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The Willmore Conjecture: a Celebration of 
Mathematics
by Áurea Quintino*

Cum enim Mundi universi fabrica sit perfectissima, atque a Creatore sapientissimo absoluta, 
nihil omnino in mundo contingit, in quo non maximi minimive ratio quaepiam eluceat[1]

— Leonhard Euler

[1]  Leonhard Euler, Methodus inveniendi lineas curvas Maximi Minimive proprietate gaudentes, sive solutio problematis isoperimetrici 

latissimo sensu accepti, Lausannae & Genevae: Apud Marcum-Michaelem Bousquet & Socios (1744), p. 245.

* Centro de Matemática, Aplicações Fundamentais e Investigação Operacional da Faculdade de Ciências da Universidade de Lisboa

1 Introduction

Established in 1961, theOswaldVeblenPrize inGeometry is
an award granted by theAmericanMathematical Society in
recognition of a notable research memoir in geometry and
topology. Presented every three years, this year’s edition of
the prize distinguished the jointwork of the Brazilianmath-
ematician Fernando Codá Marques (Princeton University)
and the Portuguese mathematician André Neves (Imperial
College London), for their landmark achievement and ma-
jor contribution to the use of variational methods in differ-
ential geometry, with a special highlight for the proof of the
long-standing Willmore Conjecture.

Proposed in 1965 by the English geometer Thomas J.
Willmore, theWillmoreConjecture concerned the quest for
the torus with the lowest bending energy of all and pre-
dicted the equilibrium state of such curved surfaces. The
problem has resisted proof for many years and inspired
manymathematicians over time, borrowing ideas from sev-
eral distinct areas from partial differential equations to al-
gebraic geometry, conformal geometry, geometric measure
theory and minimal surfaces. Willmore died on February
20, 2005, seven years before Marques and Neves posted a
preprint of their 96-page proof on the arXiv, on February
27, 2012.

This article is dedicated to an overview of the history
of the conjecture and its proof, in celebration of pursuit
and achievement, through the works of Willmore, of Mar-
ques andNeves and of all those involved in this half century
quest, as well as those of their precursors.

2 Willmore energy and the Willmore
Conjecture

A central theme in Mathematics is the search for the op-
timal representative within a certain class of objects, of-
ten driven by the minimization of some energy, reflecting
what occurs in many physical processes. From the early
1960s, Thomas Willmore devoted particular attention to
the quest for the optimal immersion of a compact surface
in Euclidean 3-space regarding the minimization of some
natural energy motivated by questions on the elasticity of
membranes and the energetic cost associated with mem-
brane bending deformations.

We can characterize how much a membrane is bent at
a particular point on the membrane by means of the curva-
ture of the osculating circles of the planar curves obtained
as perpendicular cross sections through the point (see Fig-
ure 2). The curvature of these circles consists of the inverse
of their radii, with a positive or negative sign depending on
whether the membrane curves upwards or downwards, re-
spectively. The minimal and maximal values of the radii of
the osculating circles associated with a particular point on
the membrane define the principal curvatures, k1 and k2,
and, from these, the mean curvature, H = (k1 + k2)/2, and
the Gaussian curvature, K = k1k2, at the point.

In modern literature on the elasticity of membranes
(see, for example, [11] and [31]), a weighed sum a∫H2 +
b∫K, of the total squared mean curvature and the total
Gaussian curvature, is considered as the elastic bending en-
ergy of a membrane. Having in consideration the Gauss-
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Figure 1.—Thomas J. Willmore. 
Portrait by Christine Choa (1999)

Bonnet theorem, according towhich the total Gaussian cur-
vature is a topological invariant and, therefore, negligible
in deformations conserving the topological type, Willmore
defined

𝒲𝒲 𝒲 ∫Σ
H2dΣ

as the Willmore [bending] energy of a compact, oriented
[Riemannian] surface Σ [isometrically] immersed in ℝ3.

The Willmore energy had already made its appear-
ance early in the nineteenth century, through the works
of Marie-Sophie Germain [6] and Siméon Denis Poisson
[22] and their pioneering studies on elasticity and vibrat-
ing properties of thin plates. This energy had also appeared
in the 1920s, in the works of Wilhelm Blaschke [4] and Ger-
hard Thomsen [27], but their findings were forgotten and

only brought to light after the increased interest on the sub-
ject motivated by the work of Thomas Willmore.

A very interesting fact about theWillmore energy is that
it is scale-invariant: if one dilates the surface by any factor,
the Willmore energy remains the same. Think of a round
sphere in ℝ3 as an example: if one increases the radius, the
surface becomes flatter and its squared mean curvature H2

decreases, but, at the same time, its area gets larger, which
increases the value of the integral in 𝒲𝒲. One can show that
these two phenomena counterbalance each other on any
surface. In fact, the Willmore energy has the remarkable
property of being invariant under any conformal transfor-
mation of ℝ3, as established in the paper of White [32] and,
actually, already known to Blaschke and Thomsen.

In view of the scale-invariance of the Willmore energy,
the energy of round spheres coincides with the surface area
of the round sphere of radius 1: 4𝜋𝜋. Note, on the other
hand, that H2 − K 𝒲 1

4
(k1 − k2)2, so that H2 ≥ K, with

equality at umbilical points (k1 𝒲 k2). By the Gauss-Bonnet
theorem, it follows that

∫Σ
H2dΣ ≥ ∫Σ

KdΣ 𝒲 4𝜋𝜋(1 − g),

where g denotes the genus of the surface. In particular, for
surfaces of genus zero, we get ∫Σ H

2dΣ ≥ 4𝜋𝜋, with equality
only for the totally umbilical surfaces of ℝ3. We conclude
that round spheres are the minimizers of the Willmore
energy among all topological spheres. Willmore showed,
furthermore, that 4𝜋𝜋 is the absolute minimum of energy
among all compact surfaces in ℝ3:

Theorem 1 (Willmore [33, 35]).— Let Σ be a compact
surface in ℝ3. Then

𝒲𝒲 (Σ) ≥ 4𝜋𝜋,

with equality if and only if Σ is a round sphere.

Having found the compact surfaces with least possible
energy, and, with these, the energy minimizers within the
class of surfaces of genus zero, Willmore embarked on the
quest for the energy-minimizing shape among all topolog-
ical tori. It seems reasonable that no obvious candidate
stands out a priori. In order to develop some intuition
on the problem, Willmore considered a particular type of
torus: he fixed a circle of radiusR on a plane and considered
tubes Σr of constant radius r < R around that circle. When
r is very small, Σr is a very thin tube and so 𝒲𝒲 (Σr) is very
large. As we keep increasing the value of r, the hole of the
torus decreases and eventually disappears, for r 𝒲 R. Thus
the function r ↦ 𝒲𝒲 (Σr) must reach an absolute minimum
for some r ∈]0,R[. Willmore [33] computed this minimum
to be 2𝜋𝜋2 and showed that, up to scaling, the optimal torus
in this class has r 𝒲 1 and R 𝒲 √2. Willmore conjectured
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Figure 2.—Osculating circle to a surface at a point 
P on the surface

Figure 3 .—Torus of revolution with W=2π2

[2] Ibidem.

that this torus of revolution should minimize the Willmore
energy among all tori:

Willmore Conjecture

(Willmore [33]) Let Σ be a compact surface of genus one in ℝ3.
Then

𝒲𝒲 𝒲Σ𝒲 𝒲 2𝜋𝜋2.

3 On the quest for the optimal torus

The Willmore Conjecture has been verified in many special
cases. Willmore himself [34] and, independently, Katsuhiro
Shiohama and Ryoichi Takagi [25] proved it when the torus
is a tube of constant radius around an arbitrary space curve
in ℝ3. Over the decades, more and more classes of tori were
proven to have bending energy greater than or equal to 2𝜋𝜋2,
through the works of Rémi Langevin andHarold Rosenberg
[9], Bang-YenChen [5], Joel Langer andDavidSinger [8], Pe-
ter Li and Shing-Tung Yau [10], Sebastián Montiel and An-
tonio Ros [18, 23, 24] and Peter Topping [28, 29]. In 1991,
the biophysicists David Bensimon and Michael Mutz [3]
have experimentally verified the conjecture in membranes
of toroidal vesicles produced in laboratory. In 1993, Leon
Simon [26] established the existence of a torus that mini-
mizes the Willmore energy. An overview of partial results

can be found in [14]. We select the following, which, in par-
ticular, reduced the verification of theWillmore Conjecture
to embedded tori:

Theorem 2 (Li-Yau [10]).— Compact surfaces with self-
intersections have Willmore energy greater than or equal
to 8𝜋𝜋.

A key to the proof of the Willmore Conjecture was mov-
ing the problem from ℝ3 to the unit 3-sphere S3 ⊂ ℝ4, hav-
ing in mind that the two are conformally related by stereo-
graphic projection. The torus foundbyWillmore ismapped
onto the Clifford torus S1(

1
√2)×S1(

1
√2), which is a classical

example of a minimal surface in S3.
Minimal surfaces are defined variationally as the sta-

tionary configurations for the areafunctional, surfaces that
locally minimize the area. In general, these surfaces admit
ambient deformations that can decrease their area and are,
therefore, not (globally) area-minimizing.

Minimal surfaces were first considered by Joseph-Louis
Lagrange [7], in 1762, who raised the question of existence
of surfaces of least area among all those spanning a given
closed curve in Euclidean 3-space as the boundary. Ear-
lier, in a work published in 1744,[2] Leonhard Euler had al-
ready discussed minimizing properties of the surface now
known as the catenoid, although he only considered varia-
tions within a certain class of surfaces. The problem raised

Ibidem.
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by Lagrange became known as the Plateau’s Problem, refer-
ring to Joseph Antoine Ferdinand Plateau, who first exper-
imented with soap films [21].

A physical model of a minimal surface can be obtained
by dipping a wire frame into a soap solution. The result-
ing soap film is minimal in the sense that it always tries to
organize itself so that its surface area is as small as possi-
ble whilst spanning the wire contour. This minimal surface
area is, naturally, reached for the flat position,[3] which hap-
pens to be a position of vanishing mean curvature. This
does not come as a particular feature of this rather simple
example of minimal surface. In fact, the Euler-Lagrange
equation of the variational problem underlying minimal
surfaces turns out to be precisely the zero mean curvature
equation, as discovered by Jean Baptiste Meusnier [17].

With the characterization of minimal surfaces by iden-
tically vanishing mean curvature, the theory of minimal
submanifolds has been developed and extended to other
ambient geometries and ended up playing a crucial role in
the understanding of the Willmore energy.

On the sphere, the Willmore energy becomes area plus
the total squaredmean curvature: if 𝜋𝜋 𝜋 S3⧵{(0, 0, 0, 1)} →
ℝ3 denotes the stereographic projection, then

∫Σ
H2dΣ = ∫Σ̃

(1 + ̃H2)dΣ̃,

for ̃H themean curvature of Σ̃ 𝜋= 𝜋𝜋−1(Σ) ⊂ S3 (with respect
to the standard metric on S3). In particular, the Willmore
energy of a minimal surface in S3 coincides with its area.

Crucially, Marques and Neves reduced the quest for an
optimal embedding in S3 to the class of minimal embed-
dings in S3:

Theorem 3 (Marques-Neves [14]).— Let Σ ⊂ S3 be an
embedded closed surface with positive genus. Then there
exists an embedded closed minimal surface Σ̃ ⊂ S3 such
that 𝒲𝒲 (Σ) 𝒲 𝒲𝒲𝒲𝒲(Σ̃).

Next they established the Clifford torus as a sur-
face of least area among all minimal embeddings
of closed surfaces in S3 with genus (at least) one:

Theorem 4 (Marques-Neves [14]).— Let Σ ⊂ S3 be
an embedded closed minimal surface with positive genus.
Then 𝒲𝒲𝒲𝒲(Σ) 𝒲 2𝜋𝜋2, and equality holds if and only if Σ is
the Clifford torus, up to isometries of S3.

With Theorems 3 and 4, Marques andNeves established, in
particular, the following:

Theorem 5 (Marques-Neves [14]).— Let Σ ⊂ S3 be
an embedded compact surface with positive genus. Then
𝒲𝒲 (Σ) 𝒲 2𝜋𝜋2, and the equality holds if and only if Σ is the
Clifford torus, up to conformal transformations of S3.

With this, and in the light of Theorem 2, Fernando Codá
Marques and André Neves have proved the Willmore Con-
jecture:

Corollary 6.— The Willmore Conjecture holds.

Themilestone step achieved in Theorem 3 comes as an apli-
cation of theMin-max Theory developed by FrederickAlm-
gren [1] and Jon Pitts [20]. Driven by the problem of exis-
tence of minimal submanifolds of dimension higher than
2, Almgren introduced the notion of varifold and developed
a general scheme to produceminimalmanifolds in Rieman-
nian manifolds. The question of regularity of these objects
was later treated by Pitts, in the case of codimension one.
Their combined works established, remarkably, the exis-
tence of an embedded, closedminimal hypersurface for any

This is also the position in which the membrane is the most relaxed. In fact, minimal surfaces are examples of Willmore surfaces, surfaces that satisfy the
equation

ΔH + 2(H2 − K)H = 0,
which, in the particular case of compact surfaces, characterizes the stationary configurations for the Willmore functional (see, for example, [35]).

Unlike flat soap films, soap bubbles exist under a certain surface tension, in an equilibrium where slightly greater pressure inside the bubble is balanced by
the area-minimizing forces of the bubble itself. With their spherical shape, soap bubbles are area-minimizing surfaces under the constraint of volume enclosed.
These are surfaces of (non-zero) constant mean curvature and, therefore, examples of constrained Willmore surfaces, the generalization of Willmore surfaces that
arises when we restrict to infinitesimally conformal variations (for more details, see, for example, [30]).
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Figure 4.—Joseph Louis Lagrange. Engraving by Robert Hart 
(ca. 1834-1837), from a bust in the Library of the Institute of 
France

[3]  This is also the position in which the membrane is the most relaxed. In fact, minimal surfaces are examples of Willmore 
surfaces, surfaces that satisfy the equation  which, in the particular case of compact surfaces, 
characterizes the stationary configurations for the Willmore functional (see, for example, [35]).

  Unlike flat soap films, soap bubbles exist under a certain surface tension, in an equilibrium where slightly greater pressure 
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Figure 5.—Fernando Codá Marques Figure 6.—André Neves

given n-dimensional compact Riemannian manifold, with
3 ≤ n ≤ 6, cf. [20].

As with many groundbreaking results in Mathematics,
the work of Marques and Neves has provided new insights
and suggested new approaches to other significant ques-
tions. Their contribution includes, in particular, two se-
quels of a similar spirit, namely, the proof of the Freedman-
He-Wang conjecture for links [2], jointly with IanAgol, and
the proof of Yau’s conjecture on the existence of infinitely
many minimal hypersurfaces in manifolds of positive Ricci
curvature [16] (see also [12, 13, 15, 19]).

4 The recipients of the 2016 Oswald
Veblen Prize in Geometry

Fernando Codá Marques was born in São Carlos, Brazil,
in 1979. He received a BS from the Federal University of

Alagoas and an MS from IMPA, both in 1999, and his PhD
from Cornell University in 2003. He became a Professor at
IMPA in 2010 and, four years later, a Professor at Princeton
University. In 2012, he was distinguished with the TWAS
(The World Academy of Sciences for the advancement of
science in developing countries) Prize in Mathematics, the
Ramanujan Prize and theUMALCA (UniónMatemática de
América Latina y el Caribe) Prize.

André Neves was born in Lisbon, Portugal, in 1975. He
received his first degree from Instituto Superior Técnico in
1999 and his PhD fromStanfordUniversity in 2005. He has
held positions at Princeton University from 2005 to 2009,
the year he moved to Imperial College London, where he
became a Professor in 2013. He received the Philip Lever-
hulme Prize in 2012, the LMSWhitehead Prize in 2013, the
Royal Society Wolfson Merit Award in 2015 and the New
Horizons Prize in Mathematics, also in 2015.
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Figure 7.— Leonhard Euler. Portrait by Jakob 
Emanuel Handmann (1753)

Fernando Codá Marques and André Neves were awarded
the 2016 Oswald Veblen Prize in Geometry at the 122nd
Annual Meeting of the American Mathematical Society in
Seattle, Washington, on January 7, 2016.

”It is an honor and an immense pleasure to be a recipient, to-
gether with my friend André, of the prestigious Oswald Veblen
Prize in Geometry.

I am thankful to the committee for this recognition of our
work. I am grateful to my family, especially my parents, Severino
and Dilze, my wife Ana, and my siblings Gustavo and Clarissa. I
am sure that without their love and support I would not be here
today. I also look forward to meeting my baby son, Pedro, who is
joining us.

I thank also my late advisor, José Fernando Escobar (Chepe),
who was always kind and supportive of me, and Richard Schoen,
whose influence has been fundamental in my career. The year I
spent with Rick was decisive and helped shape my vision of what
is important in mathematics. I thank all my teachers, especially
Professor Manfredo do Carmo. His lessons inspired me to choose
the beautiful field of geometry. I am also grateful to Harold

Rosenberg for the many mathematical discussions and to my stu-
dents, who provide further motivation in my life. The collabora-
tion and friendship with André has been a constant source of joy
to me over the last ten years.

The study of minimal varieties is an old subject that began
with the work of Lagrange on the foundations of the calculus of
variations. The solution of the Plateau problem for mappings of
the disk (Douglas and Rado, 1930) and for rectifiable currents
(Federer and Fleming, 1960) are milestones of the field. But the
question of existence of closed minimal varieties in general com-
pact Riemannian manifolds is not a problem of minimization.
This inspired Almgren (1965) to develop a deep min-max theory
for the area functional. His work was improved by his PhD stu-
dent J. Pitts (1981), but remained largely untouched until the last
few years.

André and I were extremely delighted when we discovered
that this old theory would play a major role in the solution of the
Willmore conjecture. This required a change of perspective: in-
stead of trying to minimize the conformally invariant Willmore
functional, as originally proposed, we used conformal transfor-
mations to convert the problem into a question of minimizing the
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[4]   Notices of the American Mathemetical Society, Volume 63, Number 4 (April 2016), p. 430–431.
[5 ]   Ibidem. 

maximum of the area of certain five-parameter families of sur-
faces in the three-sphere. Our work was done mainly while we
were both visiting Stanford University at the end of 2011, and
the main breakthrough came when we realized how to prove such
families are topologically nontrivial. We were very amazed. A
few months later we wrote a paper with Ian Agol in which we used
similar ideas to solve a conjecture of Freedman, He, and Wang
on the Moebius energy of links. Then we turned our attention to
the general min-max theory and used it to prove Yau’s conjecture
about the existence of infinitely many minimal hypersurfaces in
the positive Ricci curvature setting. The ideas of Gromov and
a paper of Guth on multiparameter sweepouts were very influ-
ential. There have been several articles on min-max theory re-
cently, especially by young people, and this makes us very happy.
Major questions remain open, such as understanding the index,
topology, and multiplicity of these minimal varieties. We hope to
contribute further to the field.” [4] (Fernando Codá Marques)

”It is a great honor to receive the Oswald Veblen Prize in Ge-
ometry along with my dear friend Fernando.

Working and developing min-max theory together with Fer-
nando has been a tremendous experience: it started with an aca-
demic interest in conformal deformations of surfaces, but soon we
realized that we were discovering some new rich topology in the
space of all surfaces. Coupling that with principles of Morse the-
ory and ideas from minimal surfaces theory, we were able to an-
swer some long-standing open questions in geometry. Since its be-
ginnings, variational methods have had great influence in geom-
etry, and I am delighted that our work made some contributions
on that front. This is a beautiful subject, and I hope that its con-
tributions will keep increasing for many years to come.

I consider myself very fortunate to have had Richard Schoen
— one of the pioneers of geometric analysis — as my PhD advisor.
His mathematical work and sharp intuition have been a towering
influence on my research. I would also like to thank my collabo-
rators and friends, from whom I have undoubtedly learned a lot,
and my colleague Sir Simon Donaldson for all his support and en-
couragement throughout my career.

Finally, none of this would have been possible without the
constant love and unyielding support of my parents Nelsa and
Custódio, my wife Filipa, and our two adorable children, Eva and

Tomás. In one way or another, they have all made sacrifices for
the pursuit of my career.” [5] (André Neves)
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