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Tracing orbits on conservative maps

by Mario Bessa*

ABsTRACT.— We explore uniform hyperbolicity and its relation with the pseudo orbit tracing property. This
property indicates that a sequence of points which is nearly an orbit (affected with a certain error) may

be shadowed by a true orbit of the system. We obtain that, when a conservative map has the shadowing
property and, moreover, all the conservative maps in a C*-small neighborhood display the same property,

then the map is globally hyperbolic.

MSC 2000: primary 37D20, 37Cs0; secondary 37Cos, 37]10.

KEeyworDs. —Volume-preserving maps; pseudo-orbits; shadowing; hyperbolicity.

1. INTRODUCTION

“There is strong shadow where there is much light”

Goethe in Gotz von Berlichingen

1.1 The basic framework
In order to start playing with dynamical systems we
need a place to play and a given rule acting on it. Once
we establish that, we wonder what happens when we re-
peat the rule ad infinitum. We are mainly interested in
two types of playgrounds: volume manifolds and sym-
plectic manifolds. On volume-manifolds the rule is the
action of a volume-preserving diffeomomorphism, and
on symplectic manifolds the rule is the action of a sym-
plectomorphism. Let us now formalize these concepts.
Let M stands for a closed, connected and C*® Rie-
mannian manifold of dimension d > 2 and let v be a
volume-form on M. Once we equip M with v we de-
nominate it by a volume-manifold. By a classic result by
Moser (see [20]) we know that, in brief terms, there is
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only one volume-form on M. Actually, in [20] we find
and atlas formed by a finite collection of smooth charts
{aj: Ujc M — IRd};‘:I where Uj are open sets and each a;
pullbacks the volume on R into v. The volume-form al-
lows us to define a measure y on M which we call Leb-
esgue measure. A C' (r > 1) diffeomorphism f: M — M
is said to be volume-preserving if it keeps invariant the
volume structure, say f*v = v. In other words any Bore-
lian B € Mis such that u(B) = u(f " (B)) We denote these
maps by Diﬂz (M). We endow Diff; (M) with the Whitney
(or strong) C” topology (see [1]). In broad terms, two dif-
feomorphisms f and g are C"-close if they are uniformly
close as well as their first C" derivatives computed in any
point x € M. Such systems emerges quite naturally when
considering the time-one map of incompressible flows
which are a fundamental object in fluid mechanics (see
e.g. [14]).

Denote by M a 2d-dimensional (d > 1) manifold
with a Riemaniann structure and endowed with a closed
and nondegenerate 2-form w called symplectic form. Let
p stands for the volume measure associated to the volume
form wedging w d-times, i.e., vV = @? = @ A ... A w. By the

JANUARY 2013 27



A0 Ty e
o b
s ."‘\-\.\H
J N
."J »
| _I-
5 .-"
\
."._ |
" L1
ity T — | 'l,\.
-H'\-

Figure 1. lllustration of a &-pseudo-orbit

theorem of Darboux (see e.g. [21 , Theorem 1.18]) there
exists an atlas {¢;: U; — R>?}, where U; is an open sub-
set of M, satisfying Pjw, = wwith w, = Z?:I ay; A dyg,i
being the canonical symplectic form. A diffeomorphism
f: M — Mis called a symplectomorphism if it leaves in-
variant the symplectic structure, say f*@ = w. Observe
that, since f*@? = % a symplectomorphism f: M — M
preserves the volume measure 1. Moreover, in surfaces,
area-preserving diffeomorphisms are symplectomor-
phisms since the volume-form equals the symplectic
form. Symplectomorphisms arise in the classical and
rational mechanics formalism as the first return Poin-
caré maps of hamiltonian flows. For this reason, it has
long been one of the most interesting research fields in
mathematical physics. We suggest the reference [21] for
more details on general hamiltonian and symplectic
theories. Let SympZ)(M) denote the set of all symplec-
tomorphisms of class C" defined on M. We also endow
Symp; (M) with the C" Whitney topology.

The Riemannian structure induces a norm || - || on the
tangent bundle TM and also on TM. Denote the Riemann-
ian distance by d(-, -). We will use the canonical norm of
a bounded linear map A given by ||Al| = sup I|A - 9l.

Given a diffeomorphism f, we denote
f™x) = fofofo-of(x)bycomposing f n-times. We
say that a point P on a manifold is periodic of period
n € N for the diffeomorphism f if f"(p) =p and n is
the minimum positive integer such that previous equal-
ity holds.
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1.2 Tracing orbits and the shadowing property

The notion of shadowing in dynamical systems is in-
spired by the numerical computational idea of estimat-
ing differences between exact and approximate solutions
along orbits and to understand the influence of the er-
rors that we commit and allow on each iterate. We may
ask if it is possible to obtain shadowing of approximate
trajectories in a given dynamical system by exact ones.
Nevertheless, the computational estimates, fitted with
a certain error of orbits, are meaningless if they are not
able to be realized by true orbits of the original system,
and thus, are mere pixel imprecisions which are charac-
teristic of the computational setup. We refer Pilyugin’s
book [23] for a completed description on shadowing on
dynamical systems.

There are, of course, considerable limitations to the
amount of information we can extract from a given spe-
cific system that exhibits the shadowing property, since a
C'-close system may be absent of that property. For this
reason it is of great utility and natural to consider that a
selected model can be slightly perturbed in order to ob-
tain the same property — the stably shadowable dynami-
cal systems.

For 6 > oand 4,b € R such that a < b, the sequence
of points {x;}%_, in M is called a 6-pseudo orbit for f if
a(f(x;), x;y,) < 6 forall a <i<b-1(see Figure 1).

The diffeomorphism f is said to have the shadow-
ing property if for all € > o, there exists 0 > o, such that
for any 6-pseudo orbit {x, },cz, there is a point x which
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e-shadows {x,,},ez, 1-e. d(fi(x), x;) < €.

Let f € Diff, (M) (respectively, f € Symp’ (M)) we
say that f is C'-stably (or robustly) shadowable if there
exists a neighborhood 77 of f in Diff,, (M) (respectively
f €Symp’ (M)) such that any g € 7" has the shadowing
property.

We point out that f has the shadowing property
if and only if f" has the shadowing property for every
n € Z (see [23]).

1.3 Hyperbolicity and statement of the results

Let us recall that a periodic point p of period 7 is said to
be hyperbolic if the tangent map Df™(p) has no norm
one eigenvalues. Being hyperbolic is stable under small
C" perturbations. The notion of hyperbolicity can be gen-
eralized to sets rather than periodic orbits.

We say that any element f in the set Diff,(M)is Ano-
sov (or globally hyperbolic) if, there exists A € (o, 1) such
that the tangent vector bundle over M splits into two D f

-invariant subbundles TM = E" @ E°, with [|D f"|s|| < A"

and [|Df™"|gu|l < A™. A completely analog definition for
symplectomorphisms can be given. We observe that there
are plenty Anosov diffeomorphisms which are not vol-
ume-preserving and there are plenty Anosov volume-
preserving diffeomorphisms which are not symplectic.
Anosov was the first one to study these kind if systems
when considering the geodesic flow on closed Riemann-
ian manifolds displaying negative curvature ([3]).

ExaMPLE 1.1 [ARNOLD’S cAT MAP].—The map on the
two-torus M, f: M — M defined by

floy) = (2x +y,x +y)(mod 1)
is an area-preserving diffeomorphism thus, since the
manifold is two dimensional also symplectomorphism,
on the torus which is Anosov.

It is well-known that Anosov diffeomorphisms display
the shadowing property (see e.g. [24]). However, the
shadowing property itself do not assure hyperbolicity.
Notwithstanding, the stability of the shadowing prop-
erty allows us to conclude hyperbolicity (cf. Theorem
A and Theorem B).

The concept of structural stability was introduced in
the mid 1930s by Andronov and Pontrjagin ([2]), it led
to the construction of uniformly hyperbolic theory, and
characterizing, along a tour de force program culminated
in the works by Maiié ([16, 17, 18]), structural stability
as being essentially equivalent to uniform hyperbolicity.
In brief terms it means that under small perturbations
the dynamics are topologically equivalent: a dynamical
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system is C’-structurally stable if it is topologically con-
jugated to any other system in a C" neighbourhood.

Being an Anosov map is very rigid and imposes
stringent topological constraints on the manifold. Actu-
ally, in the late sixties, Franks proved that the only sur-
faces that support hyperbolic diffeomorphisms are the
tori (see [12]).

Given f € Diff (M) (respectively f € Symp’ (M))
we say that f isin 7 (M) (respectively .7 j(M)) if there
exists a neighborhood 7" of f in f € Diff, (M) (respec-
tively f in f € Symp' (M)) such that any g € 77, has all
the periodic orbits ofwhyperbolic type.

Our results ([7]) can be seen as a generalization of
the result in [25] for symplectomorphisms and volume-
preserving diffeomorphisms. Let us state our first result.

Tueorem A.—If f € Symp’ (M) is C'-stably shadow-
able, then f is Anosov.

Furthermore, we obtain the analogous version for vol-
ume-preserving maps.

Tureorem B.—If f € Diff,; (M) is C'-stably shadowable,
then f is Anosov.

As we already said Anosov diffeomorphisms impose se-
vere topological restrictions to the manifold where they
are supported. Thus, we present a simple but startling
consequence of previous theorems that shows how top-
ological conditions on the phase space imposes numeri-
cal restrictions to a given dynamical system.

COROLLARY 1.2.—If the manifold do not support an
Anosov diffeomorphisms, then there are no C'-stably
shadowable symplectomorphisms neither C*-stably
shadowable volume-preserving diffeomorphisms.

We end this introduction by recalling a result in the
vein of ours; C'-robust topologically stable symplecto-
morphisms are Anosov (see [10]). Another result which
relates C*-robust properties with hyperbolicity is the
Horita and Tahzibi theorem (see [13]) which states that
C’-robust transitive symplectomorphisms are partially
hyperbolic. We also mention the results in [8, 9] where
it is obtained that the stable weak shadowing property
implies weak hyperbolicity. Informally speaking weakly
shadowing allows that the pseudo-orbits may be approx-
imated by true orbits if one forgets the time parametri-
zation and consider only the distance between the orbit
and the pseudo-orbit as two sets in the ambient space.
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Moreover, weak hyperbolicity allows the existence of
subbundles with neutral behavior.

2. PROOF OF THEOREM A

Theorem A is a direct consequence of the following two
propositions. The following result, due to Newhouse,
can be found in [22].

ProrosITION 2.1 ([22]).—If f € .7 (M), then f is Ano-
SOV.

Proposition 2.2 is a symplectic version of [19, Proposi-
tion 1]. Actually, Moriyasu, while working in the dis-
sipative context, considered the shadowing property in
the non-wandering set, which, in the symplectic setting,
and due to Poincaré recurrence, is the whole manifold
M. Let us explain with detail this last step: we say that
a point x is non-wandering if any open neighborhood
U of x is such that f*(U) N U # @ for some n € N. A
point x is said to be recurrent if for any open neighbor-
hood U of x we have f"(x) € U for some n € IN. Clearly,
every recurrent point is non-wandering. It follows from
Poincaré recurrence theorem (see e.g. [15]) that, in our
conservative context, we have that y-a.e. point x is re-
current. Since 4 is the Lebesgue measure and the set of
non-wandering points is closed, we have that the non-
wandering points are the whole manifold M.

ProrosiTiON 2.2.—If f is a C'-stably shadowable sym-
plectomorphism, then f € .7 (M).

Proor.—The proof is by reductio ad absurdum; let us
assume that there exists a C*-stably shadowable sym-
plectomorphism f having a non-hyperbolic closed or-
bit p of period 7.

In order to go on with the argument we need to
Ctapproximate the symplectomorphism f by a new one,
[+, which, in the local coordinates given by Darboux’s
theorem, is linear in a neighborhood of the periodic or-
bit p. To perform this task, in the sympletic setting, and
taking into account [§, Lemma 3.9], it is required higher
smoothness of the symplectomorphism.

Thus, if f is of class C®, take g = f, otherwise we use
Zehnder’s smoothing theorem ([26]) in order to obtain
a C® C’-stably shadowable symplectomorphism £, arbi-
trarily C'-close to f, and such that  has a periodic orbit
g, close to p, with period 7. We observe that 4 may not
be the analytic continuation of p and this is precisely the
case when 1 is an eigenvalue of the tangent map Df™(p).

If g is not hyperbolic take g = h. If g is hyperbolic
for Dh™(g), then, since h is C™-arbitrarily close to f, the
distance between the spectrum of Dh™(g) and the unitary

circle can be taken arbitrarily close to zero. This means
that we are in the presence of a quite feeble hyperbolic-
ity, thus in a position to apply [12, Lemma 5.1]to ob-
tain a new C’-stably shadowable symplectomorphism
g € Symp (M), C'~close to / and such that g is a non-
hyperbolic periodic orbit.

At this point, we use the weak pasting lemma ([5,
Lemma 3.9]) in order to obtain a C'-stably shadowable
symplectomorphism f, such that, in local canonical co-
ordinates, f, is linear and equal to Dg in a neighborhood
of the periodic non-hyperbolic orbit, g. Moreover, the
existence of an eigenvalue, o, with modulus equal to one
is associated to a symplectic invariant two-dimensional
subspace contained in the subspace Ef C T,M associat-
ed to norm-one eigenvalues. Furthermore, up to a per-
turbation using again [12, Lemma §.1], 0 can be taken
rational. This fact assures the existence of periodic or-
bits arbitrarily close to the f,-orbit of ¢. Thus, there ex-
ists m € IN such that U @Dl = (D" )gles = id holds,
say in an 7n-neighborhood of 4. Recall that, since f, has
the shadowing property f™ also has. Therefore, fixing
€ € (o, 1/4), there exists 6 € (o, €) such that every 6-pseu-
do f"-orbit {x,}, is e-traced by some point in M. Take
y such that d(y, q) = 31/4 and a closed 0-pseudo f7""-or-
bit {x,},, such that any ball centered in x; and with radius
€ is still contained in the 7-neighborhood of g, moreover,
take x, = g and x; = y.

By the shadowing property there exists z € M such
that d(f7"™(z),x;) < € for any i € Z. Moreover, we ob-
serve that d(f7"™(z),q) < n for every i € Z. Therefore,
z € Ef. Finally, we reach a contradiction by noting that

d(g,z) = d(g, xs) — d(xs,z) =

= dlgy) ~d(x, fIU@) 2 T —e> T >e -
3. VOLUME-PRESERVING DIFFEOMORPHISMS
Theorem A also holds on the broader context of volume-
preserving diffeomorphisms. Its proof follows the same
steps as the one before. The version of Proposition 2.1
for volume-preserving diffeomorphisms was proved in
a recent paper by Arbieto and Catalan.

ProroOSITION 3.1 ([4, THEOREM 1.1]).—If f € 7J(M),
then f is Anosov.

The proof of Theorem B is now reduced to the proof of
the following result:

ProrositioN 3.2.—If f is a C'-stably shadowable vol-

ume-preserving diffeomorphism, then f € 7 (M).

Proof.— Assume that there exists a C*-stably shadow-
able f € Diff, (M) having a non-hyperbolic closed orbit
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p of period . Once again we need to C*-approximate f
by a new one, f,, which, in the local coordinates given
by Moser’s theorem ([20]), is linear in a neighborhood
of the periodic orbit p. Taking into account [5, Theorem
3.6], it is required higher smoothness of the volume-pre-
serving diffeomorphism.

Thus, if f is of class C*, take ¢ = f, otherwise we use
Avila’s recent proved smoothing theorem ([6]) in order
to obtain a C* C*-stably shadowable volume-preserving
diffeomorphism F, arbitrarily C*-close to f, and such that
h has a periodic orbit g, close to p, with period 7.

If g is not hyperbolic take ¢ = h. If g is hyperbol-
ic for Dh™(g), then, its weak hyperbolicity allows us to
use Franks’ lemma proved in [11, Proposition 7.4] for
volume-preserving diffeomorphisms and thus obtain a
new C’-stably shadowable volume-preserving diffeo-
morphism g € Diff,” (M), C'-close to h and such that g
is a non-hyperbolic periodic orbit.

Now we use [, Theorem 3.6] in order to obtain
a C'-stably shadowable volume-preserving diffeomor-
phism f; such that, in local canonical coordinates, f, is
linear and equal to Dg in a neighborhood of the periodic
non-hyperbolic orbit, g. Moreover, the existence of an
eigenvalue, 0, with modulus equal to one is associated
to an invariant one or two-dimensional subspace con-
tained in the subspace Ef € T,M associated to norm-one
eigenvalues. If its eigendirection is two-dimensional, up
to a perturbation using again [11, Proposition 7.4], 0 can
be taken rational. This fact assures the existence of pe-
riodic orbits arbitrarily close to the f,-orbit of 4. Thus,
there exists m € IN such that FU@Dleg = (D" )yl = id
holds, say in a 7-neighborhood of 4. Finally, we reach a
contradiction by arguing exactly as we did in the proof

of Theorem A. —
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