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al impact. This year, the invited lecturer was Jean-Pierre 
Bourguignon who gave us a very interesting interview that 
is one of the highlights of the present issue.
   We recall that the bulletin welcomes the submission 
of review, feature, outreach and research articles in Math-
ematics and its applications. The CIM Bulletin has recently 
been assigned an ISSN number for its print and electronic 
versions. 

Jorge Milhazes Freitas
Centro de Matemática & Faculdade de Ciências
da Universidade do Porto
https://www.fc.up.pt/pessoas/jmfreita/
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»Colloquium«

The Legacy of Claude Shannon

Tuesday • 13 December 2016, at 16:00 
Salão Nobre, Instituto Superior Técnico

ULisboa, Portugal 

Programme

16:00 Evoking Claude Shannon
  José Francisco Rodrigues & Amílcar Sernadas

16:15 The Shannon Machine
  Daniel Graça

16:30 Shannon and Digital Circuits
  Arlindo Oliveira

16:45 Telecommunications before and after Shannon
  Carlos Salema

17:00 Mathematics of Secrets and Quantum Cryptography
  Yasser Omar

17:15 Applications of Information Theory in Science and in Engineering
  Mário Figueiredo

17:30 Closure of the session

Organizers

  Amílcar Sernadas (CMAF-CIO and IST, ULisboa)
  José Francisco Rodrigues (CIM, ACL and FC, ULisboa)
  Carlos Salema (IT, ACL and IST, ULisboa)
  Yasser Omar (IT and IST, ULisboa)

Sponsors: CIM, Academia das Ciências de Lisboa, TÉCNICOLISBOA, CMAFCIO, INESC ID LISBOA, INSTITUTO DE TELECOMUNICAÇÕES,

Doctoral Programme in the Physics and Mathematics of Information, FCT

dp-pmi.org/The-Legacy-of-Claude-Shannon
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* Centro de Matemática, Aplicações Fundamentais e Investigação Operacional da Faculdade de Ciências da Universidade de Lisboa

The Centro Internacional de Matemática, in partnership with the Portuguese Mathematical 
Society https://www.spm.pt/ and the Science Museum of the University of Coimbra 
http://www.museudaciencia.org/, organized a one day international workshop on Literature 
and Mathematics, with the collaboration and support of the Centro de Matemática, 
Aplicações Fundamentais e Investigação Operacional of the University of Lisboa.

This initiative took place at the beautiful Bookstore santiago, on the occasion of the 
folio 2016 — Óbidos International Literature Festival http://foliofestival.com/ — organised 
and hosted by the medieval town of Óbidos http://www.obidos.pt/.

Mathematics and Literature
An International Workshop held in Óbidos, Portugal, the 1st October 2016

by José Francisco Rodrigues*
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The workshop, with an average above twenty participants, 
consisted of ten presentations, covering not only signifi-
cant aspects of mathematical influence in the literature, 
interactions between mathematics and poetry, but also on 
the raise of graphic novel as a mean of communication of 
Mathematics stories.

 Sydney Padua, a cartoonist based in London and au-
thor of the recent book The Thrilling Adventures of Lovelace 
and Babbage, spoke on how Ada Lovelace saw in Babage’s 
machine a way to create what she called a “Poetical Science”: 
combining metaphor and mathematics to anticipate the digi-
tal age. In her talk she also told the story of these two fasci-

Figure 2 — Sydney Padua explaining her recent book The Thrilling Adventures of Lovelace and Babbage.

Figure 1 — A glimpse on the participants at the SANTIAGO bookstore
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Figure 4 — António Machiavelo speaking about Proust and Luisa Malato reciting poetry of José Anastácio da Cunha.

Figure 3 — Bernard Hodgson and his mathematico-literary gleanings.

nating and brilliant eccentrics, and discussed her process of 
primary-source research and creative transformation. Jorge 
Buescu, from the U. Lisboa, made a presentation on this last 
decade trend on the comic book-style works as a new liter-
ary genre and unexpected interaction between Mathematics 
and Literature, which are nothing short of spectacular.

 Bernard Hodgson, from the U. Laval, Canada, talked on 
his mathematico-literary gleanings, a series of short papers 
he is currently writing for Accromath, a bi-annual magazine 
published in Québec and whose mission is the popularisa-
tion of mathematics amongst secondary school teachers (and 
their pupils). With a few examples, mostly taken from the 
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French literature, he showed how ingredients with an ex-
plicit mathematical flavour can be found in literary works, 
and how he sees their potential for the context of secondary 
education—for example, the extent to which these excerpts 
could be used as a starting point for a mathematical activ-
ity in the classroom. He presented examples from authors 
such as Marcel Pagnol, Boris Vian, Raymond Queneau (and 
other oulipo members), as well as Franquin, the father of 
the famous and hilarious Gaston Lagaffe.
 António Machiavelo, from the U.Porto, impressed the 
participants with the mathematical metaphors that he found 
in the monumental work of Marcel Proust In Search of Lost 
Time. Going over these deep metaphors, he showed how 
Proust had very accurate ideas on some non-trivial mathemat-
ics and he pointed out some of their philosophical relevance. 
He explained how he found a sort of loop in the entire book 
with some delicious self-references with a strong mathemati-
cal flavour. Reporting on more or less explicit references to 

mathematical ideas that abound in Jorge Luis Borges’s short 
stories, like infinity, recursivity, equality, logical paradoxes, 
Jerôme Germoni, from the U.Lyon 1, aimed to unravel a few 
reasons why mathematicians often like Borges so much. In 
his talk, he pointed out not only a few of those structures, but 
also more hidden resonances where the short story turns out 
to be unexpectedly similar to mathematical thinking.
 The amazing interactions between Mathematics 
and Poetry were illustrated in three presentations. Darya 
Apushkinskaya, U. Saarbrucken, and Alexander Nazarov, U. 
St.Petersburg, told about the friendship between the great 
Russian poet of the twentieth century Anna Akhmatova and 
the prominent mathematician Olga Ladyzhenskaya, while 
Carlota Simões, U. Coimbra, and Carlos Santos, A. Ludus, 
Lisboa, spoke about Camões and Mathematics. Luís de 
Camões (1524–1579), the great the Portuguese poet of Re-
naissance, had a clear and accurate knowledge of XVI cen-
tury’s astronomy. For his epic poem Os Lusíadas, it is known 

Figure 5 — Alexander Nazarov reciting Akhmatova’s poem In Vyborg
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today that the the main source for astronomic references 
was the mathematician and Royal Cosmographer Pedro 
Nunes (1502–1578). They also presented several fascinating 
aspects of Camões’ sonnets. José Francisco Rodrigues, U. Lis-
boa, and Maria Luísa Malato, U. Porto, briefly overviewed 
the life and work of José Anastácio da Cunha (1744–1787), 
a Portuguese progressive thinker, modern mathematician 
and talented poet. As a mathematician, he is known by his 
deep anticipation on the foundations of infinitesimal anal-
ysis, appreciated by Gauss and highlighted by Yushkevich, 
and as a proto-romantic poet he is considered by Fernando 
Pessoa to “represent the first white glimmer of dawn on the 
horizon of Portuguese literature, for he represents the first 
attempt to dissolve the hardened shape of traditionalist stu-
pidity by the usual method of multiplied culture contacts”.
 The contribution by Carlo Toffalori, from the U. Cam-
erino, Italy, illustrated the image of Mathematics in Dos-
toyevsky’s novels as clearly negative, by explicitly accusing 

mathematical determinism of being arrogant and oppres-
sive and by comparing truth and freedom in Mathematics 
and in the vision of the Russian writer. 
 Finally, Péter Pál Pálfy, from the Hungarian Academy 
of Sciences, introduced Péter Esterházy (1950–2016), an out-
standing postmodern author, passed away in July this year. 
Coming from one of the most famous Hungarian aristocratic 
families he was allowed to study only a subject furthest away 
from ideology: mathematics. Although he had worked only 
four years as a mathematician, his creative power and the 
surprising connections in his writings show that mathemat-
ics had a deep influence on his literary works.

Acknowledgement: José Francisco Rodrigues, author of 
this notice, thanks Graça Brites for the photographies of 
the Workshop numbered 2, 4, 5 and 6, and José Pinho, co-
ordinator of folio mais and his collaborators in Óbidos 
for their hospitality.

Figure 6 — The participants from left to right: J.F.Rodrigues, P.P.Pálfy, A.Machiavelo, A. Nazarov, C.Toffalori, J.Buescu, B.Hodgson, 
C.Simões, J.Germoni, S.Padua, C.Santos, D.Apushkinskaya, M.L.Malato
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* Dep. of Mathematics, Instituto Superior Técnico, ULisboa

The conference Topology of Man-
ifolds, Lisbon was held at the Na-
tional Museum of Science and 
Natural History of the University 
of Lisbon, from June 27th to July 
1st 2016. The event was partial-
ly supported by the following in-
stitutions: National Science Foun-
dation (U.S.A.), Centro de Análise 
Matemática, Geometria e Sistemas 
Dinâmicos (IST, Universidade de 
Lisboa), Fundação Calouste Gul-
benkian, Fundação para a Ciência e 
Tecnologia and Centro Internacional 
de Matemática.
 The conference brought to-
gether 120 experts on Algebraic 
and Geometric Topology, mostly 
from the United States and Europe. 
The program consisted of 11 invit-
ed talks and 14 contributed talks. 
The scientific committee of the 
conference consisted of G. Arone 
(University of Virginia), A. Ran-
icki (University of Edinburgh) and 
U. Tillmann (Oxford University) and the organizing com-
mittee consisted of P. Boavida (IST, University of Lisbon), S. 
Galatius (Stanford University), G. Granja (IST, Univer-
sity of Lisbon) and P. Lambrechts (Université Catholique 
de Louvain).
 The conference was an opportunity to celebrate the 
60th anniversary of Michael S. Weiss, one of the foremost 
contributors to the subject of the conference in the last 35 
years. Michael Weiss holds the Alexander von Humboldt 
Professur at the Westfälische Wilhelms-Universität Mün-
ster since 2012, having joined Münster from the University 
of Aberdeen. His contributions to homotopy theory and 
geometric topology include outstanding work on Automor-
phisms of Manifolds and its relation to Algebraic K-theory 
(with Bruce Williams) [1], the development of Homotopy 
Functor Calculus (specifically Orthogonal Calculus [2] and 
Calculus of Embeddings [3]) now called Goodwillie-Weiss 
Calculus. He is perhaps most famous for the solution (with Ib 
Madsen, in 2002) of the Mumford Conjecture on the stable 
homology of the mapping class group [4]. Weiss received the 

Fröhlich Prize of the London Math-
ematical Society in 2006. 
 The circle of ideas involved in 
the Madsen-Weiss solution of the 
Mumford conjecture has exploded 
into a new and very active field of 
Algebraic and Geometric Topolo-
gy — the study of moduli spaces of 
manifolds and cobordism catego-
ries [5] — which was heavily repre-
sented in the program of the con-
ference. There were also many talks 
on the related and extremely ac-
tive field of homological stability, as 
well as talks on the more classical 
subjects of surgery and Algebraic K 
and L-theory.
 Highlights of the conference in-
cluded Michael Weiss’ own talk 
proving the existence of exotic 
Pontryagin classes for topological 
bundles of Euclidean spaces and 
Alexander Kupers’ talk proving the 
finite generation of the homoto-
py groups of the diffeomorphism 

groups of disks relative to their boundary (in dimensions 
not equal to 4,5 and 7) drawing on Galatius and Randal-Wil-
liams’s work on parametrized surgery [6] as well as Goodwil-
lie-Weiss calculus. 

RefeRences

[1]  M. S. Weiss and B. E. Williams, Automorphism of manifolds and 
algebraic K-theory: Part III., Mem. Amer. Math. Soc., vol. 1084, 
p. vi+110pp, 2014. 

[2]  M. S. Weiss, Orthogonal Calculus, Trans. Amer. Math. Soc., vol. 
347, no. 10, pp. 3743–3796, 1995. 

[3]  M. S. Weiss, Calculus of Embeddings, Bull. Amer. Math. Soc. 
(N.S.), vol. 33, no. 2, pp. 177–187, 1996. 

[4]  I. Madsen and M. S. Weiss, The stable moduli space of Riemann 
surfaces: Mumford’s conjecture, Ann. Math. (2), vol. 165, no. 3, 
pp. 843–941, 2007. 

[5]  S. Galatius, I. Madsen, U. Tilmann and M. Weiss, The 
homotopy type of the cobordism category, Acta Math., vol. 202, no. 
2, pp. 195–239, 2009. 

[6]  S. Galatius and O. Randal-Williams, Stable moduli spaces of 
high-dimensional manifolds, Acta Math., vol. 212, no. 2, pp. 257–
377, 2014.

Topology of Manifolds, Lisbon
By Gustavo Granja*

Michael S. Weiss. Picture by A. Ranicki
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2nd Porto Meeting in Mathematics and Biology
João Nuno Tavares* and Paulo de Castro Aguiar**

In the past days 15 to 17 June 2016, held the second edition 
of the so entitled Porto Meetings in Mathematics and Biology, 
with the promoting of the Faculty of Sciences of University of 
Porto, the Institute for Research and Innovation in Health (i3s), 
the Mathematics Center of the University of Porto (CMUP), and 
also counted with the sponsorship of the CIM.
 The purpose of this second meeting (the first was held 
on 23 and 24 June 2015) was to promote interaction between 
mathematicians, physicists, engineers, statisticians, biolo-
gists and clinicians to discuss the application of quantitative 
analysis methods to biological problems. More specifically 
this year’s edition was dedicated to the theme Systems Biology.
 Systems Biology is a new methodological paradigm that 
transformed 21st century research in Biology. Biology has be-
come increasingly cross-disciplinary as biologists, computer 
scientists, engineers, mathematicians, physicists and physi-
cians, work together to develop the high throughput technolo-
gies and computational/mathematical tools required for this 
new biology — all driven by the contemporary needs of bi-
ology and medicine. The systemic approach to biology is not 
new, but recently gained new impact, mainly due to the re-
markable progress of experimental and computational (Bioin-
formatics) methods, each time most ingenious and powerful. 
We have now a golden opportunity to uncover the essential 
principles of biological systems that enable us to understand 
them in their entirety by investigating: (1). the structure of the 
systems, such as genes, metabolism, and signal transduction 
networks and physical structures, (2). the dynamics of such 
systems, (3). methods to control them, and (4.) methods to 
design and modify them for desired properties.
 This conference was part of a set of initiatives that are 
designed to promote scientific interactions between math-

ematicians, biologists and clinicians (epidemiologists, im-
unologists, etc.) to facilitate the multidisciplinary research 
on topics of common interest. 
 The conference has consisted of the following 4 cours-
es: Introduction to Dynamic Mathematical Modelling in Systems 
Biology, by Brian Ingalls (Department of Applied Mathe-
matics, University of Waterloo; Metabolic Network Model-
ling: Genome-scale Reconstruction, Flux Balance Analysis, and 
Applications to Caenorhabditis elegans Metabolism by Lutfu 
Safak Yilmaz (Walhout Lab, Program in Systems Biology, 
Department of Biochemistry and Molecular Pharmacology, 
University of Massachusetts Medical School, USA); Intro-
duction to modelling noise and cell-to-cell variability in signal-
ling networks by Maciej Dobrzynski (Systems Biology Ireland, 
Conway Institute Belfield, Dublin, Ireland); Optimization and 
parameter estimation (with COPASI) by Pedro Mendes (Direc-
tor of Mendes Research Group, School of Computer Science, 
Manchester Institute of Biotechnology, UK), and of the fol-
lowing Plenary lectures Aging, Cancer and Neurodegenerative 
diseases by Lloyd Demetrius (Max Planck Institute for Mo-
lecular Genetics at Berlin, Germany, and the Department of 
Organismic and Evolutionary biology, Harvard University; 
Patterns of gene expression across multiple tissues and individuals 
by Pedro G Ferreira (i3S, Porto); In silico metabolic engineer-
ing by Miguel Rocha  (Departamento de Informática da Es-
cola de Engenharia da Universidade do  Minho, and finally 
Using time series data to reconstruct gene signaling networks by 
Joel Arrais (DEI/FCTUC, University of Coimbra).
All the information’s are available in the conference website 
http://cmup.fc.up.pt/cmup/biomath/

* CMUP e GEMAC
** Institute for Research and Innovation in Health (i3s)
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with Jean-Pierre Bourguignon

An Interview

by Carlos Florentino e Jorge Milhazes Freitas

Jean-Pierre Bourguignon holds an engineering degree from École Polytechnique and a PhD in 
mathematical sciences from the University Paris VII. A differential geometer by training, he has since 
pursued his interest in the mathematical aspects of theoretical physics. He is the President of the 
European Research Council as of 1 January 2014. He was the Director of the Institut des Hautes Études 
Scientifiques (IHÉS) from 1994 till 2013 and president of the European Mathematical Society from 1995 to 
1998.
 Jean-Pierre Bourguignon visited Portugal in July 2016, when he delivered an opening speech for the 
encontro Ciência ’16. This was the perfect occasion to make an interview, which flowed as an enriching 
and pleasant conversation, full of personal insights and experiences, with a mathematician who also 
occupied several high profile positions.
 Jean-Pierre Bourguignon was invited to give three Pedro Nunes Lectures, which were delivered at the 
Universities of Aveiro, Porto and Lisbon, in October 2016. The Pedro Nunes Lectures is an initiative of 
CIM, which aims at bringing outstanding mathematicians to Portugal in order to encourage the interest 
in Mathematics and, in particular, in research in Mathematics.
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How did you become a Mathematician? And how did you 
get interested in Differential Geometry?

Well, it’s kind of an unusual story. When I was in 
secondary school, I was very much interested in 
Literature and Philosophy. So, this is really what I 
thought I could be involved in although I had  good 
grades in Mathematics. I was in a small Lycée, and 
had the same Math teacher for five years, which is 
unusual. He was teaching very efficiently, and using 
the best students to help the others. So, very early 
on, I was asked to explain mathematics to others, 
and now I am sure this played a critical role in my 
being comfortable with Mathematics.

Then, in the last year of secondary school in France, 
I moved to a much bigger Lycée. Here, I had a very 
challenging teacher, known to be a remarkable 
mathematician. All of a sudden, I was confronted 
with somebody who was saying something which 
I perceived as interesting and important but that 
I could not understand. Just to show you to what 
extent I suffered, being used to having good grades 
in Math, my first grade with this teacher was 0.5 out 
of 20. It wasn’t the worst grade, as some people had 
0.25 and others zero. Actually, he was teaching some 
form of Linear Algebra, without it being supposed 
to be taught! So, I started studying Mathematics 
by myself. Fortunately, at the same time, I had a 
Physics teacher who convinced me that I was not that 
bad, and I was successful in Physics. Slowly, I also 
recovered in Mathematics.

Then, I decided to go on studying Science and 
went to the Classes Préparatoires where I realized 
that, because I had been thinking by myself, I 
could be among the bests in a class where some 
students already had received some prizes. From 
that on, I thought that maybe I could be able to do 
Mathematics as a profession. A year after, when 
preparing for the competition to enter the Grandes 
Écoles, I had another good mathematician as teacher, 
but his grading method was very peculiar. He would 
grade according to what he thought you could do. 
So, if he was expecting something great from you, 
then you could have terrible grades, and next to you 
there could be someone from whom he had no such 
expectation, who would end up having better grades 
than you. So, even though I was understanding better 
than others, I was lost, and it wasn’t clear I would be 
able to do Mathematics.

I successfully passed the entrance competition to 
École Polytechnique where the Mathematics courses 
were very solid — Gustave Choquet was one of 

my teachers — but I realised others, e.g. at École 
Normale Supérieure, were learning much more 
Mathematics than me. At this time, the teachers 
I had in Mechanics were very disappointing and 
confusing and, with a small group of students, we 
organized some kind of pirate courses to replace 
teachers. So, I learned a lot, and read all possible 
books I could find on Mechanics: Arnold, Truesdell, 
Sedov, etc. 

So, at the end of my two years as student at École 
Polytechnique and one year of Diplôme d’Études 
Approfondies in Mathematics studying Sheaf Theory, 
I decided to try and study Mechanics for a PhD.

I already had a clear idea of what I wanted to do: I 
wanted to solve the Euler equations of the motion 
of fluids using a technique introduced by Vladimir 
Arnold based on the search for geodesics of the group 
of diffeomorphisms. However, at the time, most 
of the teachers in Mechanics in Paris were quite 
senior people, and when I approached them, they 
all basically told me the same thing “no, you are not 
going to do what you want, you are going to do what 
we tell you to do”. And actually, shortly afterwards, 
Claude Godbillon, with whom I had spoken about 
my project, just forwarded to me the just published 
work by David Ebin and Jerrold Marsden in which 
they solved the Euler equations using precisely the 
method I had in mind. So, I was again lost, and went 
back to the subject closest to Mechanics: Differential 
Geometry.

With this in mind, I approached Marcel Berger, and 
started to work on a PhD with him. Then, I could 
convince him to invite David Ebin to France to give 
a course, so that I could learn more systematically 
Global Analysis at a moment when it was not 
considered so important. Earlier, I had received from 
Choquet a good training in Analysis. Therefore, I 
could combine Analysis and Geometry, and started 
working on non-linear partial differential equations 
(PDEs) with a reasonably solid background. Accept 
my apologies for such a long story. As you have now 
read, my idea of doing research in Mathematics did 
not come so straightforwardly.

Do you have a favorite mathematician that has particularly 
inspired you?}

Besides Berger of course, who was very generous 
with his time to share his broad knowledge about 
Geometry with me, a person who had quite some 
influence on me was Shiing Shen Chern. 
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Very interestingly, in 1972, I was invited to Stony 
Brook by Jim Simons He had attended one of the 
lectures I gave in Berger’s seminar in June 1972, 
in Paris. The next day, I had on my desk a fax from 
Stony Brook, offering me an Assistant Professor 
position there. At the time, I did not hold a PhD; 
I did not even bother to get a Thèse de Troisième 
Cycle, as I had already a position at the CNRS on 
the basis of a small article written while at the École 
polytechnique. After an intense discussion with my 
family we decided to take the chance and go.

I spent the year 1972–1973 in Stony Brook, 
which was then really the Mecca of Differential 
Geometry, with 14 mathematicians in this field in 
the Mathematics Department. Can you imagine? 
There was of course Simons himself, John Millson 
was a student there, James Ax, John Thorpe, Leonard 
Charlap, Jeff Cheeger, Detlef Gromoll, Wolfgang 
Meyer, Shing Tung Yau and several others. Actually 
this was a fantastic opportunity to become very close 
to Yau, who was enjoying his first position (at age 23) 
after having been a student of Chern. Being in Stony 
Brook was an unbelievable chance.

During the summer of 1973, I was invited by Robert 
Osserman to Stanford, and spent the whole summer 
there. While I was at Stanford, I got a phone call from 
Chern saying that he would like to have lunch with 
me, in Berkeley. At the time, I was 26, did not have 
a PhD, and here is Chern calling me to have lunch. 
I was just amazed! Actually, I was told later that 
he was doing that with a number of young people. 
Nevertheless, being called by Chern was something 
special. We had a very interesting discussion, he 
wanted to know what I was doing. By then, in France 
doing Differential Geometry was more or less proving 
that you were not a real mathematician. If you were 
one, you would be doing Algebraic Geometry or 
Number Theory, Differential Geometry was viewed 
by a number of people as a secondary subject 
considered technical. When I came back from the 
US, I thought that maybe what I was doing was not 
so silly. After all, Chern and a lot of other people were 
interested in it. In this way, and a few other ways 
later on, S.S. Chern had a lot of influence on my 
career.

Moreover, in September 1973 there was a Summer 
Institute of the American Mathematical Society 
(AMS) on Global Analysis, which actually was a 
turning point of the whole theory. At the time, 
working with Yau, we were trying to disprove the so-
called Calabi conjecture, a major conjecture in Kähler 

Geometry, and we published a paper on it, showing 
that at least quotients of K3 surfaces dit not admit 
a metric with SU

2-holonomy. During that summer, 
Yau thought that he had disproved the conjecture.I 
attended the lecture he gave there to Calabi and 
Chern, but actually there was a gap. Finally, two years 
later he proved that the conjecture was true. 

So, this visit to the US changed my perspective 
on my own work a lot, I was exposed to fantastic 
mathematicians, and I improved substantially my 
knowledge and practice of English.

Another important point is that I was blocked for 
defending my Thèse d’État because somebody had 
announced the result I was trying to prove, namely a 
stratification of the space of Riemannian metrics, in 
a Physics journal. And he never replied to any of my 
letters, neither to those of Berger, asking if he had 
proved it or not. Finally, in September 1973, he was 
also attending that conference and I could ask him 
directly: “Do you have a full proof?” and he said: “I 
am writing for physicists, so why should I have the 
full proof?” But he agreed to have Berger speak to  
him, and, some half a year later back in France, I 
could defend my Thèse d’État.

Among your many results and achievements, is there one 
that you are particularly proud of?

Well, there is one which I am proud of and with 
which goes a somewhat crazy story. In 1979 Blaine 
Lawson was in Paris, with Marie-Louise Michelsohn, 
his wife, visiting IHÉS, and I was meeting them 
regularly. At the time, the topic of Gauge Theory 
had become popular and much in demand from 
physicists. As I had studied physics quite seriously at 
École polytechnique, in particular quantum physics, I 
had an advantage over other mathematicians. I think 
I understood quite solidly what was behind Gauge 
theory and quantum effects. So, at some point, 
I was asked by physicists to give a course on the 
differential geometric background needed to develop 
Gauge theory. One day, before starting the course, I 
came to Lawson and showed him the outline of the 
course, and in passing, I mentioned to him what I 
knew about one of the conjectures that physicists 
were very much looking into, concerning the critical 
points of the Yang-Mills functional on the four sphere 
S4. He looked at me and asked “What can you exactly 
do?” After I explained what I could prove, he said “I 
think I know how to do the missing half!’’. So, just 
by talking, we had the proof of a nice theorem. The 
heart of the matter is that I had understood how to 
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use ideas of Jim Simons to go from 5 dimensions 
to 4 dimensions, but I was stuck at one point. In 
5 dimensions the Yang-Mills functional is non-
degenerate, but in 4 dimensions it is degenerate. I 
did not know how to get rid fully of the degeneracies, 
but Blaine did. We could very quickly publish an 
announcement in the Proceedings of the National 
Academy of Sciences. We decided to do it jointly 
with Jim Simons because we knew that he had just 
decided to quit mathematics. At this time he was not 
famous nor a rich person. The full article with Lawson 
was published in Communications in Mathematical 
Physics and it’s one of my best papers.

There is another one which I like very much, but 
remains partly a mystery to me. It’s about proving 
that a metric on a 4-dimensional manifold whose 
curvature is harmonic, is actually an Einstein metric, 
i.e. one for which the Ricci curvature is a constant 
multiple of the metric. The way to prove the result is, 
I think, very peculiar, because it uses the fact that, 
if you apply a certain identity called a  Weitzenböck 
formula to the curvature tensor that you need to 
view  as a harmonic vector-valued 2-form, it satisfies 
a generalized Laplace equation from which you can 
derive a peculiar pointwise algebraic commutativity 
property. From this property you can get information 
on the integrand of the signature of your 4-manifold 
Hence, under the topological condition that the 
signature is non-zero, harmonicity of the curvature 
— a third order condition on the metric — implies 
that the metric is Einstein, which is a second order 
condition. 

I like this theorem very much because it brings 
together non-trivial facts about PDEs and Topology, 
but still the reason why it works remains mysterious 
to me.

Scientifically speaking, do you have any particular 
unfulfilled goal that you still would like to accomplish?

Oh, many. Well, the first one is the first problem 
suggested to me by Berger, I worked on it several 
times in my career: namely to decide whether 
S2× S2  admits metrics of strictly positive sectional 
curvature. This is still an unsolved problem. One can 
ask the same question for products of spheres in all 
dimensions. My guess is that the situation for S2× S2 
may not be the same as the one for S3× S3. I tried 
many things and many people tried also, since it is a 
question which can be formulated in easy terms. My 
first publication actually was to show that, in fact, 
there is no such metric in the vicinity of the standard 

product metric of S2× S2. It’s far from the final 
solution of the problem, but at least it shows that the 
problem is non-trivial.

It is widely acknowledged that Physics has had a 
long tradition of providing important challenges for 
mathematics research in particular for geometry, such as 
General relativity and Quantum Mechanics.

What physical theory do you think will have an analogous 
impact and provide the next big challenge for geometric 
research in this century? String Theory? Supersymmetry?

It’s a complicated question. This influence has 
already happened to an extent people would have 
never believed. String Theory (ST) had an impact in 
particular towards Algebraic Geometry. For example, 
Kontsevich has a totally new way of thinking about 
Geometry using categories of higher order, which is 
certainly inspired by the challenges posed by ST. One 
theory which I personally spent quite some time on is 
supergravity (SG). Of course, it is not clear whether 
physicists are so interested in this theory anymore, 
but what I find really interesting is the way it 
combines classical DG with the study of connections 
with torsion. In SG there is, besides the usual 
structure, a 3-form. The geometry of such objects has 
been investigated recently by Nigel Hitchin and some 
people around him. And I think there is more to be 
said, in particular in connection with geometries with 
special holonomy (G2 in 7 dimensions and Spin7 in 8 
dimensions).

Another area in which I was involved is the fantastic 
progress in the theory of systems of non-linear PDEs 
which came from the study of the Einstein equations. 
Actually, I taught General Relativity for 15 years at 
École polytechnique. Since the work of Demetrios 
Christodoulou and Sergiu Klainerman, as well as 
others who followed, we now have an understanding 
of the kind of regularity which is needed to guarantee 
the existence of solutions to the Einstein equations. 
I think this is a domain in which fantastic progress 
has happened thanks to  both geometric ideas and 
sophisticated physics and mathematics. For me it is 
one of the most amazing achievements of the last 20 
years.

This is a speculation now: do you think sometime soon 
Quantum Field Theory (QFT) will be placed in a rigorous 
mathematical basis?

There are some versions of QFT which are rigorous, 
but these are not the ones that physicists find the 
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most relevant. We always face the dilemma: on the 
one hand one can make the theory rigorous; on the 
other hand, one is not touching what the physicists 
consider to be the heart of the matter. Probably, we 
are missing some new mathematical concepts and 
background, and I wouldn’t be surprised if one has to 
look at it from a very different perspective. In some 
recent approaches by people like Kontsevich using a 
new geometry involving higher categorical structures, 
the level of abstraction and the sophistication of the 
algebraic machinery seems to completely kill the 
geometry behind it. Not for him of course.

Another question that is talked a lot about is Alain 
Connes’ programme of non-commutative geometry 
(NCG). It’s a point of view providing very interesting 
approaches to theoretical physics. His belief, and 
there is evidence to support it, is that the Standard 
Model (SM) of particle physics has an internal 
structure which is much more meaningful than 

usually assumed. For many physicists, the SM is 
something where various pieces fit in a quite ad hoc 
way as the values of some coefficients in the SM were 
obtained through measurements. But for Connes, 
using NCG, these constants are really built into it 
for geometric reasons. So far, physicists are looking 
at this with some kind of a smile, as experiments 
should tell you which values are correct. As you 
know, the mass of the Higgs boson is not the one 
supersymmetry was predicting, and at some point, 
Connes thought that the LHC [Large Hadron Collider, 
CERN, Geneva] had proved one of his predictions to 
be wrong. But now, his latest conclusion is that he 
had made a mistake in one of his estimates and now, 
after correcting it, he gets a value for the mass of the 
Higgs particle compatible with experiments.

I think Connes’geometric approach is extremely 
interesting, in particular because it allows to put on 
an equal footing discrete and continuous spaces. This 
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plays an important role in physical theories, which 
may have to deal with discrete or continuous objects, 
but also in Number Theory.

Throughout your career you have assumed several high 
profile administration positions, such as president of 
the Société Mathématique de France, president of the 
European Mathematical Society, director of the Institut 
des Hautes Études Scientifiques and president of the 
European Research Council. Portugal has been going 
through a severe financial and social crisis, which meant 
that only very few positions for mathematicians have 
been opened in the past years. Nonetheless, the PhD 
programmes in Mathematics have grown and have 
become quite successful. Given your experience, do you 
have any advice for these young researchers who have just 
finished (or are about to finish) their PhD, in terms of 
career opportunities?

Well, this is a big question. Maybe I should remind 
you that I was among the people who reviewed 
Portuguese Mathematics during the nineties. This 
was an extremely interesting exercise. At that time, 
and it has nothing to do with the quality of people, 
a number of researchers there were really looking 
at narrow and sometimes bizarre problems. And 
so, since the landscape was dominated by senior 
people doing at times somewhat routine research, 
these evaluations brought up a broader perspective 
that some younger people were able to take up when 
there were not even proposing them spontaneouly 
themselves.

So, for young people in order to be ambitious 
and develop research at the highest level, to have 
a clear idea of what their career path can be is 
critical, I even mentioned it in my speech this 
morning [Ciência 2016 — Encontro com a Ciência 
e Tecnologia em Portugal, 4–6 Julho, Lisboa]. It is 
fundamental that policy makers understand that, 
to have leading researchers, at some point one has 
to offer them a decent career perspective. This is 
exactly what happened in France in the early 1990s 
and this led to the generation of Jean-Christophe 
Yoccoz and Pierre-Louis Lions.

But still, there is one point that I would like 
to make here, namely that the possibilities for 
mathematicians to be employed are much broader 
now than they used to be, for several reasons. First 
of all, the interfaces of Mathematics with a number 
of other disciplines developed fantastically in the last 
thirty years: There are new interfaces with Biology 

and Medicine, for example, touching many areas of 
Mathematics, not just Statistics; but also with Social 
Sciences or Humanities there are many possibilities 
of involving mathematicians. I think it is quite 
important for the next generation of mathematicians 
to be exposed to several fields. Of course, in the 
end, people do what they feel is interesting. But, at 
some point, teachers must understand that you can 
become a mathematician in many more ways than 
one used to. You have to let students choose what is 
most appealing for them, but it would be a mistake 
to say that to do Mathematics you have to do Algebra, 
Geometry, Analysis, and so on. It’s very important to 
expose students to various possibilities.

I’m not sure you know the figures, but for France, 
today one Mathematics Ph.D. out of two takes a job 
outside academia. In the early 1990s around 90% 
would stay in academia. So, this has broadened the 
perspective for students in Mathematics. There are 
people working in many different environments. Also 
many companies now want to have mathematicians 
as members of their teams. I often give the example 
of Veolia, a company doing transportation, garbage 
collection and many kinds of things, which employs 
many engineers. Talking to the head of research 4 or 
5 years ago, he told me that, at that moment, 8% of 
the engineers had a strong mathematics background, 
and the objective was, by 2025, that 20\% of 
all engineers should have a broad mathematics 
background. This means that the number of people 
with very sophisticated mathematics knowledge 
employed in companies will grow considerably in the 
years to come.

Another point that I would like to make, is that three 
European countries have now studied what is the 
impact of advanced Mathematics in their economies: 
The UK, Netherlands and France. The conclusion 
was that the impact of advanced Mathematics 
was much bigger than people ever thought. In 
the case of France, the figure is 15% of all GDP 
is directly related to advanced Mathematics. And 
the number of jobs induced by this use is above 2 
millions. The report can be found on the website 
of the Société Mathématique de France. It shows 
that mathematicians have been, in some sense, 
collectively underestimating their impact on Society, 
and that there are now many more ways of being 
a professional mathematician than before. But of 
course, it depends a little on how each country is 
dealing with this issue.
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In Portugal, there are few purely research permanent 
positions, in contrast to the French CNRS. What do you 
think about this? Would you have any advice for the 
Portuguese government with respect to this issue?

I was an employee of CNRS for 44 years, and it is 
clear to me that I owe my career to this organisation. 
But when one considers the overall organization of 
the academic personnel involved in Mathematics in 
France, one finds that 85% are holding positions at 
higher education institutions and that only 15% are 
employed by the CNRS. Of course, given the size of 
France, the number of mathematicians employed by 
the CNRS exceeds 400. In a number of cases, the 
researchers from CNRS still teach somewhat, but 
of course less than if they were holding a regular 
teaching position.

So, the right thing to do is to make sure that, in a 
given country, there are enough positions to give 
a relief from teaching to a significant number of 

people. It should be possible, for example, that for 5 
years, someone takes a relief from teaching in order 
to pursue research more intensely.

Actually, in France, one thing that was organized 
with this in mind was the Institut Universitaire de 
France (IUF). A national selection done both at the 
junior and at the senior levels, allows people to be 
relieved of one third of their teaching duties and get 
some extra support to do research in their own home 
institutions. Being a member of the IUF is seen as 
a very distinguished position with a positive impact 
on both the recipient researcher and his or her 
university.

This structure works quite well. Hence, I think this 
is another way of funding research personnel which 
is less expensive than having permanent research 
positions. It also helped to recognize that, for some 
people, the teaching load was too heavy to achieve 
excellence in research.
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You are definitely a person who travelled the world. How 
do you see Portugal in terms of its scientific development?

Since I have been president of ERC, I lost a little 
bit contact with what different countries have been 
doing from a strict mathematical point of view. But 
since the middle of the nineties, I would say the 
transformation has been quite positive. Nowadays, 
many more people are exposed to international 
competition and all in all Portuguese mathematicians 
have been very successful, in particular young ones.

I understand that the recent years have been tough, 
as I heard from several Portuguese colleagues. But 
I think that taking a longer perspective, Portugal 
has really gone through a long transition. Actually, I 
think n the first years the efforts on the side of the 
Portuguese government were really important, with a 
significant increase in the number of funded research 
projects. I would like to stress that that these projects  
were evaluated by international panels. This was 
a smart move particularly in a small country like 
Portugal, where most people know each other very 
well, maybe too well. So, globally, I would say that 
the evolution has been very positive. I am not saying 
this to be nice. You may have noticed that I tend to 
be blunt.

Here, I must mention the very positive, in my opinion, 
influence José Mariano Gago had in this respect. 
We became friends and we exchanged on a regular 
basis on European issues. With Philippe Busquin, he 
played a critical role in the establishment of the ERC. 
He left us much too early.

As mentioned before, you have been the president of 
the European Mathematical Society (EMS). How do you 
see the importance for Europe to have a Mathematical 
Society?

It took a long time for the EMS to develop. Actually, 
you may not be aware since you are too young to 
have witnessed how slow the process was. Part of the 
problem was a remake of the traditional disagreement 
between the British and the French about the level 
of integration of the European process. Fortunately, 
there were the Germans to bring us together. I 
am serious about that. Two models were indeed 
competing: a British one where the EMS should be a 
society of societies with no individual members, and 
another one, supported by the French, according to 
which the EMS should be a much more integrated 
structure with individual members. The compromise 
was to have both, which is actually the current 

situation in the EMS, showing the compromise found 
was a good one.

I remember, in particular, the controversial 
foundational meeting in 1990 in Madralin. It was a 
not so gentle fight. Fortunately, the person who had 
been chosen to become the first president of the 
EMS, Friedrich Hirzebruch, imposed a mixed view 
which was accepted by Sir Michael Atiyah, who had 
been chairing the European Mathematical Council, 
which in some sense has been the matrix for the EMS 
later on. The key decisive step taken by Friedrich 
Hirzebruch was to ask Sir Michael Atiyah whether he 
would agree to become the member number one of 
the EMS, which of course would mean that he was 
accepting the compromise. He agreed.

But why should there be a European Mathematical 
Society? There are actually several obvious 
reasons. At the time, the European Commission 
was developing its framework programmes and 
mathematicians were unable to be present enough 
in this process. The only way was by having a 
lobbying power with a European flag in Brussels. So, 
the EMS played a role there and was able to force 
the presence of some meaningful programmes for 
mathematicians in the agenda.

Another important reason for me has been the need 
to enhance the development of the bibliographic 
databasis Zentralblatt Math (ZM) to avoid the 
monopoly of MathSciNet, property and one of the 
main providers of resources of the AMS. Attempts 
to get the two databases to cooperate had failed. 
It was of paramount importance that the European 
mathematical community could get organized to 
stand behind ZM and press for its modernization and 
presence worldwide. The EMS soon was a dynamic 
partner of the FachInformationZentrum Karlsruhe, 
the Heidelberg Akademie der Wissenschaft and 
Springer in ZM.

After this complicated start, I was completely 
surprised when Friedrich Hirzebruch invited me to 
be his successor. I could hardly believe that. But my 
relation with Hirzebruch was one of great respect. I 
greatly admired his efficiency and appreciated very 
much his efforts, for example, to develop the Max 
Planck Institute for Mathematics. I truly believed 
in the importance of the EMS and accepted the 
challenge.

It turned out to be a fantastic experience. I was very 
lucky with the excellent team who worked directly 
with me. We continued the work initiated during the 
previous presidence. I remember vividly for example 
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the creation of an active website and the first years 
of the Journal of the European Mathematical Society. 
Other important achievements were attained in 
direction of applied mathematicians, as we managed 
to create contacts and start some studies between 
Mathematics and Industry.

In the past few years, the Mathematical and the general 
scientific community have been overwhelmed with the 
use of bibliometric data to assess and evaluate individuals 
and institutions. This has been happening in job and 
grant applications, individual evaluations at reputable 
universities, research institutions’ evaluations by funding 
agencies, and so on. On the other hand, we have the San 
Francisco Declaration on Research Assessment signed by 
many important scientists and scientific organizations. Do 
you have a personal opinion on this matter that you would 
like to share with us?

This has become an important issue. I am fighting 
the use of bibliometrics to evaluate people in a very 
explicit way. With ERC panel members, I have been 
insisting that they do not to use that. Of course the 
temptation to use this information varies much from 
one discipline to the other. Disciplines where this 
is more or less routine are Biology and Biomedical 
Sciences but for Physics and Mathematics, for 
example, I have not seen any of the panels making 
real use of this.

Of course figures at certain levels can be useful to 
obtain a global picture. For example, at the ERC we 
sometimes use the 10% or 1% more cited papers 
figures globally for Europe or at the level of nations. 
But the idea of evaluating and funding individuals 
or teams based on bibliometrics is inappropriate, 
and there are several arguments against it. The first 
argument is that people have different publication 
and citation habits across different disciplines and 
subjects. Even within Mathematics, for example, the 
geometers do not quote and cite in the same way 
as analysts do. People doing applications have even 
more different patterns. A second argument is the 
fact that most of these data are using citations from 
the last three years, when the average age of citation 
of a mathematical paper is between eight and nine 
years, so using this type of citation information does 
not actually make any sense. Of course this varies a 
lot with disciplines because in some other fields a 
paper with more than three years of age has basically 
no value for quotation. This is of course not the case 
for Mathematics.

The other argument why I insist not to use this at the 

ERC is the following: the objective of the ERC is to 
fund ambitious projects with bright new ideas, and 
looking at passed data does not give much of a clue 
about the value of the project. Hence, I have been 
very explicit about this and, although I experience 
some resistance from biologists, the position of 
the ERC Scientific Council on this is very clear. We 
highlight the necessity of evaluating the potential of 
a good idea as the most important thing.

This does not mean that bibliometric data have 
no value. It just means that they have no place in 
the evaluation of individuals and can be used for 
the evaluation of research teams when properly 
aggregated at a large enough scale.

Research in Mathematics has a dual mode: fundamental 
research and applied research. Often they are closely 
connected and one stimulates the other. However, in 
certain fields or subjects, applications occur (if they occur) 
only after a very long time gap. In a society eager for 
technological advances, the pressure for financing almost 
exclusively applied research is overwhelming. Do you have 
any advice for people working in fundamental research on 
how they should proceed to have access to funding?

There are several sides to your question. First of all, 
at the level of the ERC we insist that we are dealing 
with frontier research. We do not want to discriminate 
between fundamental or basic or pure and applied 
or technological research. The truth is that, if you 
look at the ERC portfolio (and this was not decided 
a priori), 85% is pure or basic research and 15% 
is applied or technological research. But this can 
change over time.

The second comment is that people who decide 
policies are very often under pressure by politicians. 
For politicians the key issue is to have short term 
results. The reason is that the next election is 
tomorrow. In some countries like China, they do 
not care so much about short term results because 
the government has longer periods, like 20, 30 
years, in mind. Therefore they initiate programmes 
like the new 5 year plan with a considerable focus 
on fundamental research because they want to 
build a community able and eager to develop new 
technologies in the future. We, as scientists and 
this is especially true for mathematicians, have to 
teach politicians how research really works. Research 
does not work as well when you tell people what 
to do. Actually, this should not be called research, 
this is development. When you do research, it is 
very difficult to anticipate what is going to come out 
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since you are dealing with the unknown. This does 
not mean you should not make specific efforts in 
some particular areas. The best response we can give 
to politicians is that they should adopt a balanced 
strategy. Clearly there can be top down priorities 
on topics like energy, climate change, etc. But at 
the same time, there should be a very significant 
percentage of research left at the initiatives of 
researchers using a bottom up approach. Then you 
have to make the case for numerous initiatives 
of researchers which turn out to be relevant for 
politicians. One such example is the recent use of 
perovskite minerals to build batteries which are much 
cheaper and have a very promising efficiency output 
when compared with other batteries. It came from a 
totally bottom up approach. I made this point to the 
Vice-President of the European Commission in charge 
of the energy portfolio, Maroš Šefšovič. The people 

who came up with this technology were not told to do 
that. This discovery just came from their own team 
dynamics.

Moreover, there are more short circuits coming from 
research projects not led by any a priori request but 
which can suddenly become a big story. The example 
I like to quote is the case of CRISPR Cas9, a new 
gene editing technique, which is actually used by 
bacteria for millions of years and was studied, in 
the 1980’s, by Japanese researchers, who could 
not really understand the process at the time. Then, 
recently, the work was picked up by Jennifer Doudna 
and Emmanuelle Charpentier who paved the way for 
the discovery of this very promising new gene editing 
technique. In fact, to give an example of the impact 
of this breakthrough, at the ERC, last year, we had 
less than fifty projects using this technique and, this 
year, we have several hundreds. So, this is something 
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that was spotted at a given time but not understood. 
Then, much later, someone managed to understand it 
so well that it became a new wide spread technique 
with a very promising and challenging future. This 
is a fantastic example of something which is most 
likely to have an enormous impact in several areas 
both from the economical and from the health point 
of view. And the key point is that all this happened 
just because people wanted to understand better 
something that looked mysterious. This is the perfect 
example to show that one cannot only rely on top 
down strategies but that bottom up is badly needed. 
So the key is to look for the right balance between 
the two.

Given the fact that research in Mathematics is most of 
the time less expensive when compared to other types 
of research, demanding intensive lab work, what do you 
think about the idea of reducing the huge amount of 
money for a single ERC grant and make them available to 
a larger number of people?

First of all, if you allow me, I am always surprised 
with this question because ERC allows people to ask 
for the amount of money they find appropriate to 
achieve their project. Recently a 200 000 Euro grant 
has been given for five years, which I think is not 
such a big grant. At no moment does the ERC press 
people to ask for large amounts of money. Most of the 
time it is the institution that presses the researcher 
to ask for more money, probably because of the 
25% overhead it receives for each grant. So it really 
depends on the the people applying for the grants. 
It is true that the researcher can use this money to 
pay typically half of his or her salary, in line with the 
time dedicated to the project. If the institution is fair, 
then it should use that money to improve the support 
around the grantee, so that more people benefit from 
it. That is for example what the CNRS in France is 
doing: if the researcher decides to take half of his 
or her salary from the grant, then a large part of that 
money is distributed around him or her. I personally 
think it is a good way of lifting the spirit of all the 
people around the grantee.

The difficulty with giving very small grants is the 
fact that the administrative burden needed for 

putting in place a two million Euro grant is almost 
the same as the one for a 200.000 Euro. So, of 
course, by multiplying the number of grants by ten, 
for the agency, it would mean a huge increase in 
administrative costs. At the moment, the Executive 
Agency in charge of the ERC is managing about 
5.000 grants, and there are only 90 people to do 
that. Another issue here is also to determine the 
European added value of distributing small grants. 
The national or even local levels are almost surely 
the right one to do that. This points to the fact that 
the support to research has to be thought in systemic 
terms: different means for distributing support should 
be in place and enough money be given in a recurrent 
way with decisions taken as close as possible to the 
researchers. I do not see any reason why the support 
to research has to be given only through projects. In 
order to develop completely new ideas, researchers 
need to be able to do it in a spontaneous and totally 
non bureaucratic way. Unfortunately, in a number 
of countries the balance has gone too much in the 
direction of supporting competitive projects. Not 
enough money has been left for recurrent support. 
This is, for me, a major mistake with, potentially, a 
very negative long term impact.

Concerning the ERC, another thing you need to keep 
in mind is that, in the end, the people who determine 
the amount of money granted are the panel members.

In fact, at the ERC, there is something sometimes 
referred to as the “Bourguignon policy”, which 
goes back to the time I was chairing the first panel 
distributing starting grants in Mathematics, because 
I insisted that the budget should be checked 
thoroughly. Already then, people tended to ask for 
an amount of money which was not related with 
the real needs of the project. So the mathematics 
panel I was in charge of did cut the budgets of some 
projects, because we felt the request made was not 
based on actual scientific needs. To conclude people 
should ask the amount of money they really need for 
thesatisfactory development of their project.
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PedRo nunes and the loxodRome

The 16th century was a period of great scientific and techno-
logical development in Europe. Portugal was no stranger 
to this general atmosphere, having developed new sailing 
techniques, which were necessary to navigate outside the 
Mediterranean, and below the Equator, where the North 
Star is not visible. 
 Along with more practical developments, there was also 
an interest in abstract physical and mathematical problems, 
inspired by concrete needs and questions. Among the 
people that were interested in these problems, stands 
the figure of Pedro Nunes (1502–1578), a remarkable 
mathematician and astronomer. Figure 1 is sculpture  
of Pedro Nunes in a monumento to the discoveries.
 Pedro Nunes started his scientific studies in 
Salamanca, around 1517, where he got a degree in 
Medicine, in 1525 (this was the usual course of 
studies at the time for someone interested in a 
higher scientific education). He then returned 
to Portugal, and taught Moral Philosophy, Logic, 
and Metaphysics at the University of Lisbon (start-
ing between 1529 and 1531). He was appointed Royal 
Cosmographer in 1529 and Chief Royal Cosmogra-
pher in 1547, a post that he held until his death.
 Among his publications, we refer the Tratado da sphera 
(1537), which includes the Treatise on certain doubts of naviga-
tion and the Treatise in defence of the nautical chart, to which 
we will return, and De crepusculis (1542). In this second book, 
he studies, and solves, an important problem of his time: the 
determination of the duration of the twilight, depending on 
the latitude and the day of the year, and provides many other 
new and relevant observations, including the description of 

Figure 1.— A sculpture (by Leopoldo de Almeida) representing 
Pedro Nunes
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a new instrument, the nónio (see [6] for a study of this book). 
In both works, Nunes gives a strictly mathematical treatment 
to practical problems. These books, especially De crepusculis, 
with its rigorous and extensive solution to an old problem, 
afforded Nunes a high intellectual standing, at an interna-
tional level.
 These and other works were later collected and expand-
ed by Nunes in Petri Nonii salaciencis opera, his collected 
works, published in Basel, in Latin, in 1566 — a comment-
ed edition was recently organized, between 2002 and 2010, 
and published by Fundação Calouste Gulbenkian. 
 In the course of his career of Royal Cosmographer, 
Nunes came across problems relating to navigation, which 
were in great extent inspired by practical considerations. In 
[2], Pedro Nunes mentions some specific questions that the 
navigator Martim Afonso de Sousa asked him. One of them 
was about the correct way to navigate along a great circle, 
which is the path of least distance on a sphere (this is Nunes’ 
reformulation of the original question). The knowledge of 
the north, given by the compass or the North Star, would 
allow keeping the ship at a course maintaining a given an-
gle with meridians, and apparently there was a belief that 
this would ensure the ship would travel along a great circle. 
Pedro Nunes gave this problem quite some thought. Figure 
2, taken from [2], and the accompanying text, show that he 
realized that this belief was misguided: the great circle is not 

the course the ship would take if this angle (called bearing) 
were kept constant.
 Nunes distinguishes very clearly these two forms of nav-
igation, noting that if one wants to navigate along a great 
circle, the bearing has to be constantly adjusted. The curve 
that the ship follows if the angle with meridians is kept con-
stant came to be known as a rhumb line (this was the name 
used by Nunes), a loxodromic curve, or simply a loxodrome. 
The word rhumb refers to this constant angle with merid-
ians, to be kept constant in order to navigate along the curve. 
The method Nunes suggests to correct angles in order to 
travel along a great circle, based on spherical trigonometry, 
turned out to be too difficult to implement on board, and 
apparently was never adopted by Portuguese sailors. In fact, 
Nunes suffered much criticism regarding the abstraction and 
complexity of his methods, in his time, even though it re-
mains to be ascertained if such criticism was deserved or not.
 At any rate, the treatment of this new curve,[1] the loxo-
drome, was extended to a theoretical level not seen before 
for non-conical curves. Figure 3, also taken from [2], and 
reproduced in the cover of the Proceedings of an Interna-
tional Conference held in Portugal in 2002, shows a few 
loxodromes as seen from the pole.
 One of the results Pedro Nunes proved about this curve, 
only clarified and published a few years later in [3], is that 
it does not enter the pole (unlike what the figure above sug-

Figure 3.— Loxodromes seen from the pole in a figure
by Pedro Nunes

[1]  Pedro Nunes makes a reference to Ptolomy’s Geography when describing the loxodrome, but this is probably just a 
way to relate it to a famous name, as no reference of this curve has been found in Ptolomy.

Figure 2.— A great circle (dce) and a rhumb line (acb)
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gests), yielding an infinite line on a sphere. Figure 4 shows a 
loxodrome on a sphere. 
 The equation for a loxodrome making an angle  with 
meridians is given by 

where  is the latitude and  is the longitude, and can be de-
duced from the definition of the curve using integral calcu-
lus (see [4] for a brief deduction of this formula and [5] for 
a more extensive study of this curve). The description of the 
curve in Nunes’ time, however, was not done with a formula 
but with a table of pairs of longitudes and latitudes, along 
each rhumb. Usually, seven angles were chosen, making an-
gles of 11,25° between them, evenly dividing the right angle 
between the equator and a meridian.
 Nunes’ method for constructing such a table is de-
scribed in [3]. Once an angle was chosen, the rhumb is ap-
proximated by arcs of great circles. Figure 5 illustrates this. 
 In the figure, A represents the pole and the lines BCD, 
CEF, etc, are arcs of great circles. The lines originating at A 
are arcs of meridians. Nunes uses a theorem by Gebre about 
sines in spherical triangles to iteratively calculate the angles 
and lengths involved. After this description the method, 
Nunes includes an empty table, inviting the “laborious lads” 
to supply the calculations.

the meRcatoR chaRt

The expression rhumb line can also refer to a straight line, 

drawn on a navigation chart. When Pedro Nunes started 
working on these problems, there were no charts with the 
property that loxodromes would be represented as straight 
lines. In [2], Nunes actually refers to the need to create such 
a chart, which would make navigation problems much eas-
ier. The navigation could be charted along a certain rhumb, 
which would just be a straight line on a map, and correspond 
to a certain bearing, something that could be achieved with 
a compass.
 The first chart with this property was published by 
Gerardus Mercator in 1569, and this cartographic projec-
tion came to be known as Mercator projection. Figure 6 (see 
next page) shows a modern map using this projection. The 
circles, called Tissot indicatrices, all have    the same area 
on the globe.
 The map shows that horizontal and vertical lines repre-
sent parallels and meridians, respectively, but parallels must 
be more spaced as the latitude increases (the scale factor at 
a given latitude is the secant of this latitude). This leads also 
to area deformation—for instance, Greenland looks as big 
as Africa, which is fourteen times larger—but it does have 
the property that loxodromes translate to straight lines.
 The main problem of producing such a map is deter-
mining the rule for this increase in spacing of parallels. Mer-
cator left nothing written about the method he used to cal-
culate this spacing increment. He does refer that the rule for 
creating the map is that the proportion between lengths of 
meridians and of parallels should be the same in the map as 
in the globe. This implies angles are not distorted (in other 

Figure 4.— A loxodrome making an angle of 60° with meridians Figure 5.— Approximation of a rhumb by arcs of great circles
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words, it is a conformal projection). However, it does not 
provide a practical method for drawing the actual map. 
 This has been a problem of cartography for many years, 
several theories having been presented. There was a recent 
breakthrough, though, that originated in a detailed analy-
sis of the errors in the original chart. We follow article [1] 
in describing this new approach. 
 First of all, one has to separate the calculation errors (in-
herent to the method) from errors due to the physical distor-
tion of the sheet on which the map was printed (article [1] was 
the first one to distinguish these two types of errors). The key 
to detecting the physical distortion was a figure on the bottom 
right of the map, called Organum directorium (see Figure 7).
 A graduated quarter circle with a mesh of meridians 
and parallels appears in this figure, along with the angles 
marked on the quarter circle. This means that we know what 
were the angles considered when making computations for 
the drawing of the parallels, and by comparing them to the 
actual angles and y-coordinates of the parallels on the map, 
we can ascertain what was the physical distortion the map 
suffered after printing, thus separating it from the errors due 
to calculations. As an illustration, we can see in the figure 
an angle , along with a y-coordinate , which is used to 
draw a parallel.
 Finally, a last question remains: after isolating the phys-
ical errors, what was the method used to draw the map? An 
answer that is simultaneously natural and ingenious consists 
of taking the property that the map should have and turn it 

into the method for drawing it. In other words: if the aim is 
that loxodromes should be straight lines, then consider one 
of these loxodromes, and make it a straight line! The (simpli-
fied) process is as follows: after drawing a graduated equator 
on a piece of paper, draw a straight line forming the given 
rhumb angle with the equator, and use a table of rhumbs to 
mark, on each longitude, the corresponding point on the 
rhumb line. This gives you y-coordinates for the parallels, 
which can then be drawn.
 For this we need a table of rhumbs, a sequence of pairs 
of longitudes and latitudes, something that Pedro Nunes 
proposed. The authors of [1] tested a few tables available in 
1569, and found that there was a remarkable match between 
the map and a table for the second rhumb (22,5°). This table 
used constant intervals of one degree of longitude, yielding 
differences in errors smaller than one fifth of a degree, when 
compared with the errors in Mercator’s map. 

conclusion

Our story started about five hundred years ago, with Pedro 
Nunes’ idea of a new curve on the globe, which would facilitate 
navigation, and his call for a map in which these curves would 
be straight lines. The map was created by Gerardus Mercator 
a few decades later, but the method of its making remained a 
mystery until our present days, only to be solved recently by 
Joaquim Gaspar and Henrique Leitão. And in this solution, Pe-
dro Nunes happened to also have a side role, by launching the 
idea (along with a method) of constructing tables of rhumbs. 

Figure 6.— A modern map using the 
Mercator projection (Stefan Kühn, 
Wikipedia).
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Figure 7.— Organum directorium from Mercator’s 1569 map, taken from [1].
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1 Introduction

The great advances in computational mathematics over the
last half century, driven by profound developments in nu-
merical methods along with remarkable progresses in the
field of high performance computing, are playing a major
role in the scientific and engineering innovation.

Partial differential equations arise in the mathematical
modelling of many physical, chemical and biological phe-
nomena in a wide and diverse range of subject areas such as
fluid dynamics, electromagnetism, material science, medi-
cal imaging. Very frequently is either impossible or imprac-
ticable to find closed form solutions to the equations under
consideration and it is crucial to obtain numerical approx-
imations to the unknown analytical solution.

When assigned with the task of solving numerically a
partial differential equation, the first question one faces is
tho choose an adequate method.

The demand for finding accurate numerical models for
physical phenomena around complex geometries are mak-
ing high order methods very attractive for practical appli-
cations. Among the possible choices, the discontinuous
Galerkin (DG) finite element method, which ensures geo-
metric flexibility and supports high order locally adapted
resolution, appears to offer most of the desired properties.

The DG finite element method appeared in the litera-
ture back to 1973 in [16], as a proposal to solve the steady-
state neutron transport equation. The first convergence
analysis results were presented in 1974, in [13] and improved
later for example in [12], [14] and [15]. The extension to non-
linear scalar conservation laws was achieved in late 1980’s
([4]). Important progresses, namely the development of
adaptive solution techniques and the extension to multidi-
mensional cases and to unstructured grids, took place in the
next two decades (see e.g. [5], [11]). Since the years 2000
there has been an explosion in activities and DG methods
become widely used for solving a large range of problems,
for example, electromagnetic wave’s propagation ([8]), or
fluid flow in porous media ([17]).

Being capable of producing highly accurate numeri-
cal solutions, DG methods gather many desirable features
over the finite differences, finite volume and finite element
methods, when used to derive spacial discretizations. The
widely used finite differences, on top of being simple, lead
to very efficient schemes in many problems. However they
are not suitable to handle complex geometries. The finite
volume method uses an element based approach and en-
sures geometric flexibility. Moreover it is locally conserva-
tive. The main drawback of the finite volume method is its
limitation for achieve high-order accuracy on general un-
structured grids. The need to solve geometrically complex
large scale problems with higher-order convergence, justi-
fies the huge interest in the flexibility offered by the finite
element schemes, which is the natural choice inmany prob-
lems. However, the basis functions are globally defined and
consequently it is not straightforward to deal for instance
with hanging nodes. While the mass matrix is sparse and
typically well conditioned, finding, for instance, a steady
state solution implies to solve a system that involves the
global mass matrix. In addition, the finite element method
is less natural when compared with finite volume method
to deal with conservation laws, where there is a flow in spe-
cific directions. Discontinuous Galerkin methods fulfill the
need of geometrical flexibility and locally adapted resolu-
tion. Some other features include local mass conservation,
possible definition on unstructured meshes, hp-adaptivity
with locally varying polynomial degrees.

There is likewise a wide variety of methods for the in-
tegration in time. For example, we can mention the fully
explicit leap-frogmethod ([1]), or the classes of implicit and
explicit Runge-Kutta type methods (e.g. [3],[10]), which re-
flect a method-of-lines approach with the time and space
separately discretized. Explicit time-stepping schemes are
computationally very effective. Nevertheless, those meth-
ods are only conditionally stable. If an explicit time integra-
tor is considered, the maximum time step size allowed is re-
latedwith the smallest elements of the spatialmesh. Locally
refined meshes often obstruct the efficiency for the simula-

1



Bulletin #37 October 2016 27 

tion of time-dependent phenomena, because of the strin-
gent stability constraint caused by the existence of some
small elements in the spatial mesh. This could be the case
when the problem involves modelling small structures with
complex shapes and consequently a veryfinemesh is needed
at some spatial locations. As an examplewemention theuse
of Maxwell’s equation to model the electromegnetic wave’s
propagation in the human retina described in [2] and [18].
Simulating the full complexity of the retina, in particular
taking into account the variation of the size and shape of
each structure, demands the use of a spatial mesh which
reflects that level of detail. This is remarkably limitative
for the choice of the time step in the case of explicit time-
stepping schemes. By taking smaller time-steps precisely
where the smallest elements are located, local time-stepping
methods ([9]) become a possible approach. Another inter-
esting choice, is to consider locally implicit time-schemes
([6]). Here we highlight another alternative, which is to
consider the DG method in time. In contrast to explicit
Runge-Kutta methods, the DG in time is unconditionally
stable ([7]). This idea suggests the use of DG methods in
a space-time approach, giving a framework for high-order
accurate methods. In this technique, time is considered as
an extra dimension and it is treated in a similar fashion as
the spatial coordinates.

The advantages of DGmethods for space, time or space-
time integration, include their flexibility on the choice of
meshes and thus their capacity to handle complicated ge-
ometries, their potential for error control andmesh adapta-
tion, their possible definition on unstructured meshes. The
possibility of parallel implementation attenuates the major
drawbacks which are high memory requirements and com-
putational cost.

In spite of the theoretical developments, which encour-
age the use of high order finite element methods, the range
of polynomial degrees used in finite element computations
for practical applications and in commercial codes is usu-
ally rather small. In many cases, this fact is due to com-
putational efficiency rather than any theoretical issue. The
search of efficient solvers for the linear systems originated
from theDGfinite element approach is nowadays a trend of
utmost importance.

Inwhat followswewill briefly discuss the formulation of
theDGfinite elementmethod for linearwave problems. We
will also summarise the theoretical convergence properties
to give an appreciation of what can be expected in terms of
accuracy of the schemes.

2 The continuous setting

Let Ω be an open, bounded, Lipschitz domain in ℝd, d ≥ 1,
and let T > 0 be a finite time. We consider the following

linear evolution problem: find u ∶ Ω × [0,T] → ℝ such
that

𝜕𝜕u
𝜕𝜕t

+ Au = f in Ω × (0,T],

u(., 0) = u0 in Ω, (1)

u = 0 on Γ− × (0,T],

where A is a first-order linear differential operator

Au = 𝛽𝛽 𝛽 𝛽u + 𝜎𝜎u,

𝛽𝛽 ∶ Ω → ℝd is a given Lispschitz convection field, 𝜎𝜎 ∶
Ω → ℝ is a bounded reaction term, f ∶ Ω × [0,T] → ℝ is
the source term, u0 ∶ Ω → ℝ is the initial datum, and Γ− is
the inflow part of the boundary defined as

Γ− = {x ∈ Γ ∶ −𝛽𝛽(x) 𝛽 n > 0},

with n denoting the outer normal unit vector to Γ. The out-
flow boundary, Γ+, is defined by Γ+ = Γ\Γ−. We make the
following hypothesis on the data

𝜎𝜎(x) − 1
2
div𝛽𝛽(x) ≥ 𝜇𝜇0 > 0 ∀x ∈ Ω.

Let us consider the space

V = {v ∈ L2(Ω) ∶ 𝛽𝛽 𝛽 𝛽v ∈ L2(Ω), v|Γ−
= 0},

endowed with the norm

‖v‖2
V = 𝜇𝜇0‖v‖2

L2(Ω) + ‖𝛽𝛽 𝛽 𝛽v‖2
L2(Ω).

Assuming that f ∈ C0([0,T], L2(Ω)) and u0 ∈ V , taking
the L2-inner product, from (1) we obtain the following vari-
ational problem: find u ∈ C0([0,T],V ) ∩ C1([0,T], L2(Ω))
such that, ∀v ∈ L2(Ω), ∀t ∈ (0,T],

(𝜕𝜕u
𝜕𝜕t

(t), v)L2(Ω) + (Au(t), v)L2(Ω) = (f (t), v)L2(Ω),

u(0) = u0.
(2)

Using the relation

(𝛽𝛽 𝛽 𝛽u + 𝜎𝜎u, u)L2(Ω) = (𝜎𝜎 − 1
2
div𝛽𝛽, u2)L2(Ω)

+ 1
2
((𝛽𝛽 𝛽 n)u, u)L2(Γ),

we can derive the following energy inequality, which ex-
presses the continuous dependence of the solution of (2) on
the data,

‖u(t)‖2
L2(Ω) + ∫

t

0
et−𝜏𝜏

∫Γ+

(𝛽𝛽(x) 𝛽 n(x))u(x, 𝜏𝜏)2 dx d𝜏𝜏

≤ et‖u0‖2
L2(Ω) + ∫

t

0
et−𝜏𝜏‖f (𝜏𝜏)‖2

L2(Ω) d𝜏𝜏, t ∈ [0,T].

2
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Figure 1.— Partition of the computational domain in one dimension

The proof of the uniqueness of solution follows from the
above inequality. Further results on the well-posedness of
(2), namely the existence of solution, can be found in [19].

3 The discrete setting

We introduce some key ideas behind the DG finite element
method in a simple case, considering the scalar wave equa-
tion

𝜕𝜕u
𝜕𝜕t

+ a𝜕𝜕u
𝜕𝜕x

= 0, x ∈ (0, 1) = Ω, t ∈ (0,T], (3)

with a > 0, subject to the initial condition u(x, 0) = u0(x)
and the inflow boundary condition u(0, t) = 0.

Assume that the computational domainΩ is partitioned
into K nonoverlapping elementsDk such that Ω = ∪kDk, as
illustrated in the Figure 1. On each elementDk, the solution
is approximated by polynomials of degree less than or equal
toN = Np − 1,

̃uk(x, t) =
Np

∑
n=1

̂ukn(t)𝜑𝜑n(x),

where 𝜑𝜑n, n = 1, … ,Np, form the local polynomial basis.
The global solution u(x, t) is then assumed to be approxi-
mated by the piecewise N order polynomials defined as the
direct sum of the K local polynomial solutions

u(x, t) ≃ ̃u(x, t) =
K

⨁
k=1

̃uk(x, t).

In order to deduce the method, we start by multiplying
equation (3) by test functions 𝜑𝜑n. Spatial integration by
parts over each element Dk yields

∫Dk
(

𝜕𝜕 ̃uk
𝜕𝜕t

𝜑𝜑n − a ̃uk
𝜕𝜕𝜑𝜑n

𝜕𝜕x ) dx = −[a ̃uk𝜑𝜑n]
xrk

xlk

= − ∫𝜕𝜕Dk

n ⋅ a ̃uk𝜑𝜑n dx, 1 ≤ n ≤ Np,

where n represents the local outward pointing normal. The
next step is to substitute in the resulting contour integral

the flux by a numerical flux (a ̃u)∗, which will be specified
later. Reversing the integration by parts yields

∫Dk
(

𝜕𝜕 ̃uk
𝜕𝜕t

𝜑𝜑n + a
𝜕𝜕 ̃uk
𝜕𝜕x

𝜑𝜑n) dx

= ∫𝜕𝜕Dk

n ⋅ (a ̃uk − (a ̃u)∗) 𝜑𝜑n dx, 1 ≤ n ≤ Np.

The approximate solution is allowed to be discontinu-
ous across elements boundaries. In this way, we introduce
the notation of average {{ũ}} = ̃u−+ ̃u+

2
and of the jumps of

the solution values across the interfaces of the elements,
[ũ] = ũ−− ̃u+, where the superscript ‵‵+" denotes the neigh-
bouring element and the superscript ‵‵ −" refers to the local
element. The coupling between elements is introduced via
the numerical flux

(a ̃u)∗ = {{a ̃u}} + a1 − 𝛼𝛼
2

n ⋅ [ ̃u], 0 ≤ 𝛼𝛼 ≤ 1.

If 𝛼𝛼 = 1 the numerical flux is called central flux being the
average of two solutions. The case 𝛼𝛼 = 0, corresponds to
the upwind flux which takes into account the direction of
the flux.

Figure 2 (see next page) shows the computed solution of
equation (3), considering a = 2, u0(x) = sin(𝜋𝜋x), at time
t = 0.1, obtained by means of the DG method with upwind
flux, for different values ofN and K.

The flexibility of DG methods allows us to easily change
basis functions. For instance, we could use Lagrange poly-
nomials or other polynomials satisfying a desired orthogo-
nality property. One possible choice is to consider the or-
thonormal basis

𝜑𝜑j(r) =
Pj(r)

√𝛾𝛾j
,

where Pj are the Legendre polynomials of order j and 𝛾𝛾j =
2

2j+1
. This basis can be computed through the recurrence

aj+1𝜑𝜑j+1(r) = r𝜑𝜑j(r) − aj𝜑𝜑j−1(r),

aj =
√

j2

(2j + 1)(2j − 1)
,

3
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Figure 2.— Numerical solution of the wave equation. Top left: N=1, K=10. Top right: N=1, K=20. 
Bottom left: N=1, K=40. Bottom right: N=4, K=10

with 𝜑𝜑0(r) = 1
√2

, 𝜑𝜑1(r) = √
3
2
r. The affine mapping

x(r) = xlk + 1 + r
2

(xrk − xlk),

relates x ∈ Dk with the reference variable r ∈ [−1, 1].
We now go back to the more general problem (1) in two

or three space dimensions. We will present the discrete set-
ting in both time and space based on DG in time-space dis-
cretizations. Wewill also present a result for the error anal-
ysis.

4 Semi-discretization in time

We start by decomposing the time interval I = (0,T] into
disjoint subintervals In = (tn−1, tn], where n = 1, … ,N,
0 = t0 < t1 < ⋯ < tN−1 < tN = T. We use the nota-
tion 𝜏𝜏n = tn − tn−1.

The approximate solution is a piecewise polynomial
with respect to time, locally defined on the space

Pk(In,V ) =

{w ∶ In → V ,w(t) =
k

∑
j=0

Wjtj, ∀t ∈ In,Wj ∈ V , ∀j}.

The space Pk(In, L2(Ω)) is defined analogously, with V re-
placed by L2(Ω). The jump of w𝜏𝜏 at tn is defined as

[w𝜏𝜏]n = w𝜏𝜏(t+n ) − w𝜏𝜏(tn),

where w𝜏𝜏(t+n ) = limt→t+n w𝜏𝜏(t). Using the known value
u𝜏𝜏(tn−1) from the previous time interval and u0 for n = 1,
the local problem on In reads: find u𝜏𝜏|In ∈ Pk(In,V ) such
that

∫In
( 𝜕𝜕u𝜏𝜏

𝜕𝜕t
+ Au𝜏𝜏, v𝜏𝜏)L2(Ω) dt + ([u𝜏𝜏]n−1, v𝜏𝜏(t+n−1))L2(Ω)

= Qn ((f , v𝜏𝜏)L2(Ω)) ,

∀v𝜏𝜏 ∈ Pk(In, L2(Ω)). The right-hand side is evaluated by
means of some numerical integration formula

Qn ((f , v𝜏𝜏)L2(Ω)) ≃ ∫In

(f , v𝜏𝜏)L2(Ω) dt.

5 Space discretization

Let 𝒯𝒯h be a shape-regular mesh of Ω which is assumed to
have a polygonal (d = 2) or polyhedral (d = 3) boundary.
By h we denote the mesh diameter. Let Vh be the space of
piecewise polynomials of order less or equal to r. The mesh

4
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Figure 3.— Legendre polynomials

edges or faces (cases d = 2 and d = 3, respectively) are col-
lected in the set ℱh, split into the set of the ones belonging
to the interior, ℱ int

h , and boundary, ℱ ext
h .

The discrete operator which defines the DG method in
time, Ah, defined for all v ∈ H1(Ω) ∪ Vh and wh ∈ Vh, is
given by

(Ahv,wh)L2(Ω) = ∑
T∈𝒯𝒯h

(𝜎𝜎v + 𝛽𝛽 𝛽 𝛽v,wh)L2(T)

+ ∑
F∈ℱ ext,inflow

h

((𝛽𝛽 𝛽 n)v,wh)L2(F)

− ∑
F∈ℱ int

h

((𝛽𝛽 𝛽 n)[v], {{wh}})L2(F)

+ ∑
F∈ℱ int

h

(
1
2

|𝛽𝛽 𝛽 n|[v], [wh])L2(F)
.

This operator verifies the following important properties.

• Consistency: Let Ph ∶ L2(Ω) → Vh be the L2-
orthogonal projector onto Vh. Then

Ahw = PhAw, ∀w ∈ H1(Ω).

• Discrete coercivity: Let us consider the mesh-

dependent norm

|||vh|||2 = 𝜇𝜇0‖v‖2
L2(Ω) + ∑

F∈ℱ ext
h

‖|𝛽𝛽 𝛽 n|1/2v‖2
L2(F)

+1
2 ∑

F∈ℱ int
h

‖|𝛽𝛽 𝛽 n|1/2[v]‖2
L2(F).

Then ∃C > 0 such that

C|||vh|||2 ≤ (Ahvh, vh)L2(Ω),

∀vh ∈ Vh.

6 Full space-time discretization

Putting all together, we now derive the fully discrete
method.

We consider the finite element space Vn
h resulting from

themesh𝒯𝒯 n
h which can change fromone time interval to the

next. The local problem in In reads: find u𝜏𝜏h|In ∈ Pk(In,Vn
h )

such that, for all v𝜏𝜏h ∈ Pk(In,Vn
h ),

∫In

(
𝜕𝜕u𝜏𝜏h

𝜕𝜕t
+ Ahu𝜏𝜏h, v𝜏𝜏h)L2(Ω) dt

+ ([u𝜏𝜏h]n−1, v𝜏𝜏h(t+n−1))L2(Ω)

= Qn ((f , v𝜏𝜏h)L2(Ω)) .

5
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This method, which was analysed in [7], is uncondition-
ally stable and convergent. The error bound in the follow-
ing result shows that the method is of arbitrary high order
in time and in space.

Theorem 1.— Let u be the exact solution of (2), which is
assumed to be enough regular, and let u𝜏𝜏h be the fully dis-
crete solution of the DG method. Assume that k ≥ 1 and
𝜏𝜏n ≤ 1, for all n = 1, … ,N. Then the following error bound
holds for allm = 1, … ,N,

‖u(tm) − u𝜏𝜏h(tm)‖2
L2(Ω) ≤

C((E0)2 + tm max
1≤n≤m {CT

n (u)𝜏𝜏2(k+2)
n + CS

n(u)h2r+1}
+C′

m(u)h2(r+1)) ,

with E0 = ‖Phu(0) − u𝜏𝜏h(0)‖L2(Ω),

CT
n (u) = |u|2

Ck+3( ̄In,L2(Ω)) + |u|2
Ck+2( ̄In,V ),

CS
n(u) = ‖u‖2

C1( ̄In,Hr+1(Ω))

and,

C′
m(u) = |u(tm)|2Hr+1(Ω).

The error bound point out not only the influence of the
mesh size but also the dependence on the choice of the de-
gree of the polynomials used in the construction of the fi-
nite element space, making possible to balance accuracy
and computational efficiency.

7 Outlook

The demand for modelling intricate systems often involv-
ing multiscales and multiphysics around complex geome-
tries has been a source of motivation for great progress in
the field of computational mathematics. High order meth-
ods for solving partial differential equations, such as finite
element methods or spectral methods, are attractive due to
the need of great accuracy on realistic models. Neverthe-
less a number of challenges still exist not only in the devel-
opment of new mathematical tools but also in translating
academic progresses into engineering practice.

There is a truly need of a formulation and analysis
of new multiscale, multiphysics, scalable, parallel efficient
methods for treating multiple time and spatial scales that
arise in modelling complex phenomena. The arising of new
methodsdemandsdevelopments in their analysis and inves-
tigators are engaged to seek results on the well-posedness
of the models, a priori and a posteriori error estimators, sta-
bility and convergence aspects. Another important issue
to address is reliability of computer predictions due to un-
certainty. Physical phenomena can rarely be modelled with
complete fidelity evenunder the best of circumstances, even

though they often support life-and-death decisions in dif-
ferent fields. The uncertainty may occur in all phases of
the predictive process, from model selection and choice of
the parameters to the observation data. Mathematicians
are driven forward to investigate uncertainty quantification
and error estimators.

In the particular topic of the present article, there are
still important questions to be addressed. First, the inves-
tigation of the theoretical aspects of the DG time-stepping
method, as the convergence properties, is far from being
closed. The existent literature does not encompasses all
models. The introduction of nonlinearities or the change
of the boundary conditions, often needed to model real ap-
plications, entail subtleties and often the analysis is not
straightforward from the existent results. Another chal-
lenge appears when applying theDG time-steppingmethod
in practice and we are faced with the task of solving big
linear systems at each time-step possible defined by ma-
trixes with large condition numbers. The drawback in the
computational cost can be tamed using efficient solvers.
There has been a great interest in investigating strategies
like multigrid methods, domain decomposition methods
and to develop robust and efficient preconditioners. An ad-
ditional aspect which deserves attention is how to deal effi-
cientlywith the quadrature rules, which involve sums on the
quadrature points, in the case of high order methods.
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The Willmore Conjecture: a Celebration of 
Mathematics
by Áurea Quintino*

Cum enim Mundi universi fabrica sit perfectissima, atque a Creatore sapientissimo absoluta, 
nihil omnino in mundo contingit, in quo non maximi minimive ratio quaepiam eluceat[1]

— Leonhard Euler

[1]  Leonhard Euler, Methodus inveniendi lineas curvas Maximi Minimive proprietate gaudentes, sive solutio problematis isoperimetrici 

latissimo sensu accepti, Lausannae & Genevae: Apud Marcum-Michaelem Bousquet & Socios (1744), p. 245.

* Centro de Matemática, Aplicações Fundamentais e Investigação Operacional da Faculdade de Ciências da Universidade de Lisboa

1 Introduction

Established in 1961, theOswaldVeblenPrize inGeometry is
an award granted by theAmericanMathematical Society in
recognition of a notable research memoir in geometry and
topology. Presented every three years, this year’s edition of
the prize distinguished the jointwork of the Brazilianmath-
ematician Fernando Codá Marques (Princeton University)
and the Portuguese mathematician André Neves (Imperial
College London), for their landmark achievement and ma-
jor contribution to the use of variational methods in differ-
ential geometry, with a special highlight for the proof of the
long-standing Willmore Conjecture.

Proposed in 1965 by the English geometer Thomas J.
Willmore, theWillmoreConjecture concerned the quest for
the torus with the lowest bending energy of all and pre-
dicted the equilibrium state of such curved surfaces. The
problem has resisted proof for many years and inspired
manymathematicians over time, borrowing ideas from sev-
eral distinct areas from partial differential equations to al-
gebraic geometry, conformal geometry, geometric measure
theory and minimal surfaces. Willmore died on February
20, 2005, seven years before Marques and Neves posted a
preprint of their 96-page proof on the arXiv, on February
27, 2012.

This article is dedicated to an overview of the history
of the conjecture and its proof, in celebration of pursuit
and achievement, through the works of Willmore, of Mar-
ques andNeves and of all those involved in this half century
quest, as well as those of their precursors.

2 Willmore energy and the Willmore
Conjecture

A central theme in Mathematics is the search for the op-
timal representative within a certain class of objects, of-
ten driven by the minimization of some energy, reflecting
what occurs in many physical processes. From the early
1960s, Thomas Willmore devoted particular attention to
the quest for the optimal immersion of a compact surface
in Euclidean 3-space regarding the minimization of some
natural energy motivated by questions on the elasticity of
membranes and the energetic cost associated with mem-
brane bending deformations.

We can characterize how much a membrane is bent at
a particular point on the membrane by means of the curva-
ture of the osculating circles of the planar curves obtained
as perpendicular cross sections through the point (see Fig-
ure 2). The curvature of these circles consists of the inverse
of their radii, with a positive or negative sign depending on
whether the membrane curves upwards or downwards, re-
spectively. The minimal and maximal values of the radii of
the osculating circles associated with a particular point on
the membrane define the principal curvatures, k1 and k2,
and, from these, the mean curvature, H = (k1 + k2)/2, and
the Gaussian curvature, K = k1k2, at the point.

In modern literature on the elasticity of membranes
(see, for example, [11] and [31]), a weighed sum a∫H2 +
b∫K, of the total squared mean curvature and the total
Gaussian curvature, is considered as the elastic bending en-
ergy of a membrane. Having in consideration the Gauss-

1
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Figure 1.—Thomas J. Willmore. 
Portrait by Christine Choa (1999)

Bonnet theorem, according towhich the total Gaussian cur-
vature is a topological invariant and, therefore, negligible
in deformations conserving the topological type, Willmore
defined

𝒲𝒲 𝒲 ∫Σ
H2dΣ

as the Willmore [bending] energy of a compact, oriented
[Riemannian] surface Σ [isometrically] immersed in ℝ3.

The Willmore energy had already made its appear-
ance early in the nineteenth century, through the works
of Marie-Sophie Germain [6] and Siméon Denis Poisson
[22] and their pioneering studies on elasticity and vibrat-
ing properties of thin plates. This energy had also appeared
in the 1920s, in the works of Wilhelm Blaschke [4] and Ger-
hard Thomsen [27], but their findings were forgotten and

only brought to light after the increased interest on the sub-
ject motivated by the work of Thomas Willmore.

A very interesting fact about theWillmore energy is that
it is scale-invariant: if one dilates the surface by any factor,
the Willmore energy remains the same. Think of a round
sphere in ℝ3 as an example: if one increases the radius, the
surface becomes flatter and its squared mean curvature H2

decreases, but, at the same time, its area gets larger, which
increases the value of the integral in 𝒲𝒲. One can show that
these two phenomena counterbalance each other on any
surface. In fact, the Willmore energy has the remarkable
property of being invariant under any conformal transfor-
mation of ℝ3, as established in the paper of White [32] and,
actually, already known to Blaschke and Thomsen.

In view of the scale-invariance of the Willmore energy,
the energy of round spheres coincides with the surface area
of the round sphere of radius 1: 4𝜋𝜋. Note, on the other
hand, that H2 − K 𝒲 1

4
(k1 − k2)2, so that H2 ≥ K, with

equality at umbilical points (k1 𝒲 k2). By the Gauss-Bonnet
theorem, it follows that

∫Σ
H2dΣ ≥ ∫Σ

KdΣ 𝒲 4𝜋𝜋(1 − g),

where g denotes the genus of the surface. In particular, for
surfaces of genus zero, we get ∫Σ H

2dΣ ≥ 4𝜋𝜋, with equality
only for the totally umbilical surfaces of ℝ3. We conclude
that round spheres are the minimizers of the Willmore
energy among all topological spheres. Willmore showed,
furthermore, that 4𝜋𝜋 is the absolute minimum of energy
among all compact surfaces in ℝ3:

Theorem 1 (Willmore [33, 35]).— Let Σ be a compact
surface in ℝ3. Then

𝒲𝒲 (Σ) ≥ 4𝜋𝜋,

with equality if and only if Σ is a round sphere.

Having found the compact surfaces with least possible
energy, and, with these, the energy minimizers within the
class of surfaces of genus zero, Willmore embarked on the
quest for the energy-minimizing shape among all topolog-
ical tori. It seems reasonable that no obvious candidate
stands out a priori. In order to develop some intuition
on the problem, Willmore considered a particular type of
torus: he fixed a circle of radiusR on a plane and considered
tubes Σr of constant radius r < R around that circle. When
r is very small, Σr is a very thin tube and so 𝒲𝒲 (Σr) is very
large. As we keep increasing the value of r, the hole of the
torus decreases and eventually disappears, for r 𝒲 R. Thus
the function r ↦ 𝒲𝒲 (Σr) must reach an absolute minimum
for some r ∈]0,R[. Willmore [33] computed this minimum
to be 2𝜋𝜋2 and showed that, up to scaling, the optimal torus
in this class has r 𝒲 1 and R 𝒲 √2. Willmore conjectured

2
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Figure 2.—Osculating circle to a surface at a point 
P on the surface

Figure 3 .—Torus of revolution with W=2π2

[2] Ibidem.

that this torus of revolution should minimize the Willmore
energy among all tori:

Willmore Conjecture

(Willmore [33]) Let Σ be a compact surface of genus one in ℝ3.
Then

𝒲𝒲 𝒲Σ𝒲 𝒲 2𝜋𝜋2.

3 On the quest for the optimal torus

The Willmore Conjecture has been verified in many special
cases. Willmore himself [34] and, independently, Katsuhiro
Shiohama and Ryoichi Takagi [25] proved it when the torus
is a tube of constant radius around an arbitrary space curve
in ℝ3. Over the decades, more and more classes of tori were
proven to have bending energy greater than or equal to 2𝜋𝜋2,
through the works of Rémi Langevin andHarold Rosenberg
[9], Bang-YenChen [5], Joel Langer andDavidSinger [8], Pe-
ter Li and Shing-Tung Yau [10], Sebastián Montiel and An-
tonio Ros [18, 23, 24] and Peter Topping [28, 29]. In 1991,
the biophysicists David Bensimon and Michael Mutz [3]
have experimentally verified the conjecture in membranes
of toroidal vesicles produced in laboratory. In 1993, Leon
Simon [26] established the existence of a torus that mini-
mizes the Willmore energy. An overview of partial results

can be found in [14]. We select the following, which, in par-
ticular, reduced the verification of theWillmore Conjecture
to embedded tori:

Theorem 2 (Li-Yau [10]).— Compact surfaces with self-
intersections have Willmore energy greater than or equal
to 8𝜋𝜋.

A key to the proof of the Willmore Conjecture was mov-
ing the problem from ℝ3 to the unit 3-sphere S3 ⊂ ℝ4, hav-
ing in mind that the two are conformally related by stereo-
graphic projection. The torus foundbyWillmore ismapped
onto the Clifford torus S1(

1
√2)×S1(

1
√2), which is a classical

example of a minimal surface in S3.
Minimal surfaces are defined variationally as the sta-

tionary configurations for the areafunctional, surfaces that
locally minimize the area. In general, these surfaces admit
ambient deformations that can decrease their area and are,
therefore, not (globally) area-minimizing.

Minimal surfaces were first considered by Joseph-Louis
Lagrange [7], in 1762, who raised the question of existence
of surfaces of least area among all those spanning a given
closed curve in Euclidean 3-space as the boundary. Ear-
lier, in a work published in 1744,[2] Leonhard Euler had al-
ready discussed minimizing properties of the surface now
known as the catenoid, although he only considered varia-
tions within a certain class of surfaces. The problem raised

Ibidem.
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by Lagrange became known as the Plateau’s Problem, refer-
ring to Joseph Antoine Ferdinand Plateau, who first exper-
imented with soap films [21].

A physical model of a minimal surface can be obtained
by dipping a wire frame into a soap solution. The result-
ing soap film is minimal in the sense that it always tries to
organize itself so that its surface area is as small as possi-
ble whilst spanning the wire contour. This minimal surface
area is, naturally, reached for the flat position,[3] which hap-
pens to be a position of vanishing mean curvature. This
does not come as a particular feature of this rather simple
example of minimal surface. In fact, the Euler-Lagrange
equation of the variational problem underlying minimal
surfaces turns out to be precisely the zero mean curvature
equation, as discovered by Jean Baptiste Meusnier [17].

With the characterization of minimal surfaces by iden-
tically vanishing mean curvature, the theory of minimal
submanifolds has been developed and extended to other
ambient geometries and ended up playing a crucial role in
the understanding of the Willmore energy.

On the sphere, the Willmore energy becomes area plus
the total squaredmean curvature: if 𝜋𝜋 𝜋 S3⧵{(0, 0, 0, 1)} →
ℝ3 denotes the stereographic projection, then

∫Σ
H2dΣ = ∫Σ̃

(1 + ̃H2)dΣ̃,

for ̃H themean curvature of Σ̃ 𝜋= 𝜋𝜋−1(Σ) ⊂ S3 (with respect
to the standard metric on S3). In particular, the Willmore
energy of a minimal surface in S3 coincides with its area.

Crucially, Marques and Neves reduced the quest for an
optimal embedding in S3 to the class of minimal embed-
dings in S3:

Theorem 3 (Marques-Neves [14]).— Let Σ ⊂ S3 be an
embedded closed surface with positive genus. Then there
exists an embedded closed minimal surface Σ̃ ⊂ S3 such
that 𝒲𝒲 (Σ) 𝒲 𝒲𝒲𝒲𝒲(Σ̃).

Next they established the Clifford torus as a sur-
face of least area among all minimal embeddings
of closed surfaces in S3 with genus (at least) one:

Theorem 4 (Marques-Neves [14]).— Let Σ ⊂ S3 be
an embedded closed minimal surface with positive genus.
Then 𝒲𝒲𝒲𝒲(Σ) 𝒲 2𝜋𝜋2, and equality holds if and only if Σ is
the Clifford torus, up to isometries of S3.

With Theorems 3 and 4, Marques andNeves established, in
particular, the following:

Theorem 5 (Marques-Neves [14]).— Let Σ ⊂ S3 be
an embedded compact surface with positive genus. Then
𝒲𝒲 (Σ) 𝒲 2𝜋𝜋2, and the equality holds if and only if Σ is the
Clifford torus, up to conformal transformations of S3.

With this, and in the light of Theorem 2, Fernando Codá
Marques and André Neves have proved the Willmore Con-
jecture:

Corollary 6.— The Willmore Conjecture holds.

Themilestone step achieved in Theorem 3 comes as an apli-
cation of theMin-max Theory developed by FrederickAlm-
gren [1] and Jon Pitts [20]. Driven by the problem of exis-
tence of minimal submanifolds of dimension higher than
2, Almgren introduced the notion of varifold and developed
a general scheme to produceminimalmanifolds in Rieman-
nian manifolds. The question of regularity of these objects
was later treated by Pitts, in the case of codimension one.
Their combined works established, remarkably, the exis-
tence of an embedded, closedminimal hypersurface for any

This is also the position in which the membrane is the most relaxed. In fact, minimal surfaces are examples of Willmore surfaces, surfaces that satisfy the
equation

ΔH + 2(H2 − K)H = 0,
which, in the particular case of compact surfaces, characterizes the stationary configurations for the Willmore functional (see, for example, [35]).

Unlike flat soap films, soap bubbles exist under a certain surface tension, in an equilibrium where slightly greater pressure inside the bubble is balanced by
the area-minimizing forces of the bubble itself. With their spherical shape, soap bubbles are area-minimizing surfaces under the constraint of volume enclosed.
These are surfaces of (non-zero) constant mean curvature and, therefore, examples of constrained Willmore surfaces, the generalization of Willmore surfaces that
arises when we restrict to infinitesimally conformal variations (for more details, see, for example, [30]).

4

Figure 4.—Joseph Louis Lagrange. Engraving by Robert Hart 
(ca. 1834-1837), from a bust in the Library of the Institute of 
France

[3]  This is also the position in which the membrane is the most relaxed. In fact, minimal surfaces are examples of Willmore 
surfaces, surfaces that satisfy the equation  which, in the particular case of compact surfaces, 
characterizes the stationary configurations for the Willmore functional (see, for example, [35]).

  Unlike flat soap films, soap bubbles exist under a certain surface tension, in an equilibrium where slightly greater pressure 
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Figure 5.—Fernando Codá Marques Figure 6.—André Neves

given n-dimensional compact Riemannian manifold, with
3 ≤ n ≤ 6, cf. [20].

As with many groundbreaking results in Mathematics,
the work of Marques and Neves has provided new insights
and suggested new approaches to other significant ques-
tions. Their contribution includes, in particular, two se-
quels of a similar spirit, namely, the proof of the Freedman-
He-Wang conjecture for links [2], jointly with IanAgol, and
the proof of Yau’s conjecture on the existence of infinitely
many minimal hypersurfaces in manifolds of positive Ricci
curvature [16] (see also [12, 13, 15, 19]).

4 The recipients of the 2016 Oswald
Veblen Prize in Geometry

Fernando Codá Marques was born in São Carlos, Brazil,
in 1979. He received a BS from the Federal University of

Alagoas and an MS from IMPA, both in 1999, and his PhD
from Cornell University in 2003. He became a Professor at
IMPA in 2010 and, four years later, a Professor at Princeton
University. In 2012, he was distinguished with the TWAS
(The World Academy of Sciences for the advancement of
science in developing countries) Prize in Mathematics, the
Ramanujan Prize and theUMALCA (UniónMatemática de
América Latina y el Caribe) Prize.

André Neves was born in Lisbon, Portugal, in 1975. He
received his first degree from Instituto Superior Técnico in
1999 and his PhD fromStanfordUniversity in 2005. He has
held positions at Princeton University from 2005 to 2009,
the year he moved to Imperial College London, where he
became a Professor in 2013. He received the Philip Lever-
hulme Prize in 2012, the LMSWhitehead Prize in 2013, the
Royal Society Wolfson Merit Award in 2015 and the New
Horizons Prize in Mathematics, also in 2015.

5

inside the bubble is balanced by the area-minimizing forces of the bubble itself. With their spherical shape, soap bubbles are 
area-minimizing surfaces under the constraint of volume enclosed. These are surfaces of (non-zero) constant mean curvature 
and, therefore, examples of constrained Willmore surfaces, the generalization of Willmore surfaces that arises when we restrict 
to infinitesimally conformal variations (for more details, see, for example, [30]).
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Figure 7.— Leonhard Euler. Portrait by Jakob 
Emanuel Handmann (1753)

Fernando Codá Marques and André Neves were awarded
the 2016 Oswald Veblen Prize in Geometry at the 122nd
Annual Meeting of the American Mathematical Society in
Seattle, Washington, on January 7, 2016.

”It is an honor and an immense pleasure to be a recipient, to-
gether with my friend André, of the prestigious Oswald Veblen
Prize in Geometry.

I am thankful to the committee for this recognition of our
work. I am grateful to my family, especially my parents, Severino
and Dilze, my wife Ana, and my siblings Gustavo and Clarissa. I
am sure that without their love and support I would not be here
today. I also look forward to meeting my baby son, Pedro, who is
joining us.

I thank also my late advisor, José Fernando Escobar (Chepe),
who was always kind and supportive of me, and Richard Schoen,
whose influence has been fundamental in my career. The year I
spent with Rick was decisive and helped shape my vision of what
is important in mathematics. I thank all my teachers, especially
Professor Manfredo do Carmo. His lessons inspired me to choose
the beautiful field of geometry. I am also grateful to Harold

Rosenberg for the many mathematical discussions and to my stu-
dents, who provide further motivation in my life. The collabora-
tion and friendship with André has been a constant source of joy
to me over the last ten years.

The study of minimal varieties is an old subject that began
with the work of Lagrange on the foundations of the calculus of
variations. The solution of the Plateau problem for mappings of
the disk (Douglas and Rado, 1930) and for rectifiable currents
(Federer and Fleming, 1960) are milestones of the field. But the
question of existence of closed minimal varieties in general com-
pact Riemannian manifolds is not a problem of minimization.
This inspired Almgren (1965) to develop a deep min-max theory
for the area functional. His work was improved by his PhD stu-
dent J. Pitts (1981), but remained largely untouched until the last
few years.

André and I were extremely delighted when we discovered
that this old theory would play a major role in the solution of the
Willmore conjecture. This required a change of perspective: in-
stead of trying to minimize the conformally invariant Willmore
functional, as originally proposed, we used conformal transfor-
mations to convert the problem into a question of minimizing the
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[4]   Notices of the American Mathemetical Society, Volume 63, Number 4 (April 2016), p. 430–431.
[5 ]   Ibidem. 

maximum of the area of certain five-parameter families of sur-
faces in the three-sphere. Our work was done mainly while we
were both visiting Stanford University at the end of 2011, and
the main breakthrough came when we realized how to prove such
families are topologically nontrivial. We were very amazed. A
few months later we wrote a paper with Ian Agol in which we used
similar ideas to solve a conjecture of Freedman, He, and Wang
on the Moebius energy of links. Then we turned our attention to
the general min-max theory and used it to prove Yau’s conjecture
about the existence of infinitely many minimal hypersurfaces in
the positive Ricci curvature setting. The ideas of Gromov and
a paper of Guth on multiparameter sweepouts were very influ-
ential. There have been several articles on min-max theory re-
cently, especially by young people, and this makes us very happy.
Major questions remain open, such as understanding the index,
topology, and multiplicity of these minimal varieties. We hope to
contribute further to the field.” [4] (Fernando Codá Marques)

”It is a great honor to receive the Oswald Veblen Prize in Ge-
ometry along with my dear friend Fernando.

Working and developing min-max theory together with Fer-
nando has been a tremendous experience: it started with an aca-
demic interest in conformal deformations of surfaces, but soon we
realized that we were discovering some new rich topology in the
space of all surfaces. Coupling that with principles of Morse the-
ory and ideas from minimal surfaces theory, we were able to an-
swer some long-standing open questions in geometry. Since its be-
ginnings, variational methods have had great influence in geom-
etry, and I am delighted that our work made some contributions
on that front. This is a beautiful subject, and I hope that its con-
tributions will keep increasing for many years to come.

I consider myself very fortunate to have had Richard Schoen
— one of the pioneers of geometric analysis — as my PhD advisor.
His mathematical work and sharp intuition have been a towering
influence on my research. I would also like to thank my collabo-
rators and friends, from whom I have undoubtedly learned a lot,
and my colleague Sir Simon Donaldson for all his support and en-
couragement throughout my career.

Finally, none of this would have been possible without the
constant love and unyielding support of my parents Nelsa and
Custódio, my wife Filipa, and our two adorable children, Eva and

Tomás. In one way or another, they have all made sacrifices for
the pursuit of my career.” [5] (André Neves)
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1 A brief introduction

After the notion of uniform hyperbolicity was coined in
the seventies by Smale [26], it became the paradigm of
chaotic dynamics. If, on the one hand, the local dynam-
ics of a uniformly hyperbolic diffeomorphism is simple and
conjugated to the one exhibited by linear saddles, on the
other hand the global dynamics presents an unpredictable
character due to sensibility to initial conditions, dense-
ness of periodic trajectories and orbits with transitive and
(ir)regular behavior. The geometric theory developed for
uniformly hyperbolic dynamics guarantees the existence
of local immersed submanifolds (called stable and unsta-
ble manifolds) that are invariant by the dynamics and that
constitute a crucial ingredient in the construction of finite
Markov partitions. In consequence, subshifts of finite type
can be used as combinatorial models for the dynamics and
the powerfull techniques and ideas from statisticalmechan-
ics extend to this context. The geometric and functional
analytic approaches (via construction of Markov partitions
and the description of the spectrum of transfer operators,
respectively) play a key role in the construction of physi-
cal, Sinai-Ruelle-Bowen and equilibrium measures and the
study of their statistical properties. We refer the interested
reader to e.g. [5, 24] for a more complete account.

The aim of this text is to survey and to be an invitation
to the use of topological methods in dynamics, as a valid
and handy alternative to the aforementioned geometric and
functional analytic approaches. The starting point is the
notion of specification proposed by Rufus Bowen which
consists of the ability of the dynamics to recreate with sharp
proximity true orbits fromany givennumber of finite pieces
of orbits (see e.g. [11]). The relationbetween shadowing and
specification, the description of the latter concept and its
extensions, and its importance as a tool in ergodic theory
will guide the exposition in the remaining sections. There is

evidence that these topological methods may be used to de-
scribe partial hyperbolic dynamics and dynamics of group
actions, contexts in which topological and functional ana-
lytic methods are still unavailable, contributing to one of
the most important leading research directions and chal-
lenges in dynamical systems.

2 Basics on topological dynamics

Throughout this article we assume thatM is a compact Rie-
mannian manifold. Let f be a continuous map onM. Some
of the main concerns of the characterization of the dynam-
ics from a topological viewpoint involve the description of
periodic and transitive behavior, and chaoticity. Let Ω(f ) ⊂
M be the set of non-wandering points of f , that is, the points
x ∈ M so that every open neighborhood of x intersects a
positive iterate of itself by the dynamics. A point x ∈ M is
periodic (of period n) if there exists n ∈ ℕ so that f n(x) = x.
Let Per(f ) denote the set of all periodic points of f . Recall
that f is called transitive if there exists a point x ∈ M so that
its orbit {f n(x) ∶ n ∈ ℕ} is dense inM, and it is called topo-
logically mixing if for any pair of open sets U ,V there exists
N ∈ ℕ so that f n(U) ∩V ≠ ∅ for every n ≥ N. An intricate
challenge that goes back to the sixties was to propose suit-
able mathematical notions of chaos. Historically, one refers
to chaotic dynamics the ones that exhibit at least one of the
following properties: sensitive dependence to initial condi-
tions, expansiveness, strong recurrence and mixing condi-
tions, shadowing, specification, exponential growth of pe-
riodic points or positive topological entropy (see e.g. [15]).

Our main interest here concerns chaotic dynamics in
the sense that pieces of true orbits or pseudo-orbits can be
well approximated by true orbits of the dynamical system.
The first notion that we shall consider is that of shadowing,
which we now describe. Given a metric spaceM, a continu-
ousmap f ∶ M → M and 𝛿𝛿 𝛿 0, a sequence of points (xn)n≥0

1
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is a 𝛿𝛿-pseudo-orbit if d(f (xn), xn+1) < 𝛿𝛿 for every n ≥ 0. We
say that [xi, ti]i∈ℤ is a (𝛿𝛿,T)-pseudo-orbit for a flow (Xt)t if
d(Xti(xi), xi+1) < 𝛿𝛿 for all i ∈ ℤ. A continuous map has
the shadowing property if for any 𝜀𝜀 𝜀 0 there exists 𝛿𝛿 𝜀 0
so that for any 𝛿𝛿-pseudo-orbit (xn)n≥0 there exists x ∈ M
satisfying d(f n(x), xn) < 𝜀𝜀 for every n ≥ 0. In the case of
homeomorphisms, pseudo-orbits and shadowingpoints are
defined for bothnegative andpositive iterates of the dynam-
ics. A continuous flow (Xt)t satisfies the shadowing property
if, for any 𝜀𝜀 𝜀 0 andT 𝜀 1 there exists 𝛿𝛿 𝛿 𝛿𝛿(𝜀𝜀,T) 𝜀 0 such
that for any (𝛿𝛿,T)-pseudo-orbit [xi, ti]i∈ℤ there is ̃x ∈ Λ and
a reparametrization 𝜏𝜏 ∈ R(𝜀𝜀) (cf. 1) such that

d(X𝜏𝜏𝜏t)( ̃x), x0 ⋆ t) < 𝜀𝜀, for every t ∈ ℝ.

where for t ∈ ℝ, x0 ⋆ t 𝛿 Xt−𝜎𝜎𝜏i)(xi) if 𝜎𝜎(i) ≤ t < 𝜎𝜎(i + 1).

3 Basics on ergodic theory

3.1 Invariant measures

The purpose of ergodic theory is to describe the asymp-
totic behavior of the orbits of ‘almost every point’ with re-
spect to relevant measures for the dynamics. Given a 𝜎𝜎-
algebra ℬ and a measurable map f on M, we say that a
probability measure 𝜇𝜇 is f -invariant if 𝜇𝜇(f−1(A)) 𝛿 𝜇𝜇(A)
for every A ∈ ℬ. We denote by ℳ1(f ) the space of f -
invariant probability measures. A set A ∈ ℬ is f -invariant
if 𝜇𝜇(f−1(A)△A) 𝛿 0. An invariant probability measure 𝜇𝜇
is ergodic if 𝜇𝜇(A) ∈ {0, 1} for every f -invariant set A. By er-
godic decomposition, the space ℳ1(f ) is the convex hull of
the space ℳe(f ) of f -invariant and ergodic probability mea-
sures (see e.g.[33]).

In what follows let 𝜇𝜇 be an f -invariant probability mea-
sure. Two pillars in ergodic theory are due to Poincaré
(1890), and to vonNeumannandBirkhoff (1931-1932). First,
if 𝜇𝜇(A) 𝜀 0 then Poincaré recurrence theorem asserts that
𝜇𝜇-almost every x ∈ A is recurrent: there exists n ≥ 1 so that
f n(x) ∈ A. Later, the ergodic theorems of von Neumann
and Birkhoff brought the ideas present in Boltzman ergodic
hypothesis in thermodynamics into the realm of dynami-
cal systems. Birkhoff’s ergodic theorem guarantees that if
𝜇𝜇 ∈ ℳ1(f ) is ergodic and 𝜙𝜙 ∈ L1(𝜇𝜇) then

1
n

n−1

∑
j=0

𝜙𝜙(f j(x)) ⟶ ∫ 𝜙𝜙 d𝜇𝜇 as n → ∞

for 𝜇𝜇-almost every x ∈ M and, thus, time averages of an ob-
servable for typical orbits coincide with the space average
with respect to the underlying measure. von Neuman er-
godic theorem guarantees the convergence of the previous
time averages for observables 𝜙𝜙 on the Hilbert space L2(𝜇𝜇).

3.2 Thermodynamic formalism

Someof the ideas of thermodynamic formalism,which aims
the selection of invariant measures and the study of their
statistical properties, where introduced from statistical me-
chanics into the realm of dynamical systems by pioneering
contributions of Sinai, Bowen and Ruelle in the late seven-
ties (see [11, 22] and references therein). Two particularly
important classes of invariant measures are the so called
equilibrium states and physical measures.

Given a potential 𝜙𝜙 ∈ C(M, ℝ) the topological pressure
Ptop(f , 𝜙𝜙) for f and 𝜙𝜙 can be defined by the variational prin-
ciple

Ptop(f , 𝜙𝜙) 𝛿𝜙𝜙𝜙{h𝜇𝜇(f ) + ∫ 𝜙𝜙 d𝜇𝜇𝜇 𝜇𝜇∈ℳ1(f )},

where h𝜇𝜇(f ) stands for the entropy of 𝜇𝜇 (see e.g. [33]). An
invariant probabilitymeasure 𝜇𝜇 is called an equilibrium state
for f with respect to 𝜙𝜙 if it attains the previous supremum.
If 𝜙𝜙 𝜙 0 the previous notion coincides with the topological
entropy htop(f )of f . If there exists a unique equilibriumstate
then it is necessarily ergodic and we shall denote it by 𝜇𝜇f ,𝜙𝜙.
An f -invariant probability measure 𝜇𝜇 is a physical measure if
its basin of attraction

B(𝜇𝜇)𝛿{x ∈ M𝜇 1
n

n−1

∑
j=0

𝛿𝛿f j𝜏x) → 𝜇𝜇 as n → +∞}

has positive Lebesgue measure. There are many exam-
ples where equilibrium and physical measures coincide and
are absolutely continuous with respect to some reference
measures with some weak Gibbs property. We say that a
probability measure 𝜈𝜈 is a weak Gibbs measure for f and 𝜙𝜙
if for 𝜈𝜈-almost every x there are constants (Kn)n≥1 so that
lim 𝜙𝜙𝜙n

1
n

logKn(x) 𝛿 0 and

K−1
n (x) ≤ 𝜈𝜈(B(x, n, 𝜖𝜖))

e−nP𝜏𝜙𝜙)+Sn𝜙𝜙𝜏x) ≤ Kn(x)

for every n ≥ 1, where Sn𝜙𝜙 𝛿 ∑n−1
j=0 𝜙𝜙 𝜙 f j and the dy-

namical ball B(x, n, 𝜖𝜖) is the set of points y ∈ M such that
d(f j(y), f j(x)) < 𝜀𝜀 for all 0 ≤ j ≤ n. We say that 𝜈𝜈 is a Gibbs
measure with respect to 𝜙𝜙 if there exists K 𝜀 0 such that the
previous property holds with Kn 𝛿 K (independent of n and
x).

4 Uniform hyperbolicity

A compact f -invariant set Λ ⊂ M is called uniformly hy-
perbolic for f if there exists a Df -invariant splitting TΛM 𝛿
Es ⊕ Eu and constants C 𝜀 0 and 𝜆𝜆 ∈ (0, 1) so that

‖Dfn(x) ∣Esx ‖≤C𝜆𝜆n & ‖Df−n(x) ∣Eux ‖≤C𝜆𝜆n

for every x ∈ Λ and n ≥ 1. We say that f is an
Anosov diffeomorphism if M is a uniformly hyperbolic
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set. Given a hyperbolic set Λ, a point x ∈ Λ and
𝜀𝜀 𝜀 0, the 𝜀𝜀-stable set of x is defined by Ws

𝜀𝜀(x) =
{y ∈ M ∶ d(f n(y), f n(x)) ≤ 𝜀𝜀 for all n ≥ 0} . Similarly, the
set Wu

𝜀𝜀 (x) of points y ∈ M so that d(f−n(y), f−n(x)) ≤ 𝜀𝜀 for
all n ≥ 0 is the 𝜀𝜀-unstable set of x. Given a hyperbolic set Λ
for f there exists a uniform 𝜀𝜀 𝜀 0 so that the stable and un-
stable setsWs

𝜀𝜀(x) andWu
𝜀𝜀 (x) areCr submanifolds tangent to

Esx and Eux, respectively, for every x ∈ Λ. These are referred,
respectively, as the local stable and local unstable manifolds at
x of size 𝜀𝜀. Uniform hyperbolicity is a C1-open condition
in the space Diff1(M) of C1-diffeomorphisms. We refer the
reader to [24] for proofs.

Uniform hyperbolicity for flows is defined similarly.
Given a C1-flow (Xt)t on M and a compact (Xt)t-invariant
set Λ ⊆ M, we say that Λ is a hyperbolic set if there ex-
ists a DXt-invariant and continuous splitting TΛM = E− ⊕
E0 ⊕ E+ (E0 subspace generated by the vector field X(⋅) =
dXt(⋅)
dt

∣t=0) and constants C 𝜀 0 and 0 < 𝜃𝜃 < 1 such that

(i) ‖DXt(x) ∣E−
x

‖≤C𝜃𝜃t, and

(ii) ‖(DXt(x) ∣E+
x
)−1‖≤C𝜃𝜃t

for every x ∈ M and t ≥ 0. The flow (Xt)t is Anosov if the
whole manifold M is a hyperbolic set. We refer the reader
to [24] for more details on uniform hyperbolicity.

5 The notions: specification and gluing
orbit properties

5.1 Discrete-time dynamics

A continuous map f on M satisfies the specification prop-
erty if for any 𝜀𝜀 𝜀 0 there exists an integer N = N(𝜀𝜀) ≥
1 such that: for every k ≥ 1, any points x1, … , xk, and
any sequence of positive integers n1, … , nk and p1, … , pk
with pi ≥ N(𝜀𝜀) there exists a point x in M such that
d(f j(x), f j(x1)) ≤ 𝜀𝜀 for every 0 ≤ j ≤ n1 and

d(f j+n1+p1+⋯+ni−1+pi−1(x) , f j(xi)) ≤ 𝜀𝜀

for every 2 ≤ i ≤ k and 0 ≤ j ≤ ni.
Among the maps that satisfy specification property one

should refer topologically mixing subshifts of finite type,
topologically mixing Anosov diffeomorphisms and topo-
logically mixing continuous interval maps (see [10] and ref-
erences therein). More flexible concepts include somemea-
sure theoretical non-uniform versions of the specification
property that proved to hold for invariantmeasures with no
zero Lyapunov exponents (cf. [18, 32]).

In the sequel we introduce two extensions of the notion
of specification. Let 𝜇𝜇 be an f -invariant probability mea-
sure. We say that (f , 𝜇𝜇) satisfies the non-uniform specification
property if there exists 𝛿𝛿 𝜀 0 so that for 𝜇𝜇-a.e. x and every
0 < 𝜀𝜀 < 𝛿𝛿 there exists p(x, n, 𝜀𝜀) ∈ 𝜀 satisfying:

(i) lim𝜀𝜀𝜀0 lim supn𝜀∞
1
n
p(x, n, 𝜀𝜀) = 0

(ii) given x1, … , xk in afull 𝜇𝜇-measure set and positive in-
tegers n1, … , nk, if pi ≥ p(xi, ni, 𝜀𝜀) then there exists
z that 𝜀𝜀-shadows the orbits of each xi during ni iter-
ates with a time lag of p(xi, ni, 𝜀𝜀) in between f ni(xi) and
xi+1; that is, z ∈ B(x1, n1, 𝜀𝜀) and

f n1+p1+⋯+ni−1+pi−1(z) ∈ B(xi, ni, 𝜀𝜀)

for every 2 ≤ i ≤ k.

We say a continuousmap f onM satisfies the gluing orbit
property if for any 𝜀𝜀 𝜀 0 there exists an integerN = N(𝜀𝜀) ≥
1 so that for any points x1, x2, … , xk ∈ M and positive in-
tegers n1, … , nk, there are p1, … , pk ≤ N(𝜀𝜀) and x ∈ M so
that d(f j(x), f j(x1)) ≤ 𝜀𝜀 for every 0 ≤ j ≤ n1 and

d(f j+n1+p1+⋯+ni−1+pi−1(x) , f j(xi)) ≤ 𝜀𝜀

for every 2 ≤ i ≤ k and 0 ≤ j ≤ ni. The latter property is
satisfied e.g. by irrational rotations, which are far fromhav-
ing anymixing property and it is sometimes referred also as
a transitive specification property [8, 34]. Similar flavored
notions of linkability and closeability were introduced by
Gelfert and Kwietniak [14]. We refer the reader to [17] and
references therein for a more exhaustive description of the
state of the art.

5.2 Continuous-time dynamics

In opposition to the discrete-time setting, the mixing prop-
erties of continuous-time dynamical systems are harder to
analyze. For instance, while for uniformly hyperbolic dif-
feomorphisms every Hölder continuous potential admits a
unique equilibrium state, which is a Gibbs measure and
mixes exponentially fast, not all hyperbolic flows have ex-
ponential mixing (see e.g. [5]). Moreover, not all hyperbolic
flows have the specification property, which is an indicator
that a suitable notion should be more flexible to hold for a
larger class of dynamics. Recall a continuous flow (Xt)t∈ℝ
has the specification property on Λ ⊂ M if for any 𝜖𝜖 𝜀 0 there
exists a T = T(𝜖𝜖) 𝜀 0 such that: given any finite colection 𝜏𝜏
of intervals Ii = [ai, bi] (i = 1…m) of the real line satisfying
ai+1 − bi ≥ T(𝜖𝜖) for every i and every map P ∶ ⋃Ii∈𝜏𝜏 Ii → Λ
such that Xt2(P(t1)) = Xt1(P(t2)) for any t1, t2 ∈ Ii there ex-
ists x ∈ Λ so that d(Xt(x), P(t)) < 𝜖𝜖 for all t ∈ ⋃i Ii.

In continuous-time setting the shadowing property of
the finite pieces of orbits should reflect the speed at which
different points travel in their trajectories. For that reason
let ℛ be the set of all increasing homeomorphisms 𝜏𝜏∶ 𝜏 →
𝜏 so that 𝜏𝜏(0) = 0 and, given 𝜀𝜀 𝜀 0, set

ℛ(𝜀𝜀)={𝜏𝜏∈ℛ∶|
𝜏𝜏(t)−𝜏𝜏(s)

t − s
−1| < 𝜀𝜀, s ≠ t∈𝜏}. (1)

We say that a continuous flow (Xt)t has the reparametrized
gluing property if for any 𝜀𝜀 𝜀 0 there exists K = K(𝜀𝜀) ∈

3
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ℝ+ such that for any points x0, x1, … , xk ∈ M and times
t0, t1, … , tk ≥ 0 there are p0, p1, … , pk−1 ≤ K(𝜀𝜀𝜀, a
reparametrization 𝜏𝜏 ∈ 𝜏(𝜀𝜀𝜀 and a point y ∈ M so that

d(X𝜏𝜏𝜏t)(y𝜀𝜀,Xt(x0𝜀𝜀 < 𝜀𝜀 𝜀t ∈ [0, t0]

and

d(X𝜏𝜏𝜏t+∑i−1
j=0 pj+tj)(y𝜀,Xt(xi𝜀𝜀 < 𝜀𝜀 𝜀t ∈ [0, ti]

for every 1 ≤ i ≤ k. If, in addition, the point y
can be chosen periodic we say that (Xt𝜀t satisfies the pe-
riodic reparametrized gluing orbit property. Criteria for
(semi)flows to satisfy gluing orbit properties can be found
in [8, 10].

6 Specification and gluing orbit
properties: some consequences

In this section we shall focus on the analysis of continuous-
time dynamics (since proofs are technically more demand-
ing and results are in many cases harder to find in the liter-
ature) and on the comparison between continuous and dis-
crete time dynamics.

6.1 Topological aspects

The space of homeomorphisms are often described in terms
of topological classes, where we say that the homeomor-
phisms f and g are topologically conjugate if there exists a
homeomorphism h so that f ∘ h = h ∘ g. Hence, the dy-
namics of homeomorphisms in the same topological class
is the same up to a continuous change of coordinates. Sim-
ilarly, flows are usually classified up to topological equiv-
alence, that is, homeomorphisms that preserve orbits and
their orientation but not necessarily the speed of the trajec-
tories. If, on the one hand, it is not hard to check that the
specification and the gluing orbit property are topological
invariants, on the other hand topological equivalence may
fail to preserve the gluing orbit properties for flows since
thesemay affect the kindof reparametrizations that are con-
sidered at the shadowing process.

The strong contrast between discrete and continuous
time dynamics is also present in the relation between shad-
owing and specification. While topologically mixing ex-
pansive continuous maps on compact metric spaces with
shadowing property satisfy the specification property, this
may not hold even for very simple Anosov flows. Moreover,
minimal flows on 𝕋𝕋 2 satisfy gluing orbit properties but fail
to be topologically mixing. See [1, 8] for more details. Nev-
ertheless, flows with the reparametrized gluing orbit prop-
erty satisfy some ‘weak mixing’ conditions [8]. More pre-
cisely:

Theorem 1.— If (Xt𝜀t satisfies the reparametrized glu-
ing orbit property then (Xt𝜀t has positive lower frequency
𝜏𝜏(B1,B2𝜀 of visits to balls B1,B2 of radius 𝜀𝜀 given by

lim inf
t→+∞

1
t
Leb({s ∈ [0, t] ∶ B1 ∩ X−s(B2𝜀 ≠ ∅}𝜀

is strictly positive. Moreover, for all balls B1,B2 of radius 𝜀𝜀
centered at points with closed orbits there existsC > 0 such
that 𝜏𝜏(B1,B2𝜀 ≥ C𝜀𝜀.

We also note that if the flow (Xt𝜀t is expansive then the
topological entropy is bounded by the exponential growth
rate of periodic orbits, a result which also holds in the con-
text of semigroups of expanding maps (cf. [8, 12]).

6.2 Space of invariant measures

The push-forward f♯ acting on the space of probability mea-
sures in M is defined by (f♯𝜇𝜇𝜀(A𝜀 = 𝜇𝜇(f−1(A𝜀𝜀 for every
A ∈ ℬ. This map inherits some of the the topological char-
acteristics of the original dynamics. First, if f has a specifi-
cation property then so does f♯ and these are equivalent in
the context of continuous interval maps (see e.g. [21]). Sec-
ond, the simplex of invariant measures for maps with spec-
ification is the Poulsen simplex (see [25, 17]). Given a con-
tinuous flow (Xt𝜀t wedenote by ℳ1((Xt𝜀t𝜀 the space of (Xt𝜀t-
invariant probabilities. In [8] one could recover part of the
“richness” for the simplex of invariant probability measures
for dynamics with gluing orbit properties. More precisely,

Theorem 2.— If (Xt𝜀t satisfies theperiodic reparametrized
gluing orbit property then periodic measures are dense in
ℳ1((Xt𝜀t𝜀, and the set of ergodic measures forms a residual
subset of ℳ1((Xt𝜀t𝜀.

As continuous flows with shadowing and a dense set of
periodic orbits satisfy the reparametrized gluing orbit prop-
erty (cf. [7]) we obtain the following consequence:

Corollary 3.— Assume (Xt𝜀t is a continuous and volume
preserving flow. If (Xt𝜀t satisfies the periodic shadowing
property and the periodic points are dense in M then pe-
riodic measures are dense in ℳ1((Xt𝜀t𝜀.

6.3 Large deviations.

In the early nineties, L.-S. Young [35] addressed the ques-
tion of the velocity of convergence of ergodic averages on
Birkhoff’s ergodic theorem in the case of Gibbs measures.
Here, given a potential 𝜙𝜙 ∶ M → ℝ and a probability 𝜇𝜇,
we say that 𝜇𝜇 is weak Gibbs with respect to 𝜙𝜙, with constant
P𝜇𝜇 ∈ ℝ, if for any 𝜀𝜀 > 0 there exists Kt(𝜀𝜀𝜀 (depending only
on 𝜀𝜀 and on the time t) so that limt→∞

1
t

logKt(𝜀𝜀𝜀 = 0 and

1
Kt(𝜀𝜀𝜀

≤
𝜇𝜇(B(x, t, 𝜀𝜀𝜀𝜀

exp [ ∫ t
0 𝜙𝜙(Xs(x𝜀𝜀ds − tP𝜇𝜇]

≤ Kt(𝜀𝜀𝜀
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for 𝜇𝜇-almost every x ∈ M and every t ≥ 0. A continuous
observable 𝜓𝜓 𝜓 M → ℝ is called of tempered variation if
there is 𝛿𝛿 𝛿 0 such that limt→∞

1
t
𝛾𝛾𝛾𝜓𝜓𝛾 t𝛾 𝛿𝛿𝛿 𝛿 0, where

𝛾𝛾𝛾𝜓𝜓𝛾 t𝛾 𝛿𝛿𝛿𝛿 𝛿𝛿𝛿
y∈B(x,t,𝛿𝛿𝛿 |∫

t

0
𝜓𝜓𝛾Xs𝛾x𝛿𝛿 − 𝜓𝜓𝛾Xs𝛾y𝛿𝛿ds|.

Gluingorbit propertieswerefirst introduced in [10]with the
motivation of obtaining large deviations principles for all
hyperbolic flows:

Theorem 4.— Assume the semiflow 𝛾Xt𝛿t≥0 satisfies the
gluing orbit property, 𝜙𝜙 is a bounded potential with tem-
pered variation and 𝜇𝜇 is a weak Gibbs probability with re-
spect to𝜙𝜙. If a < b and𝜓𝜓 𝜓 M → ℝ is a boundedobservable
with tempered variation then

lim inf
t→∞

1
t

log 𝜇𝜇(
1
t ∫

t

0
𝜓𝜓 𝜓 Xs𝛾⋅𝛿ds ∈ 𝛾a𝛾 b𝛿)

≥ − inf {P𝜇𝜇 − h𝜈𝜈𝛾X1𝛿 − ∫ 𝜙𝜙 d𝜈𝜈}𝛾

where the infimum is taken over all 𝛾Xt𝛿t-invariant proba-
bility measures 𝜈𝜈 so that ∫ 𝜓𝜓 d𝜈𝜈 ∈ 𝛾a𝛾 b𝛿. If, in addition, M
is compact and 𝜓𝜓 𝜓 M → ℝ is continuous then

lim 𝛿𝛿𝛿
t→∞

1
t

log 𝜇𝜇(
1
t ∫

t

0
𝜓𝜓 𝜓 Xs𝛾⋅𝛿ds ∈ [a𝛾 b])

≤ − inf {P𝜇𝜇 − h𝜈𝜈𝛾X1𝛿 − ∫ 𝜙𝜙 d𝜈𝜈}𝛾

where the infimum is taken over all 𝛾Xt𝛿t-invariant proba-
bility measures 𝜈𝜈 so that ∫ 𝜓𝜓 d𝜈𝜈 ∈ [a𝛾 b].

A surprising connection between large derivations and
multifractal analysis (cf. Subsection 6.4 below) allows to
use the large deviations estimates to study the size of the
level sets and irregular set in the multifractal decomposi-
tion [9].

6.4 Some other aspects

For shortness, in what follows we give a more direct and in-
formal presentation of other important characterizations of
dynamics with some gluing orbit property and their use as
an important tool.

A characterization for uniform hyperbolicity

The relation between specification, gluing and uniform hy-
perbolicity among smooth dynamics is well understood. If
the specification propertyholds in aC1-open neighborhood
of diffeomorphisms or vector fields then these are Anosov
[23, 4]. Similarly any C1-open subset of diffeomorphisms
(resp. vector fields) with the gluing orbit property is formed
by transitiveAnosov diffeomorphisms (resp. Anosov flows)
[34, 10]. So, from the C1-robust viewpoint, uniform hyper-
bolicity, specification and the gluing orbit properties coin-
cide. The picture is radically different beyond the scope of

uniform hyperbolicity. Indeed, specification is rare even
among partially hyperbolic diffeomorphisms [27, 28].

Thermodynamic formalism

Bowen [11] proved that expansive homeomorphisms with
specification have a unique equilibrium state with respect
to all continuous potentials with tempered variation. More
recently, Climenhaga and Thompson extended Bowen’s ap-
proach to deal with dynamical systems where the set of
points with obstructions to either specification or expan-
siveness do not carry full topological pressure (we refer the
reader to [13] for a precise formulation and applications).
More recently, Pavlov [19] showed that expansivemaps with
non-uniform specificationmay havemore than one equilib-
rium state.

Multifractal formalism

The general idea of multifractal analysis, that can be traced
back to Besicovitch, is to decompose the phase space in sub-
sets of points which have a similar dynamical behavior and
to describe the size of each of such subsets from the dimen-
sional or topological viewpoint. Given a continuous map f
onM and 𝜙𝜙 𝜓 M → ℝ continuous, decompose

M 𝛿 ⋃
𝛼𝛼∈𝛼

M𝛼𝛼 ∪ I𝜙𝜙𝛾f 𝛿

where M𝛼𝛼 𝛿 {x ∈ M 𝜓 limn
1
n
Sn𝜙𝜙𝛾x𝛿 𝛿 𝛼𝛼𝛼 are level sets of

convergence for Birkhoff averages and the irregular set I𝜙𝜙𝛾f 𝛿
is the set of points for which the Birkhoff averages for 𝜙𝜙 do
not converge. The irregular set for continuous observables
and maps with specification is either empty or carries full
topological entropy. Moreover, the topological pressure of
level sets can be characterized by the supremum for invari-
ant measures supported on them (see [31] and references
therein). A much harder situation is to describe the topo-
logical entropy of saturated sets. Given a subset K ⊂ ℳ1𝛾f 𝛿
of f -invariant probability measures, a saturated set in M is
the subset GK ⊂ M of points x ∈ M whose accumulation
points VT𝛾x𝛿, in the weak∗ topology, of the empirical mea-
sures

ℰn𝛾x𝛿 𝜓𝛿 1
n

n−1

∑
i=0

𝛿𝛿Ti(x𝛿

coincides with the prescribed subset K of invariant proba-
bility measures. Saturated sets can be used to describe con-
vergence properties of Birkhoff averages with respect to ev-
ery continuous observable. Clearly VT𝛾x𝛿 is a singleton if
and only if the Birkhoff averages of every continuous ob-
servable are convergent at x. Some extensions of the origi-
nal notion of specification can be used to estimate the topo-
logical pressure of saturated sets for some non-uniformly
hyperbolic maps [20, 29, 30].

5
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7 A final invitation: some open questions

The use of topological methods in ergodic theory is nowa-
days a very active area of research. We will finish this short
article with some open questions as an invitation for the
reader to explore the underlying ideas presented here.

1. The relation between specification and the gluing orbit
property is still not fully understood. Given the previous
discussion it is natural to ask whether there exists a Baire
residual subset ℛ of the space of C1-diffeomorphisms with
the gluing orbit property so that every topologically mixing
diffeomorphism f ∈ ℛ satisfies the specification property.

2. Regarding the thermodynamic formalism of maps dis-
playing some weak form of specification, it is natural to ask
if an expansive map f with the gluing orbit property has a
unique equilibrium state for every regular (e.g. Hölder con-
tinuous) potential. Are the related transfer operators quasi-
compact on the Banach space of Hölder continuous observ-
ables? See [5] for definition of transfer operators. Simi-
lar question can be posed for flows with the reparametrized
gluing orbit property.

3. The non-wandering set of a uniformly hyperbolic diffeo-
morphism can be decomposed in a finite number of pieces
on which the dynamics acts as a subshift of finite type and
each piece, up to an iterate of the dynamics, satisfies the
specification property. On the converse direction, if f is a
continuous expansive map with the gluing orbit property
does there existN ≥ 1 and a disjoint unionM = ⋃1≤i≤N Λi

of compact sets so that f (Λi) = Λi+1 for all 1 ≤ i ≤ N (with
the convention that ΛN+1 = Λ1) and the iterate fN ∶ Λi →
Λi has the specification property? If so, which extra infor-
mation can be given on each of the ‘basic’ pieces Λi?

4. The relation between specification and uniform hyper-
bolicity is well established (recall Subsection 6.4). However,
much less is known on the relation between these topolog-
ical concepts with the measure theoretical notions of non-
uniform specification. Assume 𝒰𝒰 is a C1 open set of tran-
sitive diffeomorphisms on M so that all g-invariant mea-
sures satisfy the non-uniform specification property, for all
g ∈ 𝒰𝒰. Is 𝒰𝒰 formed by maps with some gluing orbit prop-
erty? We believe the C1-robustness assumption should be
crucial above.

5. The multifractal analysis of time averages for flows
is much harder than for maps even when assuming the
reparametrized gluing orbit property. In comparison with
the discrete time setting, the difficulty relies on the fact that
the reparametrization depends on the points that are being
shadowed. Nevertheless we expect that if (Xt)t is a continu-
ous flow with the reparametrized gluing orbit property and
the Birkhoff irregular set of a continuous potential is non-
empty then it should carry full topological entropy.

6. Geometric Lorenz attractors are among the simpler
flows where regular orbits accumulate on singular orbits
(see e.g. [2]). The coexistence of singular and regular
orbits brings much complexity to the dynamics and im-
ply, in particular, the absence of weak forms of shadow-
ing for most geometric Lorenz attractors [16, 3]. In view of
some criteria for non-uniform specification properties [10]
it is natural to ask whether geometric Lorenz attractors en-
joy a reparametrized gluing orbit property with respect to
reparametrizationswith a logarithmic singularityat the ori-
gin. This can be thought as a step in the direction of estab-
lishing a thermodynamic formalism for geometric Lorenz
attractors.

7. Finally, the underlying ideas of the property of specifi-
cation are expected to be applied in far more general sit-
uations. This property was proved to hold for C0 semi-
groups on Banach spaces, including solutions of the hyper-
bolic heat equation and Black-Scholes equation (see e.g. [6]
and references therein). Since most results addressed here
require compactness as a crucial ingredient it is a challenge
to understand up to which extent the ideas arising from
multifractal formalism can extend to the context of partial
differential equations and/or operators on infinite dimen-
sional ambient spaces.
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International Conference on Semigroups and Automata (CSA 2016)
Celebrating the 60th Birthdays of Jorge Almeida 
and Gracinda Gomes

Mário Branco* and Pedro V. Silva**

The International Conference on Semigroups and Automata (CSA 
2016) was held in The Faculty of Sciences of the University of Lis-
boa, from the 20th to the 24th June 2016. CIM assumed the 
role of host institution.
 This conference was organized with the purpose of cele-
brating the 60th birthdays of Professors Jorge Almeida (Univ. 
Porto) and Gracinda Gomes (Univ. Lisboa) for their extraor-
dinary role over the years in the development of semigroup 
theory, in Portugal and abroad. Recognition of their work 
by the international community contributed decisively to 
achieve a record number of 117 participants for a semigroup 
conference and to the high quality of the program.
 Some financial support was available for students and 
young researchers, which were encouraged to participate. 
The program included 19 invited talks and 33 contributed 

* FCUL/CEMAT
** FCUP/CMUP

talks. They illustrated recent trends of semigroup theory, 
and connections to automata theory and many other are-
as: category theory, combinatorics, computational algebra, 
dynamical systems, geometry, group theory, logic, operator 
theory, probability theory, ring theory, topology. The detailed 
program and the slides of many talks can be found on 

http://ciencias.ulisboa.pt/en/conferencia/csa-2016.
We present next some basic information:

Scientific Committee: Karl Auinger, Peter Cameron, 
Volker Diekert, John Fountain, Mark Lawson, Stuart Mar-
golis, John Meakin, Jean-Eric Pin, Benjamin Steinberg, 
Mikhail Volkov.

Organizing Committee: Mário Branco, Alfredo Costa, 
Manuel Delgado, Vítor Hugo Fernandes, António Malheiro, 
Ana Moura, Catarina Santa-Clara, Pedro Silva.
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Invited speakers: João Araújo, Karl Auinger, José Car-
los Costa, Volker Diekert, Ruy Exel, Victoria Gould, Robert 
Gray, Mark Kambites, Ganna Kudryavtseva, Mark Lawson, 
Markus Lohrey, Volodymyr Mazorchuk, Jean-Eric Pin, John 
Rhodes, Emanuele Rodaro, Anne Schilling, Benjamin Stein-
berg, Mária Szendrei, Marc Zeitoun.

Sponsors: CIM, CEMAT, CMA (with NOVA.ID.FCT), 
CMUC, CMUP, FCT (with COMPETE, QREN, UE), FCT-
UNL, FCUL, UP.
We include some comments from two members of the Sci-
entific Committee which are experts in both semigroup and 
automata theory:
Jean-Eric Pin (CNRS/Univ. Paris-Diderot): “(. . .) Thanks 
to the efforts of a mixed team from Porto and Lisbon, the 
conference was perfectly organised and both the scientific 
and the social aspects were a great success. The conference 
attracted about 120 people from all over the world. The pro-
gramme covered most of the major current research topic 

on semigroups and automata.
 “The high quality of the scientific programme and the 
birthday celebrations of our colleagues made this confer-
ence a unique moment in the history of semigroup theory.”

Mikhail Volkov (Ural Federal Univ.): “CSA 2016 was a clear 
scientific success. As a member of the Scientific Commit-
tee I had been involved in the process of selecting invited 
speakers and contributed talks, and the presentations held 
at the conference confirmed that the selection had been done 
properly. The conference was very representative in many 
senses: first, all leading groups in semigroup theory were 
involved, second, all major directions of the theory and its 
applications to various parts of mathematics and computer 
science were shown, and last but not least, both renowned 
specialists and young researchers were given the opportu-
nity to present their achievements. (. . .)”
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The conference Recent trends in Differential Equations held in 
Aveiro (Portugal) from 27 to 29 June, 2016, celebrated the 
75th birthday of Professor Arrigo Cellina from the Univer-
sity Milano-Bicocca, Italy and the 60th birthday of Professor 
Alberto Bressan from Penn State University, USA.
 Organized by the Functional Analysis and Applications 
group of the Center for Research and Development in Mathe-
matics and Applications (CIDMA), and hosted by the Depart-
ment of Mathematics of the University of Aveiro, the conference 
brought together mathematicians engaged in research on 
Differential Equations, Differential Inclusions and Set Val-
ued Maps, Calculus of Variations, Control Theory and Appli-
cations. All these are areas where Professors Arrigo Cellina 
and Alberto Bressan have both made major contributions.
 Several participants presented their most recent results 
and illustrated recent trends in these areas. The conference 
was particularly addressed to young researchers and Portu-
guese and foreign PhD students, who had the opportunity to 
meet with world-renown mathematicians and start collabo-
rations in these research areas. There were 5 Keynote talks of 
50 minutes each, 15 Invited talks (of 30 minutes long) and 15 
Contributed talks (of 20 minutes long), all of them of high 
scientific level.
 The opening session was held in the auditorium of the 
Rectorate of the University of Aveiro, in the presence of Pro-
fessor Manuel Antonio Assunção, Rector of the University 
of Aveiro; Professor José Francisco Rodrigues, President of 
the CIM (International Center for Mathematics), Professor 
Luís Filipe Pinheiro de Castro, Scientific Coordinator of CI-
DMA, and Prof. João Manuel da Silva Santos, Director of 
the Department of Mathematics. Afterwards, the conference 
was hosted in the Department of Mathematics and held in 
plenary session (the Keynote and the Invited talks) and par-
allel sessions (the Contributed talks).
 The Keynote talks were given by Zvi Artstein from Weiz-
mann Institute of Science in Rehovot (Israel), Alberto Bressan 
from Penn State University (USA), Gianni Dal Maso from the 
International Schol for Advanced studies (SISSA) in Trieste 
(Italy), Héctor J. Sussmann from Rutgers University (USA), 
and Richard Vinter from Imperial College in London (UK).
 The Invited talks were given by professors Andrea Bac-

ciotti (Polytechnic of Turin, Italy), Ugo Boscain (Ecole Poly-
technique, Palaiseau Cedex France), Fabian Flores-Bazan 
(University of Concepcion, Chile), Rinaldo M. Colombo (Uni-
versity of Brescia, Italy), Graziano Crasta (Sapienza Università 
di Roma, Italy), Elsa Maria Marchini (Politecnico di Milano, 
Italy), Carlo Mariconda (Universita degli Studi di Padova, Ita-
ly), Manuel Monteiro Marques (University of Lisbon), Marco 
Mazzola (University Pierre et Marie Curie, Paris VI, France), 
Antonio Ornelas (University of Evora, Portugal), Michele 
Palladino (Penn State University, USA), Franco Rampazzo 
(University of Padova, Italy), Wen Shen (Penn State Univer-
sity, USA), Susana Terracini (University of Torino, Italy), and 
Giulia Treu (University of Padova, Italy).
 The high scientific level of the conference has been en-
sured by the prestige of the two celebrated mathematicians, 
by the prestige of the Keynote and Invited speakers, as well 
as, by the high level of all contributions of the participants. 
In this occasion, the organizers took advantage of the best 
facilities offered by the university campus in Aveiro, pro-
viding a pleasant and fruitful environment. This was pos-
sible also thanks to the partial support from the Portuguese 
Foundation for Science and Technology (FCT) and the support 
received from CIM, here gratefully acknowledged.

Arrigo Cellina
Born in Varese (Italy) at 3 August 1941, graduated in Phys-
ics at the University of Milan in 1965. In 1968 he obtained 
the title of Doctor of Philosophy (Ph.D.) in Mathematics at 
the University of Maryland. In 1969 he obtained the Libera 
Docenza in Mathematical Analysis. He taught as a Lectur-
er and Assistant Professor at the University of Perugia and 
then at the University of Florence.
 After one year on leave at the University of Paris IX, in 
1974 he took service as Extraordinary Professor at the Univer-
sity of Padua. In 1979 he moved to S.I.S.S.A. (Trieste), where 
he served as Coordinator of the Sector of Functional Analy-
sis and Applications and as Deputy Director of S.I.S.S.A. 
 In the Fall of 1997 he took service at the University of 
Milan, and the following year, at the University of Milano-
Bicocca, where he was coordinator of the Doctoral program 
in Mathematics. 
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In the fall of 2011 he was placed on leave as tenured profes-
sor. He continues to teach as an unpaid professor from 2011 
to date, teaching courses of Higher Analysis and Calculus 
of Variations.
 He has taught at various times at the University of 
Southern California Los Angeles and in Santa Barbara; He 
has been visiting professor at several institutions, includ-
ing the universities of Paris, Montpellier and Limoges, the 
Courant Institute of Mathematical Sciences (NYU) and 
M.S.R.I. Berkeley. He was President of the Scientific Foun-
dation C.I.M.E. and member of the Scientific Committee of 
CIM (1996-2000). 
 He is the author of more than a hundred mathemati-
cal publications and of a classical monograph on differen-
tial inclusions (with J.P.Aubin), published in the prestigious 
Springer’s series on Grundlehren der Mathematischen Wis-
senschaften. He also edited the books Methods of Noncon-
vex Analysis and Optimal Shape Design published within 
Springer’s series Lecture Notes in Mathematics / C.I.M.E. Foun-
dation Subseries.

Alberto Bressan
Born in Venice at 15 June 1956, graduated in Mathematics 
in Padova in 1978, with a thesis on linear control processes, 
supervised by Roberto Conti. From February 1979 to Janu-
ary 1980 he had a C.N.R. research fellowship at University 
of Florence. He obtained the Ph.D. in Mathematics at the 
University of Colorado, Boulder, in 1982. He worked as Re-
searcher at the University of Padova (Italy) from 1982 to 
1986, Associate Professor at University of Colorado, Boul-
der (USA) from 1986 to 1991, Professor at the International 

School for Advanced Studies (SISSA) in Trieste, Italy, from 
1991 to 2003. In 2003, he moved to Penn State University to 
assume a full professorship there — a position he still holds.
In 2002 he was a Plenary speaker at the International Con-
gress of Mathematicians, Beijing, 2002. In 2006 he was 
awarded the Antonio Feltrinelli prize for Mathematics, Me-
chanics and Applications of the Accademia Nazionale dei 
Lincei, Rome; in 2007 he won the Analysis of Partial Differen-
tial Equations prize of the Society for Industrial and Applied 
Mathematics, Phoenix (with Stefano Bianchini); in 2008 he 
was awarded the M. Bôcher Memorial Prize of the American 
Mathematical Society, San Diego. He was appointed to the 
Eberly Family Chair in Mathematics at Penn State in August 
2008. In 2010 he received the Luigi and Wanda Amerio prize 
of the Accademia di Scienze e Lettere, Istituto Lombardo, 
Milan. In 2011 he became Member of the Royal Norwegian 
Society of Sciences and Letters, Trondheim, and Member 
of the Accademia di Scienze e Lettere, Istituto Lombardo, 
Milan, and was awarded the Gaetano Fichera prize for math-
ematical analysis by the Unione Matematica Italiana.
 The research of Alberto Bressan covers several areas, 
including: Hyperbolic conservation laws and nonlinear 
wave equations; Modeling and optimization of traffic flow 
on networks; Optimal control, non-cooperative games, and 
applications to economics and finance; PDE models of con-
trolled biological growth; Differential inclusions, dynamic 
blocking problems; Impulsive control of Lagrangian systems 
by means of active constraints. 
 He is author of three books, 8 book chapters, various 
lecture notes, and more than 170 research papers in inter-
national journals.

Arrigo Cellina Alberto Bressan




