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1. IntroductIon

“There is strong shadow where there is much light”
Goethe in Götz von Berlichingen

1.1 The basic framework
In order to start playing with dynamical systems we 
need a place to play and a given rule acting on it. Once 
we establish that, we wonder what happens when we re-
peat the rule ad infinitum. We are mainly interested in 
two types of playgrounds: volume manifolds and sym-
plectic manifolds. On volume-manifolds the rule is the 
action of a volume-preserving diffeomomorphism, and 
on symplectic manifolds the rule is the action of a sym-
plectomorphism. Let us now formalize these concepts. 
 Let  stands for a closed, connected and  Rie-
mannian manifold of dimension  and let  be a 
volume-form on . Once we equip  with  we de-
nominate it by a volume-manifold. By a classic result by 
Moser (see [20]) we know that, in brief terms, there is 
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only one volume-form on . Actually, in [20] we find 
and atlas formed by a finite collection of smooth charts 

 where  are open sets and each  
pullbacks the volume on  into . The volume-form al-
lows us to define a measure  on  which we call Leb-
esgue measure. A  ( ) diffeomorphism  
is said to be volume-preserving if it keeps invariant the 
volume structure, say . In other words any Bore-
lian  is such that . We denote these 
maps by . We endow  with the Whitney 
(or strong)  topology (see [1]). In broad terms, two dif-
feomorphisms  and  are -close if they are uniformly 
close as well as their first  derivatives computed in any 
point . Such systems emerges quite naturally when 
considering the time-one map of incompressible flows 
which are a fundamental object in fluid mechanics (see 
e.g. [14]).
 Denote by  a -dimensional ( ) manifold 
with a Riemaniann structure and endowed with a closed 
and nondegenerate 2-form  called symplectic form. Let 

 stands for the volume measure associated to the volume 
form wedging  -times, i.e.,  . By the 
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theorem of Darboux (see e.g. [21 , Theorem 1.18]) there 
exists an atlas , where  is an open sub-
set of , satisfying  with  
being the canonical symplectic form. A diffeomorphism 

 is called a symplectomorphism if it leaves in-
variant the symplectic structure, say . Observe 
that, since , a symplectomorphism  
preserves the volume measure . Moreover, in surfaces, 
area-preserving diffeomorphisms are symplectomor-
phisms since the volume-form equals the symplectic 
form. Symplectomorphisms arise in the classical and 
rational mechanics formalism as the first return Poin-
caré maps of hamiltonian flows. For this reason, it has 
long been one of the most interesting research fields in 
mathematical physics. We suggest the reference [21] for 
more  details on general hamiltonian and symplectic 
theories. Let  denote the set of all symplec-
tomorphisms of class  defined on . We also endow 

 with the  Whitney topology.
 The Riemannian structure induces a norm  on the 
tangent bundle  and also on . Denote the Riemann-
ian distance by . We will use the canonical norm of 
a bounded linear map  given by . 
 Given a diffeomorphism , we denote 

 by composing  -times. We 
say that a point  on a manifold is periodic of period 

 for the diffeomorphism  if  and  is 
the minimum positive integer such that previous equal-
ity holds.

1.2 Tracing orbits and the shadowing property
The notion of shadowing in dynamical systems is in-
spired by the numerical computational idea of estimat-
ing differences between exact and approximate solutions 
along orbits and to understand the influence of the er-
rors that we commit and allow on each iterate. We may 
ask if it is possible to obtain shadowing of approximate 
trajectories in a given dynamical system by exact ones. 
Nevertheless, the computational estimates, fitted with 
a certain error of orbits, are meaningless if they are not 
able to be realized by true orbits of the original system, 
and thus, are mere pixel imprecisions which are charac-
teristic of the computational setup. We refer Pilyugin’s 
book [23] for a completed description on shadowing on 
dynamical systems.
 There are, of course, considerable limitations to the 
amount of information we can extract from a given spe-
cific system that exhibits the shadowing property, since a 

-close system may be absent of that property. For this 
reason it is of great utility and natural to consider that a 
selected model can be slightly perturbed in order to ob-
tain the same property—the stably shadowable dynami-
cal systems. 
 For  and  such that , the sequence 
of points  in  is called a -pseudo orbit for  if 

 for all  (see Figure 1).
 The diffeomorphism  is said to have the shadow-
ing property if for all , there exists , such that 
for any -pseudo orbit , there is a point  which 

-shadows , i.e. .
 Let  (respectively, ) we 
say that  is -stably (or robustly) shadowable if there 
exists a neighborhood  of  in  (respectively 

) such that any  has the shadowing 
property. 
 We point out that  has the shadowing property 
if and only if  has the shadowing property for every 

 (see [23]).

1.3 Hyperbolicity and statement of the results
Let us recall that a periodic point  of period  is said to 
be hyperbolic if the tangent map  has no norm 
one eigenvalues. Being hyperbolic is stable under small 

 perturbations. The notion of hyperbolicity can be gen-
eralized to sets rather than periodic orbits.
 We say that any element  in the set  is Ano-
sov (or globally hyperbolic) if, there exists  such 
that the tangent vector bundle over  splits into two 

-invariant subbundles , with  
and . A completely analog definition for 
symplectomorphisms can be given. We observe that there 
are plenty Anosov diffeomorphisms which are not vol-
ume-preserving and there are plenty Anosov volume-
preserving diffeomorphisms which are not symplectic. 
Anosov was the first one to study these kind if systems 
when considering the geodesic flow on closed Riemann-
ian manifolds displaying negative curvature ([3]).

Example 1.1 [Arnold’s cat map].—The map on the 
two-torus ,  defined by 

is an area-preserving diffeomorphism thus, since the 
manifold is two dimensional also symplectomorphism, 
on the torus which is Anosov.

It is well-known that Anosov diffeomorphisms display 
the shadowing property (see e.g. [24]). However, the 
shadowing property itself do not assure hyperbolicity. 
Notwithstanding, the stability of the shadowing prop-
erty allows us to conclude hyperbolicity (cf. Theorem 
A and Theorem B).
 The concept of structural stability was introduced in 
the mid 1930s by Andronov and Pontrjagin ([2]), it led 
to the construction of uniformly hyperbolic theory, and 
characterizing, along a tour de force program culminated 
in the works by Mañé ([16, 17, 18]), structural stability 
as being essentially equivalent to uniform hyperbolicity. 
In brief terms it means that under small perturbations 
the dynamics are topologically equivalent: a dynamical 

system is -structurally stable if it is topologically con-
jugated to any other system in a  neighbourhood.
 Being an Anosov map is very rigid and imposes 
stringent topological constraints on the manifold. Actu-
ally, in the late sixties, Franks proved that the only sur-
faces that support hyperbolic diffeomorphisms are the 
tori (see [12]).
 Given  (respectively  ) 
we say that  is in  (respectively ) if there 
exists a neighborhood  of  in  (respec-
tively  in ) such that any , has all 
the periodic orbits of hyperbolic type. 
 Our results ([7]) can be seen as a generalization of 
the result in [25] for symplectomorphisms and volume-
preserving diffeomorphisms. Let us state our first result.

Theorem A.—If  is -stably shadow-
able, then  is Anosov.

Furthermore, we obtain the analogous version for vol-
ume-preserving maps.

Theorem B.—If  is -stably shadowable, 
then  is Anosov.

As we already said Anosov diffeomorphisms impose se-
vere topological restrictions to the manifold where they 
are supported. Thus, we present a simple but startling 
consequence of previous theorems that shows how top-
ological conditions on the phase space imposes numeri-
cal restrictions to a given dynamical system.

Corollary 1.2.—If the manifold do not support an 
Anosov diffeomorphisms, then there are no -stably 
shadowable symplectomorphisms neither -stably 
shadowable volume-preserving diffeomorphisms.

We end this introduction by recalling a result in the 
vein of ours; -robust topologically stable symplecto-
morphisms are Anosov (see [10]). Another result which 
relates -robust properties with hyperbolicity is the 
Horita and Tahzibi theorem (see [13]) which states that 

-robust transitive symplectomorphisms are partially 
hyperbolic. We also mention the results in [8, 9] where 
it is obtained that the stable weak shadowing property 
implies weak hyperbolicity. Informally speaking weakly 
shadowing allows that the pseudo-orbits may be approx-
imated by true orbits if one forgets the time parametri-
zation and consider only the distance between the orbit 
and the pseudo-orbit as two sets in the ambient space. 

Figure 1. Illustration of a δ-pseudo-orbit
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Moreover, weak hyperbolicity allows the existence of 
subbundles with neutral behavior.

2. proof of theoreM a
Theorem A is a direct consequence of the following two 
propositions. The following result, due to Newhouse, 
can be found in [22].

Proposition 2.1 ([22]).—If , then  is Ano-
sov.

Proposition 2.2 is a symplectic version of [19, Proposi-
tion 1]. Actually, Moriyasu, while working in the dis-
sipative context, considered the shadowing property in 
the non-wandering set, which, in the symplectic setting, 
and due to Poincaré recurrence, is the whole manifold 

. Let us explain with detail this last step: we say that 
a point  is non-wandering if any open neighborhood 

 of  is such that  for some . A 
point  is said to be recurrent if for any open neighbor-
hood  of  we have  for some . Clearly, 
every recurrent point is non-wandering. It follows from 
Poincaré recurrence theorem (see e.g. [15]) that, in our 
conservative context, we have that -a.e. point  is re-
current. Since  is the Lebesgue measure and the set of 
non-wandering points is closed, we have that the non-
wandering points are the whole manifold .

Proposition 2.2.—If  is a -stably shadowable sym-
plectomorphism, then .

Proof.—The proof is by reductio ad absurdum; let us 
assume that there exists a -stably shadowable sym-
plectomorphism  having a non-hyperbolic closed or-
bit  of period .
 In order to go on with the argument we need to 

 -approximate the symplectomorphism  by a new one, 
, which, in the local coordinates given by Darboux’s 

theorem, is linear in a neighborhood of the periodic or-
bit . To perform this task, in the sympletic setting, and 
taking into account [5, Lemma 3.9], it is required higher 
smoothness of the symplectomorphism. 
 Thus, if  is of class , take , otherwise we use 
Zehnder’s smoothing theorem ([26]) in order to obtain 
a  -stably shadowable symplectomorphism  , arbi-
trarily -close to , and such that  has a periodic orbit 

, close to , with period . We observe that  may not 
be the analytic continuation of  and this is precisely the 
case when  is an eigenvalue of the tangent map .
 If  is not hyperbolic take . If  is hyperbolic 
for , then, since  is -arbitrarily close to , the 
distance between the spectrum of  and the unitary 

circle can be taken arbitrarily close to zero. This means 
that we are in the presence of a quite feeble hyperbolic-
ity, thus in a position to apply [12, Lemma 5.1]to ob-
tain a new -stably shadowable symplectomorphism 

, -close to  and such that  is a non-
hyperbolic periodic orbit.
 At this point, we use the weak pasting lemma ([5, 
Lemma 3.9]) in order to obtain a -stably shadowable 
symplectomorphism  such that, in local canonical co-
ordinates,  is linear and equal to  in a neighborhood 
of the periodic non-hyperbolic orbit, . Moreover, the 
existence of an eigenvalue, , with modulus equal to one 
is associated to a symplectic invariant two-dimensional 
subspace contained in the subspace  associat-
ed to norm-one eigenvalues. Furthermore, up to a per-
turbation using again [12, Lemma 5.1],  can be taken 
rational. This fact assures the existence of periodic or-
bits arbitrarily close to the -orbit of . Thus, there ex-
ists  such that  holds, 
say in an -neighborhood of . Recall that, since  has 
the shadowing property  also has. Therefore, fixing 

 , there exists  such that every -pseu-
do -orbit  is -traced by some point in . Take 

 such that  and a closed -pseudo -or-
bit  such that any ball centered in  and with radius 

 is still contained in the -neighborhood of , moreover, 
take  and .
 By the shadowing property there exists  such 
that  for any . Moreover, we ob-
serve that  for every . Therefore, 

. Finally, we reach a contradiction by noting that

 

  .      

3. voluMe-preservIng dIffeoMorphIsMs

Theorem A also holds on the broader context of volume-
preserving diffeomorphisms. Its proof follows the same 
steps as the one before. The version of Proposition 2.1 
for volume-preserving diffeomorphisms was proved in 
a recent paper by Arbieto and Catalan.

Proposition 3.1 ([4, Theorem 1.1]).—If , 
then  is Anosov.

The proof of Theorem B is now reduced to the proof of 
the following result:

Proposition 3.2.—If  is a -stably shadowable vol-
ume-preserving diffeomorphism, then .

Proof.—Assume that there exists a -stably shadow-
able  having a non-hyperbolic closed orbit 

 of period . Once again we need to -approximate  
by a new one, , which, in the local coordinates given 
by Moser’s theorem ([20]), is linear in a neighborhood 
of the periodic orbit . Taking into account [5, Theorem 
3.6], it is required higher smoothness of the volume-pre-
serving diffeomorphism. 
 Thus, if  is of class , take , otherwise we use 
Avila’s recent proved smoothing theorem ([6]) in order 
to obtain a  -stably shadowable volume-preserving 
diffeomorphism , arbitrarily -close to , and such that 

 has a periodic orbit , close to , with period .
 If  is not hyperbolic take . If  is hyperbol-
ic for , then, its weak hyperbolicity allows us to 
use Franks’ lemma proved in [11, Proposition 7.4] for 
volume-preserving diffeomorphisms and thus obtain a 
new -stably shadowable volume-preserving diffeo-
morphism , -close to  and such that  
is a non-hyperbolic periodic orbit.
 Now we use [5, Theorem 3.6] in order to obtain 
a  -stably shadowable volume-preserving diffeomor-
phism  such that, in local canonical coordinates,  is 
linear and equal to  in a neighborhood of the periodic 
non-hyperbolic orbit, . Moreover, the existence of an 
eigenvalue, , with modulus equal to one is associated 
to an invariant one or two-dimensional subspace con-
tained in the subspace  associated to norm-one 
eigenvalues. If its eigendirection is two-dimensional, up 
to a perturbation using again [11, Proposition 7.4],  can 
be taken rational. This fact assures the existence of pe-
riodic orbits arbitrarily close to the -orbit of . Thus, 
there exists  such that   
holds, say in a -neighborhood of . Finally, we reach a 
contradiction by arguing exactly as we did in the proof 
of Theorem A.  
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