set w ∼L u provided that u ≥L w and w ≥L u. The

equivalence classes of this equivalence relation are called
the left cells of W .

The right andtwo-sidedpre-orders≥R and≥J, and the right
and two-sided cells for the corresponding equivalence rela-
tions ∼R and ∼J are defined similarly, using multiplication
from the right and from both sides respectively.

Note that each left (resp. right) cell is contained in a
two-sided cell, that eachtwo-sided cell is the disjoint union
of the left (resp. right) cells it contains, and that W is the
disjoint union of all two-sided cells.

In general, it is not so easy to compute cells explicitly.
In type An, Kazhdan and Lusztig [8] proved that u ∼L w
iff Q(u) = Q(w), where Q is the recording tableau in the
Robinson-Schensted correspondence. Similarly, u ∼R v
iff P(u) = P(w), where P is the insertion tableau.

In type I2(n), the computation of the cells is straightfor-
ward and gives:

𝒥𝒥e = ℒe = ℛe = {e}

s, sts, … ts, tsts, …

st, stst, … t, tst, …

ℒs

ℒt

ℛs ℛt

𝒥𝒥s = 𝒥𝒥t =

𝒥𝒥w0
= ℒw0

= ℛw0
= {w0}.

If ℒ is a left cell of W , we write w ≥L ℒ if w ≥L u for all
u ∈ ℒ, and we write w >L ℒ if w ≥L ℒ and w ∉ ℒ. Let
M≥Lℒ and M>Lℒ be the subvector-spaces of ℋ spanned by
all bw satisfying w ≥L ℒ, and w >L ℒ respectively. Both are
left ideals of ℋ and M>Lℒ ⊂ M≥Lℒ.

Definition 6.— The left cell module Cℒ is defined as

Cℒ ∶= M≥Lℒ /M>Lℒ

with the natural left ℋ action.

Note that Cℒ inherits a KL-basis, consisting of all bw with
w ∈ ℒ. Clearly, this provides the cell module with a pos-
itive integral basis, i.e. on the KL-bases of ℋ and Cℒ, the
action constants all belong to ℕ[v, v−1].

As we already remarked, the left cells in type An are
parametrized by standard tableaux. As a matter of fact,
every left cell-module of ℋ is simple and its isomorphism
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In general, there is no simple formula expressing bw in
terms of the Ty. Only the KL generators are easy to com-
pute:

be = 1 and bs = v(Ts + 1) for all s ∈ S. (7)

However, in type I2(n) we can write down all KL basis ele-
ments explicitly [12, Ch. 7]:

bw = vℓ(w)
∑
y⪯w

Ty for all w ∈ W .

A short calculation shows that, in any Coxeter type, we
have

b2s = (v + v−1)bs for all s ∈ S. (8)

It is also easy to see that bsbt = bst for all s ≠ t ∈ S. But,
in general, the product of a finite number of KL basis ele-
ments is not a KL basis element, e.g. in type I2(3) = A2 we
have

bsbtbs = bsts + bs and btbsbt = btst + bt,

where bsts = btst because sts = tst in W . Nevertheless, if we
choose a reduced expression w = s1 ⋯ sℓ(w) for each w ∈ W ,
and define bw ∶= bs1 ⋯ bsℓ(w)

, then {bw ∣ w ∈ W} is yet
another basis of Hv(W), called the Bott-Samelson basis.
This follows from the fact that bw = vℓ(w)Tw + l.o.t., where
l.o.t. is a linear combination of Ty with y ⪯ w. Note, how-
ever, that bw depends on the choice of reduced expression
for w.

3 Soergel bimodules

For any Coxeter group W , take 𝔥𝔥 to be the complexifica-
tion of Soergel’s finite-dimensional realW-module in [18,
Prop. 2.1], which generalizes the usual representation of an
affineWeyl group on the Cartan subalgebra of an affine
Kac-Moody algebra.

Let R be the complex algebra of regular functions on 𝔥𝔥,
equipped with a ℤ-grading such that deg(𝔥𝔥⋆) = 2. The ac-
tion ofW on𝔥𝔥 extends naturally to an action onR by degree-
preserving automorphisms.

Let R−fmod−R be the monoidal category of all finitely
generated graded R−R bimodules, where the monoidal
product is given by the tensor product overR. By definition,
the morphisms are the degree-preserving bimodule maps.
Note that R−fmod−R is additive, because we can also take
the direct sum of two bimodules. Furthermore, the homo-
geneous direct summands of the hom-spaces are all finite-
dimensional complex vector spaces and composition is bi-
linear, so R−fmod−R is ℂ-linear.

For any s ∈ S, let Rs be the graded subalgebra of
s-invariant polynomials and define

Bs ∶= R ⊗Rs R{1},

where {1} indicates a downward grading shift of 1. This is
a graded R − R bimodule with left and right actions given
by a ⋅ (x ⊗ y) ⋅ b ∶= (ax) ⊗ (yb), for any a, b, x, y ∈ R.

We have R ≅ Rs ⊕ Rs{−2} as Rs-bimodules, so

Bs ⊗ Bs ≅ Bs{+1} ⊕ Bs{−1} for all s ∈ S.

This isomorphism categorifies the equality in (8).
More generally, for any finite number of simple reflec-

tions s1, … , sm ∈ S, the corresponding Bott-Samelson
bimodule is defined as

Bs1
⊗R Bs2

⊗r ⋯ ⊗R Bsm
.

Let w ∈ W and suppose w = s1 ⋯ sℓ(w) is a reduced expres-
sion. Thenwedenote the correspondingBott-Samelson
bimodule by Bw.

Definition 3.— The monoidal category of Soergel bi-
modules 𝒮𝒮 is the full subcategory of R−fmod−R containing
all direct sums of direct summands of Bott-Samelsonbi-
modules with grading shifts.

The additive category 𝒮𝒮 is idempotent complete and
Krull-Schmidt [18, Rem. 1.3].

Before we state the categorification theorem for So-
ergel bimodules, recall that the split Grothendieck alge-
bra of 𝒮𝒮, denoted [𝒮𝒮 𝒮, is by definition the ℂ(v)-vector space
spanned by the isoclasses of the Soergel bimodules, sub-
ject to the relations:

[U ⊕ V𝒮 = [U𝒮 + [V𝒮 and [U{t}𝒮 = vt[U𝒮

for all Soergel bimodules U, V and t ∈ ℤ. It becomes an
algebra after putting

[U ⊗R V𝒮 ∶= [U𝒮[V𝒮

for all Soergel bimodules U, V . By the above, it follows
that {[Bw𝒮 ∣ w ∈ W} is a basis of [𝒮𝒮 𝒮.

The first three points in the following theorem are due
to Soergel [18, Thm. 1.10 and Satz 6.16]. The fourth point
is due to Elias andWilliamson [3, Thm. 1.1].

Theorem 4.— Let (W , S) be an arbitrary Coxeter sys-
tem. Then

1. there is a well-defined isomorphism of ℂ(v)-algebras
𝜌𝜌S ∶ ℋ → [𝒮𝒮 𝒮 uniquely determined by

bs ↦ [Bs𝒮 for all s ∈ S;

2. for every w ∈ W , there exists an indecomposable Bw

in 𝒮𝒮, unique up to degree-preserving isomorphism,
that is a direct summand of the Bott-Samelson bi-
module Bw, for any reduced expression for w, and is
not a direct summand of Bu{t} for any u ≺ w and
t ∈ ℤ; in particular, the isoclass of Bw does not de-
pend on the choice of reduced expression for w;
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class is determined by the partition underlying the corre-
sponding standard tableau. This establishes a bijection be-
tween the isoclasses of left cell-modules and the isoclasses
of simple modules, which is atypical: in other Coxeter
types most simple modules do not have a positive integral
basis and most cell modules are not simple.

For example, consider type I2(n). Any one-dimensional
module is completely determined by its character 𝜒𝜒𝜒 𝜒 𝜒
ℂ(q). By the quadratic relations in𝜒, wemust have𝜒𝜒(Ts) =
𝜖𝜖1 and 𝜒𝜒(Tt) = 𝜖𝜖2 with 𝜖𝜖1, 𝜖𝜖2 ∈ {v−2, −1}. If n is even, there
is no extra condition, so there are four different characters.
If n is odd, then 𝜖𝜖1 = 𝜖𝜖2 is required to hold, so there are
only two different characters. We denote the correspond-
ing one-dimensional modules by V𝜖𝜖1,𝜖𝜖2.

We have Cℒe
≅ V−1,−1, because bs = v(Ts + 1) and

bt = v(Tt + 1) act as zero. Similarly, we have Cℒw0
≅ Vv−2,v−2,

because bs and bt both act asmultiplication by v+v−1. When
n is even and at least 4, the modules Vv−2,−1 and V−1,v−2 are
not equivalent to cell modules, because there are no more
one-element left cells.

All other simplemodules are known to be of dimension
two. Since Cℒs

and Cℒt
have dimension n − 1, they cannot

be simple for n ≥ 4.
Furthermore, in type I2(n) there are other interesting

modules of 𝜒 with a positive integral basis, as we will ex-
plain below.

4.2 Cell 2-modules

There is a natural categorification of the (left) cell-modules,
due to Mazorchuk and Stroppel [13] in the case of fi-
nite Weyl groups, and Mazorchuk and Miemietz [15]
in general (see also [16, Sec. 3.3]). Let ℒ be a left cell and
take ℳ≥Lℒ to be the full subcategory of 𝒮𝒮 generated by the
Bw for w ≥L ℒ. This subcategory contains a unique ideal
ℐℒ which is maximal in the set of all 𝒮𝒮-stable ideals.

Definition 7.— The left cell 2-module associated to ℒ is
defined as

𝒞𝒞ℒ 𝜒= ℳ≥Lℒ / ℐℒ

with the natural 2-action of 𝒮𝒮.

By construction, we have Cℒ ≅ [Cℒ] as 𝜒-modules.

4.3 Simple transitive 2-modules

Mazorchuk and Miemietz [16] found that the correct
categorification of the notion of simple module, is that of
simple transitive 2-module. A 2-module ℳ of 𝒮𝒮 is transitive
if for any two indecomposable objects X, Y in ℳ, there ex-
ists a Soergel bimodule B in 𝒮𝒮 such that X is a direct sum-
mand of BY . A transitive 2-module ℳ is simple transi-
tive if it has no non-zero proper 𝒮𝒮-stable ideals. Any tran-

sitive 2-module has a simple transitive quotient [16, Lem.
4]. By construction, any cell 2-module is simple transitive.

In type An the converse is also true: any simple transi-
tive 2-module is equivalent to a cell 2-module [15, Sec. 7.1].

However, in type I2(n) there are simple transitive
2-modules that are not equivalent to cell 2-modules. There
is anade-classification for the simple transitive 2-modules
in type I2(n), and only the ones of type A are equivalent to
cell 2-modules.

To explain this, we first note that any simple transi-
tive 2-module ℳ has an underlying quiver, which can be
graded, so that ℳ becomes equivalent to the category of
graded finitely generated projective modules of the quiver
algebra aftermodding out by a virtually nilpotent ideal. As
it turns out, for type I2(n) Soergel bimodules, the quiver
underlying a simple transitive 2-module can always be ob-
tained from a simply lacedDynking diagramof finitetype.
Themain part of the following theorem can be found in [10,
Thm. 1 and Sec. 6], with only a construction of the simple
transitive 2-modules of Dynkin type E missing, which can
be found in [14].

Theorem 8.— Let 𝒮𝒮 be the monoidal category of So-
ergel bimodules of type I2(n). For any n > 2, 𝒮𝒮 has two
inequivalent cell 2-modules of rank one, namely 𝒞𝒞ℒe

and
𝒞𝒞ℒw0

.
Furthermore, there are two cell 2-modules of rank n− 1,

namely 𝒞𝒞ℒs
and 𝒞𝒞ℒt

, whose underlying graph is of Dynkin
type An−1. They are equivalent iff n is odd.

1. If n = 2k + 1 > 2 or n = 4, then all simple transitive
2-modules are equivalent to the above cell 2-modules.

2. If n = 2k > 4, there are two additional inequivalent
simple transtive 2-modules, whose underlying graph
is of Dynkin type Dk+1.

3. If n = 12, 18 or 30, there are also two inequivalent ex-
ceptional simple transitive 2-modules, whose under-
lying graph is of Dynkin type E6, E7 and E8 respec-
tively.

The above gives a total classification of the simple transi-
tive 2-modules of 𝒮𝒮.

It is interesting to note that the two inequivalent sim-
ple transitive 2-modules of Dynking type E6 decate-
gorify to isomorphic 𝜒-modules. The same happens for
Dynkin type E8, but the two inequivalent simple transitive
2-modules of Dynkin type E7 have non-isomorphic decate-
gorifications.

We also note that the decategorified story was already
known to Lusztig [11, Prop. 3.8].

The classification of the simple transitive 2-modules of
𝒮𝒮 in other finite Coxeter types is very incomplete. In [10]
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the following (very) partial result was proved. For every fi-
nite type Coxeter system (W , S), there is a unique lowest
order two-sided cell 𝒥𝒥S which does not contain e. One sim-
ple description of 𝒥𝒥S is that it consists of allw ≠ e ∈ W with
a unique reduced expression. Now assume that (W , S) has
rank > 2. Then any simple transitive 2-module of 𝒮𝒮 that is
annihilated by all Bw with w >J 𝒥𝒥S, is equivalent to a cell
2-module [10, Thm. 1].

The rest of the classification is unknown and forms an
interesting but difficult openproblem, except for Coxeter
type An where the cell 2-modules exhaust the simple transi-
tive 2-modules.
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sponding standard tableau. This establishes a bijection be-
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in general (see also [16, Sec. 3.3]). Let ℒ be a left cell and
take ℳ≥Lℒ to be the full subcategory of 𝒮𝒮 generated by the
Bw for w ≥L ℒ. This subcategory contains a unique ideal
ℐℒ which is maximal in the set of all 𝒮𝒮-stable ideals.
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defined as
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with the natural 2-action of 𝒮𝒮.

By construction, we have Cℒ ≅ [Cℒ] as 𝜒-modules.

4.3 Simple transitive 2-modules
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ists a Soergel bimodule B in 𝒮𝒮 such that X is a direct sum-
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tive if it has no non-zero proper 𝒮𝒮-stable ideals. Any tran-

sitive 2-module has a simple transitive quotient [16, Lem.
4]. By construction, any cell 2-module is simple transitive.

In type An the converse is also true: any simple transi-
tive 2-module is equivalent to a cell 2-module [15, Sec. 7.1].

However, in type I2(n) there are simple transitive
2-modules that are not equivalent to cell 2-modules. There
is anade-classification for the simple transitive 2-modules
in type I2(n), and only the ones of type A are equivalent to
cell 2-modules.

To explain this, we first note that any simple transi-
tive 2-module ℳ has an underlying quiver, which can be
graded, so that ℳ becomes equivalent to the category of
graded finitely generated projective modules of the quiver
algebra aftermodding out by a virtually nilpotent ideal. As
it turns out, for type I2(n) Soergel bimodules, the quiver
underlying a simple transitive 2-module can always be ob-
tained from a simply lacedDynking diagramof finitetype.
Themain part of the following theorem can be found in [10,
Thm. 1 and Sec. 6], with only a construction of the simple
transitive 2-modules of Dynkin type E missing, which can
be found in [14].

Theorem 8.— Let 𝒮𝒮 be the monoidal category of So-
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and
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Furthermore, there are two cell 2-modules of rank n− 1,

namely 𝒞𝒞ℒs
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, whose underlying graph is of Dynkin
type An−1. They are equivalent iff n is odd.

1. If n = 2k + 1 > 2 or n = 4, then all simple transitive
2-modules are equivalent to the above cell 2-modules.

2. If n = 2k > 4, there are two additional inequivalent
simple transtive 2-modules, whose underlying graph
is of Dynkin type Dk+1.

3. If n = 12, 18 or 30, there are also two inequivalent ex-
ceptional simple transitive 2-modules, whose under-
lying graph is of Dynkin type E6, E7 and E8 respec-
tively.

The above gives a total classification of the simple transi-
tive 2-modules of 𝒮𝒮.

It is interesting to note that the two inequivalent sim-
ple transitive 2-modules of Dynking type E6 decate-
gorify to isomorphic 𝜒-modules. The same happens for
Dynkin type E8, but the two inequivalent simple transitive
2-modules of Dynkin type E7 have non-isomorphic decate-
gorifications.

We also note that the decategorified story was already
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