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Graphs of polyhedra and the
theorem of Steinitz
by António Guedes de Oliveira*

The theorem of Steinitz characterizes in simple terms 
the graphs of the polyhedra. In fact, the characteristic 
properties of such graphs, according to the theorem, are 
not only simple but “very natural”, in that they occur in 
various different contexts. As a consequence, for exam-
ple, polyhedra and typical polyhedral constructions can 
be used for finding rectangles that can be decomposed 
in non-congruent squares (see Figure 1). The extraordi-
nary theorem behind this relation is due to Steinitz and 
is the main topic of the present paper.
 Steinitz’s theorem was first published in a scientific 
encyclopaedia, in 1922 [16], and later, in 1934, in a book 
[17], after Steinitz’s death. It was ignored for a long time, 
but after “being discovered” its importance never ceased 
to increase and it is the starting point for active research 
even to our days. In the middle of the last century, two 
very important books were published in Polytope The-
ory. The first one, by Alexander D. Alexandrov, which 
was published in Russian in 1950 and in German, under 
the title “Konvexe Polyeder” [1], in 1958, does not men-
tion this theorem. The second one, by Branko Grünbaum, 

“Convex Polytopes”, published for the first time in 1967 
(and dedicated exactly to the “memory of the extraordi-
nary geometer Ernst Steinitz”), considers this theorem 
as the “most important and the deepest of the known 
results about polyhedra” [9, p. 235].
 Polyhedra are polytopes of dimension 3 and poly-
gons are polytopes of dimension 2; a polytope of dimen-
sion 1 is an edge and a polytope of dimension 0 is a ver-
tex. Every polytope of dimension greater than 1 has a 
related graph, formed by its edges and vertices. Yet, for 
dimensions greater than 3, we do not know which graphs 
arise, and which do not, as the graph of a polytope. The 
quest for properties that would characterize these graphs, 

in the line of Steinitz’s theorem but for any dimension 
greater than 3, has been in fact a long and important line 
of research.
 This paper was written as an invitation: we invite the 
reader, a student, perhaps, to visit an old but very vivid 
area of research, of which we are happy to present some 
glimpses, including of a few personal contributions.

*  CMUP and University of Porto [The drawings were made with Mathematica™ by the author]

Figure 1.— Decomposition of a rectangle in
non-congruent squares
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 Before stating and commenting this theorem, let us 
introduce some basic notions that are perhaps not famil-
iar to the reader.

Generalities

Given a non-empty finite set  and given a set

,

we say that  is a graph, the elements of  being the 
vertices of  and the elements of  the edges of . We 
write  for  and call  and  the vertices 
incident with . If we are given a set  disjoint from  
and an injective function , 
we also consider  as a graph by naturally identify-
ing  with .
 For example, given a polygon or a polyhedron, the 
vertices and the edges of the polygon, or of the polyhe-
dron, form obviously a graph, for which the vertices are 
points (in the plane or in space), the edges are line seg-
ments and incidence is inclusion.
 For another example, we may consider the follow-
ing graph  underlying the decomposition presented 
in Fig. 1, which we call the graph of the decomposition, 
where the vertices are line segments and the edges are 
rectangles:

• the vertices of  are the maximal horizontal 
segments that contain the sides of the 

squares of the decomposition. Note that 
these segments, together with the maximal 
vertical segments defined similarly, determine 
completely the decomposition;

• the edges are the squares of the decomposition 
and the rectangle being decomposed.

• any of these squares, as well as the full 
rectangle, has two sides contained in two 
horizontal segments; as an edge, these are the 
vertices incident with it.

Every graph  may be represented geometrically 
in the plane by another graph , where  is a 
set of points in the plane in bijection  with  and  is 
a set of Jordan arcs in the plane in bijection  with , in 
such a way that, for every ,  connects 

 to . We say that  is plane — in which case we 
say that  is planar — if, given any two edges (two arcs, 
hence) , if  then either  for 
a vertex  (incident with  and ) or . See 
Figure 3 for an example. In general, we call topological 
graph to a graph obtained as  above, either in the plane, 
in the sphere, in the torus, etc. Similarly to plane graphs, 
we may have then spheric graphs or toroidal graphs. In 
particular, spheric graphs are planar and plane graphs can 
be represented in the sphere. To see this, in one direc-
tion, consider the stereographic projection of the spheric 

[1]  By a face we mean one of the connected components of the complement in the sphere of the union of the 
edges. The same notion applies to the torus, for example, or to the plane, where (exactly) one of the regions 
is unbounded.

Figure 3.—Planarity of the graph of a polyhedron (P)Figure 2.—A polyhedron — P
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graph, taking as pole of projection a point interior to a 
face[1] (see Figure 3). The other direction works similarly.
 The graphs of the polygons, in the precise sense de-
fined above, are obviously plane, and the edges are even 
straight line segments. It is easy to see that the graphs 
of the polyhedra can be represented as spheric graphs 
and hence are planar (again, see Figure 3). Finally, it can 
be proved [7] that the graph of the decomposition of a 
rectangle is also planar. In Figure 5 we can see the plane 
graph drawn over the decomposition.
 A path in a graph  is a sequence of pairwise 
distinct vertices of , , such that 

 are edges of . The endpoints are 
 and  and  is said to connect them. A cycle is defined 

like a path, except that . In both cases, , the num-
ber of edges, is the length.
 We say that  is connected (or 1-connected) if there 
is a path connecting any two different vertices  and  . It 
is 2-connected if, given a vertex  and two vertices  and 

, different from each other and from , there is a path 
that does not contain  connecting  to . In other words, 

 is 2-connected if, for every , the graph  ob-
tained from  by excluding  from  and by delet-
ing all edges incident with  from  is still connected. 
In general, it is -connected if, for every ,  is 

-connected. In Figure 4 we show different exam-
ples of connectivity.
 For an example of a non-planar graph, consider the 
last graph of Figure 4, usually called . In fact, if we 
suppose that the graph can be represented in a sphere, 
since we need a cycle to close a face and there are no cy-
cles in the graph with length less than 4, and since every 
edge belongs exactly to the boundary of two faces, we 

see that the number of faces is at most half the number 
of edges. So, we must have 6 vertices, 9 edges and at most 
4 faces. But this is in contradiction with Euler’s formula.
 We note that the plane graph drawn in Figure 5 over 
the decomposition of the rectangle is also a representa-
tion of the graph of the polyhedron of Figure 2. The 
same graph appears in black in Figure 3. But whereas 
the unbounded face is adjacent to 4 edges in the graph 
of Figure 3, in the graph of Figure 5 it is adjacent to 3 
edges. But it is important to note that the edges adjacent 
to any face in one representation correspond exactly to 
the edges adjacent to a face in the other representation. 
In fact, by an important theorem of Whitney, a cycle  is 
the boundary of a face in any representation in the plane 
(or in a sphere) if and only if the graph obtained from  
by removing the edges of  is connected.
 It is not difficult to see that this particular graph is 
3-connected: although it can be disconnected by delet-
ing the 3 marked vertices (and the incident edges), it can-
not be disconnected by deleting only 2 vertices. The same 
happens with the graphs of all the polyhedra, according 
to the theorem that is central in this paper: they are all 
3-connected.

Theorem of Steinitz.—The graph of every polyhedron 
is planar and 3-connected. Conversely, any graph with 
more than 3 vertices that is both planar and 3-connected 
is the graph of a polyhedron.

We will come back to Steinitz’s theorem. Before, let us 
consider briefly the connection between the theorem of 
Steinitz and the decomposition of rectangles. Our plan 
is to state afterwards this theorem, to “explain” things 

Figure 5.—Graph of the decomposition of a 
rectangle

Figure 4.—Connected graph that is not 2-connected, 2-connected 
graph that is not 3-connected and 3-connected graph that is neither 
planar nor 4-connected
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when they can be easily “explained” (although we do 
not prove them … ) and to present some more modern 
consequences of the theorem and of its various, modern 
or not so modern, proofs.

Decomposition of a rectanGle in 
non-conGruent squares

The rectangle in Figure 1 is “almost a square”, in that its 
dimensions are . But it is not a true square, and 
for a long time no one knew whether a square could be 
decomposed in squares pairwise non-congruent squares. 
In an attempt to solve this question, four students of the 
Trinity College, Cambridge, Roland Brooks, Cedric 
Smith, Arthur Stone e William Tutte [7], defined and 
studied the graph of a decomposition. They not only 
presented perfect squares, as they called the squares that 
can be decomposed in pairwise non-congruent squares, 
but proved that there are infinitely many different (non-
similar) perfect squares.
 They proved that the graph of a decomposition is 
always planar, as we have seen in our example. At the 
same time, they noted they could see this graph as the 
diagram of an electric circuit (see Figure 6), where ver-
tices represent junctions, edges represent wires with re-
sistors of unitary resistance or, in a unique case, a power 
source, and where the Kirchhoff’s current and voltage 
laws hold true.
 In fact, in such a circuit, on the one hand, the sum 
of the currents that enter a junction or vertex (the sum 
of the sides of the squares above the maximal horizon-
tal segment that is the vertex) must equal the sum of the 
currents that leave the junction, or the sum of the sides 

of the squares below the vertex. On the other hand, con-
sidering any face and the upmost and downmost verti-
ces and the two different paths between them, the sum 
of the sides of the squares that are the edges of one path 
is of course equal to the sum of the sides of the squares 
that are the edges of the other path. Then, the theorem 
of Kirchhoff implies that, up to the total voltage  of the 
circuit, the values of all currents and voltages are uniquely 
determined.
 This gave them the means to start to construct de-
compositions, just by considering suitable graphs and by 

“electrifying” them. We consider an example based in the 
graph of the polyhedron  of Figure 2, namely as rep-
resented in Figure 5, but “electrified”.
 In Figure 6, we have five independent “current equa-
tions”, , , ,  
e  and four “voltage equations” (remember 
the resistances are unitary): ,  , 

 e . Hence, in the solution of the 
system,

Making , the width of the rectangle, we find the 
sides of the squares of the decomposition of Figure 1.
 This construction was based in the graph of a poly-
hedron. What happens if the starting graph is not 3-con-
nected?
 In Figure 7 we consider a decomposed square and 
its graph. The graph is not 3-connected, since it can be 
disconnected by deleting the two marked vertices. But 

Figure 7.—Non-simple decomposition of a square and connectivity of the graphFigure 6.—Electric circuit associated 
with the graph of the decomposition of a 
rectangle
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these vertices are the horizontal sides of a “subrectangle” 
(in the southwest corner of the decomposition) and it can 
be proven that the fact that, when deleted, they discon-
nect the graph means, in terms of the decomposition, that 
the subrectangle is already decomposed in mutual non-
congruent squares. So, we have a “subdecomposition” 
of the decomposition. If we do not want this to happen, 
we must consider only planar, 3-connected graphs, that 
is, graphs of polyhedra.
 We have used this idea [10], by considering eight par-
ticular polyhedra with six vertices, from which all the 30 
possible decompositions with eleven or less squares can 
be obtained. Note that the way we draw the graph in the 
plane (or the choice of the “electrified” edge, more pre-
cisely) may determine different decomposed rectangles. 
For example, the electrification in Figure 8 of the graph 
represented in Figure 3 leads to the solution

,

which determines the new decomposition (see Figure 8).

theorems of steinitz anD tutte

Let us consider a little further the “easy part” of the theo-
rem of Steinitz, that claims that the graph of a polyhedron 
is always planar and 3-connected. We start exactly by the 
connectivity, but having in mind a theorem by Balinski 
[3], which claims that the graph of any -polytope is 

-connected, for any , and the author’s proof.
 Consider a polyhedron , two vertices,  and  , 
and let us “tell why” deleting these points and the inci-

dent edges from the graph  of  does not result in a 
disconnected graph. Note that, in the general case, the 
number of deleted points should be .
 So, let ,  and  be three points different from 
the deleted points so that  is adjacent to one of them, 

 , say, and let  be the (hyper)plane defined by  and all 
the deleted points. For simplicity sake, we only consid-
er here the case where  and  are not in . Then, obvi-
ously, either they are in the same side of  or they are in 
opposite sides. We want to connect  and  by a path 
that does not include either  or .
 In the first case, note that either  is at maximal dis-
tance to  or there exists a vertex, adjacent to , at greater 
distance: just consider the (hyper)plane  parallel to  
through  and the part of  (a new polytope with ver-
tex ) that lies in the side of  opposite to . This means 
that  is connected to a vertex  at maximal distance 
to , and so is , to . If they are equal, we are done. If 
not, they both lye in a face of , and can be connected 
in the graph of , which is also a polytope.
 In the second case, note that there are two vertices 
adjacent to , in the opposite side of  of each other. By 
the previous argument, one of these vertices can be con-
nected to  and the other one to , and so these points 
are connected through .
 Figure 2 suggests a proof of planarity of , the graph 
of a polytope . Yet, the edges of the resulting graph are 
not straight. If we project directly  from a point  over 
a plane , then the image of the (straight) edges of  are 
still straight and the image of the faces are still convex. 
But the projected graph may cease to be plane.
 To avoid this, choose a face  of , let  be the 

Figure 8.—Same polyhedron, different decomposition
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plane that contains  and consider  near to the cen-
troid  of , on the side of  opposite to . Since the 
intersection of two convex sets is still convex, the inter-
section of any line with  is either a point or a line seg-
ment. Suppose that the projection of two different edges 
 and  intersect. Then the line , for a given point  

in , also contains a point  of , and the intersection 
of line  with  is the segment . But this cannot 
happen if  is sufficiently close to : neither when, say, 

 nor when , since, in the latter case,  
must cross the plane containing  outside this face.
 Before proceeding further, we state this result, that 
was originally obtained independently of Steinitz’s theo-
rem.

Theorem of Tutte.—Every planar, 3-connected 
graph can be represented in the plane with straight 
edges and convex faces.

Note that we consider in this theorem two different 
conditions. For example, it can be easily proved that the 
graph represented with straight edges in the middle of 
Figure 4 cannot be drawn in the plane with convex faces.
 Let us go back to the first property. Can every pla-
nar graph be represented in the plane with straight edges? 
The answer, yes, goes back to 1936 and is due to Wagner, 
and new proofs were published independently in 1948, 
by Fáry, and in 1951, by Stein. We also consider this 
question here, with one more issue in mind: we want 
straight edges and, at the same time, vertices with small 

integer coordinates in a suitable coordinate system — or, 
in other words, with good resolution. The construction 
we describe here is due to W. Schnyder [15], and is illus-
trated in Figure 10 and in Figure 11.
 Given any plane graph , by possibly adding some 
new edges (that can be withdrawn afterwords), we obtain 
a new graph in which every face, including the unbound-
ed face, is a triangle. Let us suppose that the vertices of 
the unbounded face are coloured with three colours, say, 
red, green and blue. Schnyder shows that we may orient 
and colour with the same three colours all the edges of 
such a graph, in such a way that from every vertex if we 

“follow” the edges of a given colour, we reach the corre-
sponding coloured vertex.
 Now, for each vertex, consider the three “coloured 
paths” and the partition of the bounded faces into three 
classes determined by these paths. In Figure 10, for ex-
ample, there are 15 bounded faces. On the right-hand 
side, for vertex 1, the three classes have 5, 9 and 1 faces, 
respectively, where the class with 5 faces [resp. 9, 1] is not 
bounded by the “red path” [resp., “green path”, “blue 
path”]. We obtain consecutively for all the vertices

 
  and .

Schnyder proves that if we take a triangle in the plane, 
consider the vertices with these triplets as suitable mul-
tiples of the barycentric coordinates and draw straight 
edges, then we obtain a plane representation of the initial 

Figure 9.—Illustration of Balinki’s theorem and proof
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graph with integer (barycentric) coordinates not greater 
than the number of faces. In fact, with a slight modifica-
tion of this method, Schnyder proves that the coordinates 
can be limited to integers between 0 and , where  
is the number of vertices of the graph. In Figure 11, we 
use these coordinates on the left-hand side, and on the 
right-hand side we show without any further explana-
tion a geodesic embedding of the graph, that is also based 
in Schnyder’s construction (see the book of S. Felsner 
[8] for more information on this subject). Note that, as 
in our example, by Schnyder’s method we may end up 
with non-convex faces, after deletion of the edges added 
at the beginning for obtaining triangular faces. But this 
can be circumvented [8].
 Tutte’s original proof is different, and the ideas be-
hind it are still used nowadays [12]. They correspond to 
the following “physical” idea: suppose that, in a board, 
we fix nails corresponding to the vertices of the unbound-
ed face of the graph, and that we connect with rubber 
bands the vertices that are incident with any edge, by 
tying up the bands on points corresponding to vertices 
as indicated by the graph. When we leave such a system 
to itself, if in equilibrium there is some tension in all the 
rubber bands, then the edges will be straight and the faces 
will be convex.
 More precisely, Tutte proves the following. Con-
sider, for each vertex  not belonging to the unbounded 

face, with neighbours[2] say, , the (vectorial) 
equation

.

In this equation,  is an elasticity coefficient that we can 
neglect by now, by considering it constant, and  rep-
resents the constant coordinate vector of the point  if 

 is a “nailed” vertex of the unbounded face, or a pair 
of variables, otherwise. Then, the system of equations 
has a unique solution, that represents the coordinates 
of the vertices of a plane graph associated with the ini-
tial graph, for which the faces are convex provided the 
edges are straight.

4. on the “Difficult part” of the 
theorem of steinitz

All the known proofs of the fact that every planar 3-con-
nected graph with more than 3 vertices is the graph of 
a polyhedron present (naturally … )  some difficulties. 
We will mention here some of these proofs, but in quite 
a vague way. For more precision and even for a correct 
attribution of results to authors, please see Ziegler [18,19] 
and Richter [13] and the bibliography therein.
 We may say that there are three kinds of known 
proofs of this theorem [19, p. 8]. For each of them, new 

Figure 10.—How to draw a graph with straight edges and good resolution (but without convex faces) I

[2] That is, the vertices  such that  is an edge of .
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proofs lead to new results. Steinitz gave three differ-
ent proofs, all starting from a tetrahedron and showing 
that vertices can be added or moved so as to fit to the 
graph. For other proofs of the same kind, and for the 
variety of results that we can obtain from them, see e.g. 
[9]. For example, from a modification of a proof of the 
same kind, it has be shown that one can “prescribe” the 
shape of any face of a polyhedron with a given graph. It 
can also be shown that the (combinatorial) symmetry of 
the graph can be carried over to a (geometric) symmetry 
of the polyhedron. These properties do not hold in di-
mension 4: for example, there exists a 4-polytope with 
8 vertices for which one particular face, an octahedron, 
cannot be regular. In fact, there exists a 4-polytope for 
which we cannot prescribe freely the shape of a 2-face, 
an hexagon. From the first example, it was possible to 
construct a 4-polytope with 2 new vertices with “hidden” 
symmetries, that is, combinatorial symmetries without 
geometric counterpart [4]. The “realization space’’ (the 
euclidean space of coordinates of the vertices) of this 
polytope is not connected [5]; it is the smallest known 
polytope with this property.
 Another kind of proofs exploit Tutte’s “rubber band” 
idea, by “lifting” the rubber band diagram, similarly to   
13, obtained from the graph of the polyhedron of Figure 
2 as indicated by Richter [13] by using a constant elastic-
ity coefficient, . It can be proved that all the polyhedra 

with the same graph can be obtained this way, but with 
variable values of .
 J. Richter [13] bases on this method a proof for the 
fact that every polyhedron has the graph of another 
polyhedron with vertices with rational (and hence also 
with integral) coordinates. The best resolution of these 
integer coordinates is a new research problem, called the 
quantitative Steinitz theorem, with very recent develop-
ments [12]. Note that we know of an 8-polytope with 
twelve vertices that cannot be constructed with rational 
coordinates. The most important consequence of Rich-
ter’s proof (and of some other proofs of the same kind) 
is that, for polyhedrons, the realization space is topologi-
cally very simple, in the (very imprecise) sense that we 
can deform continuously any polytope into any other 
one, up to a mirror image, provided they have the same 
graph.
 This is not the case in dimension 4. On the contrary, 
the realization space of 4-polytopes is “as rich as pos-
sible”, in a precise sense that we will not consider here. 
For details see J. Richter’s book [13], which is centred 
exactly on this very important issue. The study of graphs 
of 4-polytopes and general -polytopes for  is a rich 
field of growing research [19].
 As an example of active research, consider Ziegler’s 
question [20,11], regarding the polytopality of the Car-
tesian product of two Petersen graphs.

Figure 12.—Rubber band representation of 
the graph of P

Figure 11.—How to draw a graph with straight edges and good resolution
(but without convex faces) II
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 Before considering here the third and last kind of 
proof of Steinitz theorem, note that this theorem claims, 
in particular, that a spherical triangular graph can be real-
ized in space with straight edges. Recently, it was proved 
that the same happens with toroidal graphs [2]. But we 
know that the same does not happen in a quintuple to-
rus — or sphere with five handles [6,14]. It is not clear 
what happens between the simple torus and the quintu-
ple torus.
 Finally, there is a third kind of proof of the theorem 
of Steinitz, that we may follow thoroughly in the work 
of Ziegler [19], for example.
 Starting with the graph of the polytope  of Fig-
ure 14 and following [19], we obtained the graph of Fig-
ure 14, which has the following properties (we view a 
straight line as a circle of infinite radius and two parallel 
lines as tangent circles):

• Any vertex of the graph is the centre of a circle, 
and two circles are tangent if and only if the 
vertices are incident with an edge of the graph; 
these circles are in (dotted) pink[3] in Figure 14.

Figure. 13—“Lifting” of the rubber band representation of the 
graph of P

Figure 14.—Illustration of the theorem of
Koebe-Andreev-Thurston I

• Each face contains also a (green, in Figure 14) 
circle and the circles are tangent if and only if 
the faces are adjacent.

• Finally, the (pink) circles centred in the vertices 
and the (green) circles contained in the faces 
are pairwise mutually orthogonal.

It can be proved that this construction may be made for 
the graph of any polyhedron, and from this it follows 
the following remarkable theorem:

Theorem of Koebe-Andreev-Thurston.—Every 
graph with more than three vertices, planar and 3-con-
nected is the graph of a polyhedron of edges tangent to 
a given sphere.
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