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Estimating gene expression missing data using PLS regression 61

Joaquim F. Pinto da Costa, Hugo Alonso, Lúıs A.C. Roque and Manuela M. Oliveira
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Bayesian two-gene interaction models in complex binary traits 103
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Wolfgang Urfer ∗ M. Antónia Amaral Turkman †

Foreword

This volume contains a selection of papers (invited and contributed) presented at the Work-

shop on Statistics in Genomics and Proteomics that took place in Monte Estoril, Portugal,

from 5–8 October 2005.

Genomics and proteomics aim to identify biomarkers that can answer specific clinical

questions. The most obvious are markers that can be used for diagnosis and prognosis. An-

other important issue is to predict a patient’s response to a specific drug. Diagnostic markers

can themselves be candidates for drug targets. Therefore pharmaceutical companies pur-

sue genomics and proteomics to identify markers that predict toxicity of candidate drugs.

They also investigate biological interactions between all small organic molecules and con-

struct metabolomic networks using multivariate approaches. Researchers from several areas

are involved in this process, from the identification of the problems, realization of adequate

experiments, collection of data, interpretation of results, etc. The analysis of such amount of

data offer real challenges to statisticians. By joining their efforts with geneticists, biologists,

and computer scientists, statisticians can be of great help in all this process.

There has been in Portugal a growing interest among statisticians to cooperate with re-

searchers in these areas. The organization of this event brought fruitful discussions among

statisticians and non-statisticians and we hope that will have a great impact for future col-

laboration and joint research.

The workshop, organized by Wolfgang Urfer, Antónia Amaral Turkman, Lisete Sousa,

Luzia Gonçalves and Feridun Turkman, under the auspices of the International Center of

Mathematics (http://www.cim.pt) and the Center of Statistics and its Applications (http:

//www.ceaul.fc.ul.pt), brought together leading researchers in the areas of statistics in

genomics and proteomics, who described the state of the art and presented several challenging

problems for researchers in Biostatistics and Bioinformatics.

∗Department of Statistics, University of Dortmund, Germany
†Department of Statistics and Operation Research, Faculty of Sciences, University of Lisbon, Portugal.

E-mail: antonia.turkman@fc.ul.pt.
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This workshop, had the participation of 7 keynote speakers and 5 invited speakers, covering

the following topics

� Ruedi Aebersold - Challenges in Data Analysis and Statistical Validation

� Chris Cannings - Random Networks in Genetics

� Dirk Husmeier - Detecting Mosaic Structures in DNA Sequence Alignments

� Sophie Schbath - Statistical Problems Arising in Physical Mapping

� Terry Speed - Probabilistic Modelling of Tandem Mass Spectrometry Data

� Korbinian Strimmer - Small Sample Statistical Modeling and Inference of Genetic Net-

works

� Simon Tavaré - Statistical Issues for Expression Analysis of Illumina Bead-Based Mi-

croarrays

� Margarida Amaral - Genomic and Proteomic Approaches to Study the Genetic Disease

Cystic Fibrosis

� Pedro Fernandes - Systems Biology Approaches Based on Biological Information

� Mário Silva - Information Integration of Biological Data Sources

� Rogério Tenreiro - Phylogenies, Genome Organization and Taxonomy in Prokaryotes:

Dream or Reality?

� Libia Zé-Zé - Physical and Genetic Mapping in Whole Genome Sequencing Era: an

Overview

Apart from the invited talks there were also 12 contributed papers and 17 posters.

Thanks are due to Terry Speed who helped to organize the invited programme. We also

express our gratitude to all the speakers for their contribution to the high scientific standards

of the Workshop on Statistics in Genomics and Proteomics.

A selection of four papers illustrating some of the statistical problems currently of interest

in bioinformatics will appear in a special issue of REVSTAT - Statistical Journal (http:

//www.ine.pt/revstat/). In this edition we present another selection of refereed papers.

The ten papers in this volume illustrate a variety of statistical and biological problems

currently of interest in genomics and proteomics.

Cannings argues that knowledge of the structure of the protein-protein interactions net-

work and its variation within and across phyla, should provide insight into evolution, and

better understanding of how such networks allow robustness, adaptability and potential for
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further evolution. In this paper he presents an overview of some of the available random

graph models which are available as tools in this investigation. Werhli et al. propose a

modification of MCMC sampling method for detecting mosaic structures in DNA sequence

alignments, reducing the computational costs and producing more reliable predictions. Zé-Zé

et al. give an overview of the construction of physical and genomic maps, and discuss the

advantages of a combined statistical approach during map construction in determining the

overlapping probabilities of macrorestriction fragments and directing experimental procedures

(saving time and money).

Microarrays are part of a new class of biotechnologies which allow the monitoring of

expression levels of thousand of genes simultaneously. The analysis of data produced still

constitutes one big challenge to statisticians. Hence, it is not surprising that this constituted

the most popular theme for contributions to the workshop. Amaral et al. aim to use microar-

ray data to generate a short list of genes and proteins which are differentially expressed in

response to cystic fibrosis transmembrane conductance regulator, in order to propose novel

hypotheses about the influence of intracellular molecular interactions on the development of

cysitic fibrosis pathophysiology. Brás and Menezes present a method for the estimation of

missing values in DNA microarray data while Pinto da Costa et al. and Haouari and Limam

discuss and propose different methods for the extraction of informative genes from microarray

data.

Sepulveda et al. propose a two-gene interaction model for computing the penetrance of

complex binary traits and apply their approach to cerebral Malaria data. Fernandes et al.

discuss a statistical approach for mapping quantitative genetic traits and illustrate it with

data originated from an intercross experiment to identify quantitative trait loci contributing

to variance in the amount of immunoglobulin IgM in serum of mice. Freitas et al. propose a

new statistic to test the homogeneity of codon contexts of the complete ORFeome sequences

of 3 yeast species.

Finally we would like to express our thanks to Lisete Sousa and Luzia Gonçalves for all

the work they put in the organization of this event.

Lisbon, February 2006

Wolfgang Urfer and M.A. Amaral Turkman 1

1Partially supported by the project POCTI/MAT/44082/2002
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Modelling protein–protein interaction networks

from yeast-2-hybrid screens with random graphs

Chris Cannings ∗

Abstract

Random graphs provide us with a tool for the study of naturally occurring networks,

such as the WWW, email, metabolic, and protein-protein interaction (PPI). In this paper

I briefly review some of the issues relating to PPI as produced by yeast2hybrid (Y2H)

experiments, various classes of random graph, and suggest that the “Central Dogma of

Biological Networks”, that “biological networks show a power-law distribution for their

degree distribution” is not soundly based. Recent work suggests various alternate models

fit better to the data.

Keywords: Random Graphs, Protein Nets, Power-Law, Domain Model, Sampling.

1 PPI from Y2H

The Y2H experiment takes two proteins, engineers each of these separately into yeast cells

and then observes whether the two yeast types are capable of mating. The two cells can only

mate if the two proteins are capable of binding, so Y2H screens pairs of proteins for their

ability to bind together. Since proteins function in the living cell by binding to other proteins

(though to other types of molecule also), this assay gives us information regarding one aspect

of protein behavior.

From information on Y2H for many pairs of proteins we can produce a graph (or network),

G = (V,E) where V is the set of vertices (nodes, points) corresponding to the set of proteins

considered, and E ⊂ V ∗ V is the set of edges, i.e. unordered pairs of vertices, there being an

edge wherever the corresponding proteins bind together.

We should note one feature of these graphs; the presence of an edge corresponds to binding

between the two proteins involved, but the absence of an edge only indicates that no binding

has been observed, whether this is because the two proteins have not been used in a Y2H

experiment, or they were assayed and failed to bind. Ideally we should be working with a

graph in which there were three types of edges corresponding to binding, not binding and not

∗Division of Genomic Medicine, University of Sheffield. E-mail: c.cannings@shef.ac.uk.
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observed. However such data is not usually reported and so we shall work with G = (V,E)

as defined above.

We also note that in practice proteins will assemble in complexes, rather than in pairs,

and this feature cannot be revealed by Y2H, though it can by mass spectroscopy.

2 Objectives

In studying the PPI’s of organisms we aim to gain insight into how the features of the network

affect the robustness, adaptability and efficiency of the organism when we implement some

dynamical system on the nodes. We would also like to be able to understand how PPI’s

evolve through time under mutation, gene-duplication and other evolutionary events. Our

aim here is more limited. We take the network as given and our aims are to describe, classify

and differentiate between various networks.

Motifs

A subgraph of G = (V,E) is a graph G′ = (V′,E′) where V′ ⊂ V and E′ ⊂ ((V′ ∗V′)∩E).

A subgraph of G = (V,E) induced by V′ ⊂ V is the subgraph G′ = (V′,E′) where E′ =

(V′ ∗V′)∩E. Within the graph certain subgraphs are of special interest, often referred to as

motifs. Thus if we have G∗ = (V∗,E∗) then we might be interested in whether G = (V,E)

has any subgraphs isomorphic to G∗ = (V∗,E∗) , or in the distribution of the number of

subgraphs isomorphic to G∗ = (V∗,E∗) over the class of random graphs we are studying. We

will be particularly interested in triangles and cycles since these introduce a measure of the

local behaviour and correlation.

Motifs can be of importance also in assessing the similarity between networks. For ex-

ample, Wuchty et al (2003) [32], examined the PPI networks in yeast and compared it with

those in five higher organisms, by identifying which of the proteins were conserved and then

comparing the subgraphs induced within those networks by that set of proteins.

They demonstrated that there was substantial conservation of many of the motifs, and

that the larger motifs were more conserved than the smaller ones. This presumably reflected

the fact that a complex motif corresponds to a more complex set of protein interactions which

may more difficult to evolve to a fitter configuration than a simpler motif.

3 Random graphs

Since in practice we will only be able to obtain individual networks, or sets of distinct but

related networks, these per se tell us little unless we can provide some model of the ways

in which the network might have been generated. Ideally we would like to model the way
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Figure 1: Table 1 from Wuchty et al: Motifs in Yeast which are conserved in five “higher”

organisms

in which biological networks are constructed and how they evolve under natural selection.

There are preliminary attempts at this modeling but here we look at the more limited issue

of modeling the underlying network, but not their evolution.

We shall review some of the models of random graphs below, but here we introduce what

might be considered the two classical models. The Erdos-Renyi [10] random graph (which

we refer to as the ER model) G = (V,E) assumes a set of n vertices V, and that the set of

edges E is constructed from V ∗ V by choosing each possible edge independently and with

fixed probability p, see Bollobás (1985) [5]. This simple structure allows simple calculations

of many quantities to be made. For the moment we only concern ourselves with one of the

most basic, that of the distribution of the number of edges at a node, the degree of that

node. Since for a specific node there are n− 1 potential edges, each occurring independently

with probability p the degree distribution is B(n − 1, p) (B=Binomial). Thus for reasonably

large n and small p the degree distribution is approximately Po(np) (Po=Poisson). The

Random Geometric Graph (referred to here as RG ) supposes that the vertices are randomly

distributed throughout some space (usually Rd) and that an edge exists between the two

points u and v if d(u, v) < r, where d() is some appropriate norm, see Penrose(2003)[21].
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4 Power law

Zipf’s law [34] states that the sizes of cities within a country have relative sizes 1, 1/2, 1/3, . . . ,

1/r, . . .. Thus the size of the rth largest city should be approximately 1/r that of the largest.

A simple generalization of this distribution is the power law distribution where the probability

that some random variable X takes the value x is proportional to x−γ , where γ is referred to

as the exponent. Thus γ = 1 for Zipf’s law.

Albert et al (1999) [1] examined the links of the World Wide Web and observed that the

degree distribution was very different from Poisson and they suggested that the observations

were well fitted by a power law, the probability that a node had degree k was given by

P (k) = αkγ . Thus log(P (k)) = β + γlog(k) so the log-log plot is a straight line. Such

networks are also often described as scale free (though precisely what this means is often not

clear). I interpret it to mean that P (u)/P (v) = P (lu)/P (lv) so that the ratio of the numbers

of nodes with degrees x and y does not depend on the specific values of x and y but only

on their ratio. Thus if one focuses only on nodes of high degree one sees the same sort of

distribution as if one focuses only on nodes of small degree.

There are various models which lead to a power distribution including self-organizing

criticality (see Bak(1999) [3]), stochastic multiplicative processes with finite resources (see

e.g. Wilhelm and Hanggi (2003) [30]) and preferential attachment, which we discuss in more

detail below.

Since the paper of Albert et al (1999) [1] hundreds of papers have appeared reporting that

other networks are power law, and scale free. These networks have included email (Newman

et al (2002)[19]), scientific collaborations (Newman(2001) [18]), metabolic networks (Jeong et

al (2000) [14]) and PPI networks, which are the focus of this paper. Certainly in the context

of biological networks it has become a Central Dogma that Biological Networks are

Power Law. We shall examine this assertion in some detail here, and draw attention to the

mounting evidence that this is not the case, while also pointing out some of the problems in

the statistical methods used.

5 Preferential attachment (PA)

Barabasi and Albert(1999) [2] introduced an interesting model for the growth of a random

network, so called “preferential attachment”, which gives rise to a power law degree distri-

bution. The idea, which has resonance for the WWW, is that the network is initiated with

a few vertices and edges, new vertices are added sequentially and each new node attaches

to existing nodes independently with a probability proportional to the degree of the existing

node. [2] demonstrate using differential equations that asymptotically the degree distribution

is power law.

As an illustration of how the preferential attachment model works we consider the following

8



scenario, which is adapted from a model of Jordan(2005) [15]. We start with any small tree.

At each t ∈ {1, 2, ....} we add a new vertex and join it to one of the existing vertices with

probability proportional to the degree of that vertex. Note that these assumptions mean that

our graph is always a tree (i.e. has no loops).

We shall keep track of all the possible realizations for the form of the graph. Suppose for

Figure 2: Growing a random graph with preferential attachment: All realisations from a

single step.

example that we had the small graph shown at the top left of Figure 2, on which the degrees

of the nodes are indicated. The total of the degrees is 8. Now we join a new vertex to the

tree in all possible ways, giving rise to four distinct topologies, to which we attach a weight

which reflect the number of ways in which that topology can arise. Each of the new trees

has total degree 10 and the total of the degrees over all the weighted trees is 80. There are

amongst the new trees a total weight attached to nodes of degree 1 of 29, of degree 2 of 18,

of degree 3 of 21 and of degree 4 of 12. It is these various weights which we track. Thus

take n(t) =total of degrees within each graph at time t, m(t) =total of weighted degrees

across all realizations at time t, and xi(t) = total weighted degrees across all realizations

of vertices of degree i at time t. Then we have n(t) = n(t − 1) + 2, m(t) = m(t − 1)n(t),

x1(t + 1) = x1(t)(n(t) − 1) + m(t) and for i > 1 xi(t + 1) = xi(t)(n(t) − i) + i ∗ xi−1(t). It
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can be proved that xi(t)/xi−1(t) → i/(i + 1) as t → ∞, for whatever starting configuration

we choose and thus the degree distribution has asymptotically P (i) = 4/(i ∗ (i + 1) ∗ (i + 2)),

so that the tail is approximately of the form P (i) = 4/i3, i.e power law with exponent equal

to 3. Note here that the expected degree is equal to 2 (inevitably since we add a new node

and a new edge at each stage), while the variance is ∞. See Jordan(2005) [15] for an in depth

discussion and proofs.

An interesting extension of this idea is that of Dorogovetsev and Mendes (2000) [9] in which

the vertices age, and the chance of a new node attaching to an existing node is proportional

to the degree of the latter multiplied by some function of its age. When this function is of

the form τπ where τ is the age then [9] demonstrate that the degree distribution is still power

law, with an exponent which depends on π.

Now there are two features of the processes described here “growth” and “preferential”

attachment which are claimed as intrinsic to generating a power law for the degree distribu-

tion. Despite claims to the contrary, the ER graph need not be presented in the static way in

which it was introduced above. Indeed many of the issues relating to the ER graphs address

a growing graph. We illustrate some of these in the next section.

6 Erdös–Renyi graph

Suppose instead of the “static” model described above that we initially specify the size of V

and then add edges sequentially, each time picking the pair of unjoined vertices to join from

amongst the candidates with equal probability. Thus the process begins with a set of isolated

points and ends with a complete graph, i.e. G = (V, (V ∗ V)). As the graph grows it goes

through a number of stages, initially there are a number of small subgraphs, then around a

critical threshold, where the number of edges equals |V|/2, one component (a connected set

of nodes isolated from the remainder of the graph) , the so-called giant component, begins

to grow rapidly and dominate, there being only a few small bits separate from it, finally

everything become connected into a single component. The theory of this process is elegantly

developed in Bollob́as(1995) [5]. We illustrate the process in Figures 3, 4 & 5 which show

how tightly bounded is the size of the largest component.

It might be argued that this process is not truly growing since the number of vertices is

fixed throughout. One can add this feature fairly easily, either simply adding a new vertex

and then all the edges from that vertex to existing vertices with appropriate probabilities, or

alternately at each stage adding a vertex with some probability P (v, e), where v and e are

the existing numbers of vertices and edges. One has the option to make the expected degree

grow, shrink or remain fixed during these processes.
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Figure 3: The growth of the largest component for graphs with n = 102, 103, 105;
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Figure 5: The growth of the largest component with 95% confidence intervals for its size

7 More models of random graphs

We have already introduced the ER , RG and PA models. We now introduce other mod-

els, the first three of which, Cannings-Penman(CP ), Cannings & Penman(2003) [7], Pen-

man(1998) [20], the Domain Model(DM ), Thomas et al (2003) [27], and the Tag Model(TM

) Ravasz and Barabási (2003),[23] have, in contrast to the ER model, an intrinsic correlation

structure, the fourth, the Small World(SW ) ,Watts and Strogatz (1998) [29] , which has

been designed to have a small diameter (= max(i,j)s(i, j) where s(i, j) is the shortest path

between vertices i and j).

Cannings–Penman (CP)

Suppose that the vertices are “coloured” from some set S = {C1, C2, . . . , Cr} of r colours with

each vertex, independently of the others, having colour Ci with probability pi, and that once

the colours have been assigned a pair of vertices (i, j) are assigned an edge, independently of

all others edges, with probability pu(i),u(j) where u(x) is the colour of node x.

Now it is clear that this model has local structure. At one of the extremes if pu,v = 1 if

u = v and pu,v = 0 otherwise, we have r complete subgraphs, one for each colour. In this

case if vertex i has degree k and i is joined to j then vertex j also has degree k. At the other

extreme where pu,v = 0 if u = v and pu,v = 1 otherwise, we have a complete r-partite graph,

and two vertices not joined together (i.e. of the same colour) have the same degree.
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We first comment on the degree distribution. This is not, in general Poisson. If for some

specific vertex the colour is Ci then the degree distribution for that vertex, is B(n−1, µi) where

µi =
∑

j=1,r pjpCi,Cj
, i.e. approximately Po(nµi). For a random node, i.e. with unspecified

colour we therefore have degree distribution a mixture of Poissons i.e.
∑

i=1,r piPo(nµi), from

which one can create a whole range of distributions including power-law.

As an illustration of the difference between ER and CP we consider the probability that

there is a cycle on the nodes {0, 1, 2, . . . , k− 1} with (i, (i+1)modk) ∈ E ∀i, which of course

will also be the probability for any other cycle of k nodes. For ER this probability is simple

pk. To simplify somewhat we suppose that we have pu,v = θ if u = v and pu,v = χ otherwise,

and that each colour has probability of 1/r. We create a Markov chain, indexed by “time”

{0, 1, 2, 3, . . .}. We define Xt = 0 if for some pair (i− 1, i) where i = 1, . . . , t there is no edge,

and Xt = j if there is an edge (i − 1, i)∀ i = 1, t and the vertex t is coloured Cj . Xt keeps

track of the path which extends out from node 0 through nodes 1, 2, . . . and the current colour

at time t. We have transition probabilities matrix P given by

P =























1 0 0 . . . 0 0

ρ θ/r χ/r . . . χ/r χ/r

ρ χ/r θ/r . . . χ/r χ/r

... ... ... ... ... ...

ρ χ/r χ/r . . . θ/r χ/r

ρ χ/r χ/r . . . χ/r θ/r























where ρ is such that the row sums are one. Now it is straightforward to obtain the eigenval-

ues λi and left eigenvectors ui. These are λ0 = 1 and u0 = (1, 0, 0, . . . , 0), λ1 = (θ+(r−1)χ)/r

and u1 = (τ, 1, 1, . . . , 1) where τ need not be evaluated, and λj = (θ−χ)/r and uj = δj−δj+1

for j = 1, r − 1 where δj is a row vector with a 1 in position j and 0 elsewhere else. In order

to find the probability of the cycle in question we need to evaluate the probabilities that

X(r − 1) = i. Wlog we start with X(0) = 1, so the probability vector at time 0 is given by

v0 = (0, 1, 0, . . . , 0) = u1 + ur + . . . + (r + 1 − j)uj + . . . + (r − 1)u2 so at time t we have

vt = {(θ +(r− 1)χ)tu1 +(θ−χ)t
∑

j jur−j+1}/r
t. From this we can derive straightforwardly

the probability that the system is in state 1 or in one of the states 2, 3, . . . , r at time k − 1

and weighting these by the probabilities θ and χ that there is then a link to node 0, yield the

probability that the specific k-cycle occurs

P(k-cycle on {0, 1, 2, . . . k − 1}) = {(θ + (r − 1)χ)k + (r − 1)(θ − χ)k}/rk

For the special case where r = 2, i.e. two colours only we have

P(2-cycle on {0, 1, 2, . . . k − 1}) = {((θ + χ)/2)k + ((θ − χ)/2)k}

13



Now ((θ + χ)/2)k is the probability of the k-cycle in the ER graph with the same overall

probability of an edge. In the CP graph the probability of a k-cycle exceeds that of the

corresponding ER graph (i.e. with same overall edge probability) for all k when θ > χ, but

for θ < χ there are more k-cycles for even k and fewer for odd k.

8 Domain model (DM)

This model, presented in Thomas et al (2003) [27], is specifically of relevance to the PPI

problem. We suppose that there is a set

D = {A+, A−, B+, B−, . . . , U+, U−}

of 2d domains, which occur in pairs indexed by an ‘+’ or a ‘−’. These domains are entities

which exist on the surface of the protein, and are such that a protein with, for example, L+

will bind to one with L−, where L takes values A,B, . . . , U , but not to any other. Each

protein is assigned a binomial sample of the 2d domains with some probability p for each,

and the assignment to distinct proteins is taken as independent. Two proteins will bind if for

any of the “letters” one protein possesses L+ and the other L−.

In the resulting graph the set of proteins which possess an L of one form, or the other,

but not both, will form a complete bipartite component in the graph, as illustrated in Figure

6. If there are also proteins with both L+ and L− then these will be joined to every vertex of

the above bipartite component, to every other vertex with both and there will also be a loop

indicating that these proteins self-bind. Figure 7 shows a piece of the PRONET database of

human protein interactions, which appears to have a pattern suggestive of this model. Of

course any graph is made up of complete bipartite pieces, since a single edge is complete

bipartite.

B

C

A

W

X

Y

Z

Figure 6: A bipartite subgraph resulting from a single domain; A,B,C have L+, W,X,Y,Z

have L−

The DM is a special case of the CP model but there seems utility in presenting it in this

separate form. [27] derive the degree distribution (their equation 6) which is, as explained
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Figure 7: A small piece of PRONET

above, a mixture of binomials, and Figure 8 shows a log-log plot of the degree distribution

showing the clear non-linearity.

Finding the probabilities for various cycles is fairly difficult. For a triple of vertices {1, 2, 3}

suppose we first consider the letter A, and focuses initially only on the edges generated by

A+ and A− alone. We have, given that the probability that this signed domain is assigned to

any protein is p.

g0 = prob(0 edges) = 1 − 6p2 + 6p3 + 3p4 − 6p5 + 2p6,

g1 = prob(edges ⊂ {(1, 2)}) = 1 − 4p2 + 2p3 + 4p4 − 4p5 + p6,

g2 = prob(edges ⊂ {(1, 2), (1, 3)}) = 1 − 2p2 + p4

then

prob(triangle) = 1 − 3gd
2

+ 3gd
1
− gd

0

Expanding in Maple and removing terms of higher order gives

Expected(No of triangles) = (nλ)3λ(3 + 3λ + λ2)/(48d3) where λ = 2dp equals the average

number of domains per protein, n equals number of proteins. If we keep λ constant, and let
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Figure 8: Log-log plot of distribution of vertex degree in an interactome with 6000 proteins,

1000 domains and an average of 1 or 2 domains per protein, shown as solid and dotted lines

respectively

n → ∞ while n = ωd for some constant ω, we have that Expected(No of Triangles) remains

finite, i.e. any given triplet would almost surely not have a complete triangle.

Intuitively we can see why the above result occurs, and indeed extrapolate (informally) to

other cycles lengths. Suppose for a k− cycle that completion of that cycle involves l different

domains letters. Then the least number of signed-domains to achieve this occurs when the

proteins with a specific letter are adjacent in the cycle, and alternate + and −. We then

require k + l signed domains, except in the case where k is even and l = 1. Leaving aside the

last case we have that there are nCk cycles of length k, dCl ways of choosing l colours, we

have approximately that the expected number of k cycles with l colours is or order nkdlpk+l

which remains finite under the condition that n = ωd and dp is constant. On the other hand

when k is even and l = 1 there is an expected number which grows at least linearly. It is also

clear that almost all cycles result from a single domain pair.

9 Tag models (TM)

A model of current interest is that discussed by Caldarelli et al(2002) [6], Söderberg(2002)

[24] and Boguñá and Pastor-Satorras (2003) [4], but earlier described by Meester and Roy

(1996)[16]. This is is essentially a (potentially) continuous variation of the CP model. Each
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vertex is assigned a “tag”, a value drawn at random from a probability distribution, and

edges are then added with probabilities conditional on the tags at the vertices at the end

of the potential edge. The CP model is this model with a distribution over a discrete set.

As argued above the degree distribution is a mixture of Poisson distributions. This is also

demonstrated by [4] though their argument includes an unnecessary approximation (the ln

term in their equation (19) should be outside of the ρ(h
′
)). They also investigate various

correlations and expand somewhat on the model of [6], where the distribution of the tag h is

given by density ρ(h) = e−h for h ∈ [0,∞), and the probability that an edge exists between

vertices with tags h and h′ is r(h, h′) = H(h+h′− η) where H is the Heavyside step function

and η is a constant.

10 Small world (SW) & Erdös–Renyi–small world (RG (k,s))

Our final model is the Small World model. Following experiments on communication (see in

particular Milgram (1967) [17]) the following model has been formulated. Suppose that we

have a set of vertices V = {0, 1, 2, 3, . . . , n−1}. Initially we join nodes i and i if |i−j| < k, so if

the vertices represent individuals then we expect each individual to know his near neighbours

(arranged on a circle). Now, following Watts and Strogatz(1998) [29] with small probability p

break each edge and replace it with a random edge. This construct has lots of local clustering,

but still a smallish diameter, in contrast to the graph initially constructed.

As an illustration of some of the features of these SW graphs we consider the giant

component again. A simple variant on the ER proceeds as follows; at each stage pick k

vertices and join every pair of these i.e. add the clique on these vertices). Fig 9 shows how

the giant component grows for several small values of k (the threshold now occurs where the

number of edges added is n/2 ,i.e. after n/(k(k − 1)) additions.

Now we introduce a model which allows us to move smoothly from the ER to SW ,

RG (k,s). For RG (k,s) at each stage we pick a node, i say, at random and then for

j = 1, 2, . . . , (k − 1) we either take vertex i + j, with probability s, or a random vertex

with probability r = 1 − s. In this way we generate a set of k points and we join all pairs

of these. Thus r = 1 is ER and and r = 0 is equivalent to covering the circle by random

arcs. Fig 10 shows the growth of the largest component as r varies. The theory of the giant

component for the continuous version of RG(k,0) has been developed by Huillet(2003) [12].

11 Applying to PPI networks

There is now a substantial literature asserting that PPI networks are power law in their

degree distribution. For example, Yook et al(2004) [33] state, with respect to the PPI of

yeast and using four databases of such interactions, “...we show how each database supports
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Figure 9: The growth of the largest component for graphs where at each stage a randomly

selected r clique is added.

a scale-free topology ...”. However, in common with much of the literature there is no proper

statistical analysis, the fit of the data (in log-log form) to a straight line is performed using

least squares, but no consideration given to whether the fit was good in some sense, or whether

other models might fit better, nor what, if anything, it actually tells one about the real world.

They do not consider the sampling methods, nor the quality of the data. We discuss some of

these issues in the context of the Y2H assays.

Quality of the data

As pointed out earlier we should ideally look at a model where an absence of an edge has

alternate explanations. There is also a major issue with respect to the Y2H positives, i.e.

the edges of the network. Proteins which bind in the Y2H experimental system may not do

so in the organism under investigation, because they never occur in the same cell (the genes

switched on in a cell vary from tissue to tissue), they occur at different times or possibly

because one or other of the protein binds preferentially with some other molecule and loses

its capacity to bind with the other protein. For this reason the Y2H PPI network gives

us potentially a very inaccurate picture of the real PPI network. Sprinzak et al (2003) [25]

examined the MIPS, DIPS and BIND data bases. They checked interactions between pairs of

9347 proteins, and for each which showed a Y2H interaction checked to see if these proteins

co-localised to a common cellular compartment, and whether they were both involved in a
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Figure 10: The growth of the largest component for RG(1,r).

common cellular role. They estimated that only 50% of the observed interactions in Y2H

were true positives.

Sampling

Most of the Y2H interactions are found by laboratories who have a particular interest in

some specific protein, or group of proteins, and they compare these with various others so

that when a PPI network is formed from many such experiments it is by no means a random

sample, being more clustered, than the underlying network. Uetz et al (2000 )[28] and Ito

et al (2001) [13] have, in contrast, carried out substantial laboratory screens of the proteins

of yeast. Figure 11 shows the PPI network obtained by [28]. However even such screens

necessarily have sampling schemes which require careful attention.

Thomas et al(2003) [27] simulated a process imitating the laboratory protocol of [28].

They demonstrated that in both the case where the underlying model was ER and DM

(with parameter values appropriate to yeast and the experimental protocol), the resulting

log-log plot was approximately linear , and the same held in the case where the data used

was taken from the DIPs data-base Figure 13. In fact the fit to the data was better than that

of the power law, by least squares, though it is not entirely clear that this is a good method

of fitting, and further work is needed on this topic.

We thus would conclude that there is no firm evidence that a power-law is an appropriate

fit to the data, and more importantly it has been shown that even if the fit to the data looks
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Figure 11: The PPI network for the Uetz et al data

approximately like a power-law it is wrong to infer that the underlying distribution is power-

law. This argument has been reinforced by the recent work of Han et al (2005) [11], who

sampled (in a plausible manner) from a variety of different random graph models and also

concluded that this could give “..topological characteristics virtually indistinguishable from

those of the currently available Y2H-derived partial interactome maps.”. As Stumpf et al

(2005) [26] point out even randomly sampling from a power law network will not give one a

power law sample. It is clear the problem of infering the appropriate population distribution

is not straightforward. The practice of fitting a distribution to the data, and ignoring the

sampling is at best misleading.

12 Fitting by motif

Pržulj (2005) [22] fitted the PPI networks of both yeast and drosophila. They used the

frequencies of each of the possible subgraphs on 3, 4 and 5 nodes, there being 2, 6 and 21

permutationally distinct possibilities respectively. Thus they had 29 objects whose frequencies

were used. They then used as a measure of the difference between two graphs G and H,

D(G,H) =
∑

i=1,29 |Fi(G) − Fi(H)| where Fi(X) = −log(Ni(X)/T (X)) where Ni(X) is

the number of occurrences of the ith subgraph, and T (X) is the total number of the 29

possibilities. They concluded that, when they computed the measure between each of a

number of real-world PPI’s and ER, PL and RG , with one exception the RG fitted best (i.e.

had the smallest distance). Deshmukh et al [8] discuss a similar approach and demonstrate

that, in the context of the DM , the number of unchorded four-cycles is a reliable statistic

on which to base parameter estimation, and used this statistic to estimate parameters for a

variety of data sets.
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Figure 12: Log-log plots of the observed plots for Uetz and Ito data-sets, the fitted DM curve

and the power-law (dotted line)

13 Discussion

Knowledge of the structure of the PPI network and its variation within and across phyla,

should provide insight into evolution, and better understanding of how such networks allow

robustness, adaptability and potential for further evolution. In this paper I have attempted

to present an overview of some of the random graph models which are available as tools in

this investigation.

What I have, provocatively, called the Central Dogma of Biological Networks says

that biological networks are scale-free (power law). The objective here has been to review a

variety of random graph models, including some new ones, and to demonstrate, in the context

of protein-protein interaction networks, that the evidence for these being scale-free does not

survive scrutiny. Inadequate statistical inference, including not carrying out any goodness-

of-fit tests, having no proper model of error structure, ignoring the effect of sampling and not

considering alternate models have led many authors to report yet another power law. However

a series of recent papers have questioned whether PPI networks are scale-free (in their degree

distribution), both from a theoretical and practical standpoint. It has been suggested that a

variety of other models fit better to the existing data in a variety of organisms.

What is also clear is that the statistical methods for choosing between alternative hy-

potheses needs further development before we can be confident as to the underlying networks.

21



0 1 2 3 4 5

−8
−7

−6
−5

−4
−3

−2

Log Degree

Lo
g 

Fr
eq

ue
nc

y

Figure 13: Comparison of the log-log plots of the DIPs data and the model fit (solid lines)

and the power-law (dotted line).

Hopefully this contribution will encourage that development.
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Abstract

A recently proposed method for detecting mosaic structures in DNA sequence align-

ments is based on the combination of hidden Markov models (HMMs) with phylogenetic

trees. Inference is done in a Bayesian way by sampling the model parameters and hidden

state sequences from the posterior distribution with Markov chain Monte Carlo (MCMC).

In an earlier method, proposed in [1], this was effected with a nested Gibbs-within-Gibbs

scheme. The present article discusses a modification of the MCMC sampling method,

based on a modification of the standard forward-backward algorithm and an unnested

Gibbs sampling procedure. We have tested the modified algorithm on various synthetic

and real-world DNA sequence alignments, where we have observed a significant improve-

ment in the mixing and convergence of the Markov chain. As a practical consequence, the

computational costs are substantially reduced, and the predictions become more reliable.

Keywords: Interspecific recombination, phylogenetics, hidden Markov models, Gibbs sam-

pling.

1 Introduction

The underlying assumption of most phylogenetic tree reconstruction methods is that there is

one set of hierarchical relationships among the taxa. While this is a reasonable approach when

applied to most DNA sequence alignments, it can be violated in certain bacteria and viruses

due to interspecific recombination. The resulting transfer or exchange of DNA subsequences

can lead to a change of the branching order (topology) in the affected region, which results

in conflicting phylogenetic information from different regions of the alignment. If undetected,
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the presence of these so-called mosaic sequences can lead to systematic errors in phylogenetic

tree estimation. Their detection, therefore, is a crucial prerequisite for consistently inferring

the evolutionary history of a set of DNA sequences.

A promising approach to detecting interspecific recombination, proposed in [1], is to com-

bine phylogenetic trees and hidden Markov models (HMMs). Such phylogenetic HMMs were

originally introduced in [2] to allow for autocorrelation between evolutionary rates at different

sites. In [3], a phylogenetic HMM for modelling general mosaic structures in DNA sequence

alignments was proposed, with wide applications in the context of functional genomics. The

model in [1], which follows up on earlier work in [4] and [5], can be regarded as a special case of

the more general model of [3]. The idea is to introduce a hidden state that represents the tree

topology at a given site. A state transition from one topology into another corresponds to a

recombination event. To introduce correlations between adjacent sites, the hidden states are

given a Markovian dependence structure. Thus, the standard model of a phylogenetic tree is

generalized by the combination of two probabilistic models: (1) a taxon graph (phylogenetic

tree) representing the relationships among the taxa, and (2) a site graph (HMM) representing

dependencies between different sites in the DNA sequence alignment. Breakpoints of mosaic

segments in the alignment are indicated by state transitions in the site graph. While this

method can only deal with a small number of sequences simultaneously (typically as little as

4), it was found to have the potential to predict the locations and breakpoints of recombinant

regions more accurately than what can be achieved with most existing techniques [1].

An important question is how to estimate the parameters of a phylogenetic HMM from a

training set. This problem was not addressed in [2], where the model parameters had to be

selected by the user without reference to any training data. Siepel et al. [3] discuss the case of

supervised learning, where the mosaic structure of the DNA sequence alignment is assumed

to be known. This approach seems to be meaningful in the context of functional genomics:

given a training set of annotated DNA sequence alignments, we want to learn a model that

will make meaningful predictions on related unannotated sequence alignments. However, the

application to the detection of recombination is different in that we are typically only given

a single unannotated sequence alignment. Consequently, training has to be unsupervised,

which means that parameter estimation and prediction have to be carried out simultaneously.

The method proposed in [1] addresses this inference problem in terms of a hierarchical

Bayesian model. Parameters are first divided into groups. Parameter groups are then sampled

from the posterior distribution with Gibbs sampling, that is, one group is sampled conditional

on fixed settings of the other groups. While Gibbs sampling is guaranteed to converge to the

true posterior distribution [6], this convergence can, in practice, be rather slow. In fact,

while the results reported in [1] were very promising, the computational costs of the MCMC

simulations were discouragingly high. As it turns out, the bottleneck of the sampling scheme

proposed in [1] is a nested Gibbs-within-Gibbs procedure, which slows down the convergence
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and mixing of the Markov chain. The objective of the present article is to discuss and evaluate

a modified sampling approach. The approach itself, which is based on a modification of the

forward-backward algorithm for HMMs [7], is not new: it was introduced in the context of

Bayesian non-phylogenetic HMMs in [8]. We will show that its application to the detection

of recombination leads to a considerable reduction in the computational costs and, thereby,

significantly improves the practical viability of the Bayesian phylogenetic HMM scheme in

[1].

2 Method

We start with a brief summary of the Bayesian phylogenetic HMM method proposed in

[1]. Consider an alignment D of m DNA sequences, N nucleotides long. Let a column in

the alignment be represented by yt, where the subscript t represents the site, 1 ≤ t ≤ N .

Hence yt is an m-dimensional column vector that contains the nucleotides at the tth site

of the alignment, and D = (y1, . . . ,yN ). To model topology changes caused by recombina-

tion, a hidden variable St ∈ {τ1, . . . , τK} is introduced, which represents the tree topol-

ogy τi ∈ {τ1, . . . , τK} at site t. To allow for correlations between nearby sites – while

keeping the computational complexity limited – a Markovian dependence structure is in-

troduced: P (S1, . . . , SN ) =
∏N

t=2
P (St|St−1)P (S1). The transition probabilities are defined

as P (St|St−1, ν) = νδ(St, St−1) + 1−ν
K−1

[1 − δ(St, St−1)], where δ(St, St−1) denotes the Kro-

necker delta symbol, which is 1 when St = St−1, and 0 otherwise. Associated with each

state St is a vector of branch lengths, wSt
, and a set of nucleotide substitution parameters,

θSt
, which together define the probability of a column of nucleotides, P (yt|St,wSt

,θSt
). The

practical computation is easily effected with the pruning algorithm [9]. To simplify the no-

tation, we introduce the accumulated vectors w = (w1, . . . ,wK) and θ = (θ1, . . . ,θK) and

define: P (yt|St,wSt
,θSt

) = P (yt|St,w,θ). This means that St indicates which subvectors of

w and θ apply. The resulting model is an HMM, with emission probabilities P (yt|St,w,θ),

and transition probabilities P (St|St−1, ν). In order to proceed with inference according to

the Bayesian paradigm, prior probabilities are imposed on the parameters. These priors are

chosen to be vague, but proper, and conjugate where possible; see [1] for details.

Recall that the tree topology can change as a consequence of recombination. This corre-

sponds to a state transition St = τi → St+1 = τ(k 6=i), at the breakpoint t of the affected region.

Our main objective, thus, is the prediction of the state sequence S = (S1, . . . , SN ) or, in order

to capture the intrinsic uncertainty of the prediction, the marginal posterior probability

P (St|D) =
∑

S1

. . .
∑

St−1

∑

St+1

. . .
∑

SN

P (S|D) (1)
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The distribution P (S|D) is obtained by integrating out the model parameters:

P (S|D) =

∫

P (S,w,θ, ν|D)dwdθdν (2)

This integral is analytically intractable and has to be numerically approximated with Markov

chain Monte Carlo (MCMC): we sample from the joint posterior distribution P (S,w,θ, ν|D)

and then discard the model parameters. Sampling from the joint posterior distribution follows

a Gibbs sampling procedure [6], where each parameter group is sampled separately conditional

on the others. So if the superscript (i) denotes the ith sample of the Markov chain, we obtain

the (i + 1)th sample as follows:

S(i+1) ∼ P (·|w(i),θ(i), ν(i),D)

w(i+1) ∼ P (·|S(i+1),θ(i), ν(i),D)

θ
(i+1) ∼ P (·|S(i+1),w(i+1), ν(i),D) (3)

ν(i+1) ∼ P (·|S(i+1),w(i+1),θ(i+1),D)

The order of these sampling steps, which are discussed in detail in [1], is arbitrary.

3 Improved sampling scheme

To sample the state sequences S from P (S|w(i),θ(i), ν(i),D), a Gibbs-within-Gibbs procedure
was adopted in [1]. Here, the individual hidden states St of the Markov chain are sampled in
separate Gibbs steps:

S
(i+1)

1
∼ P (·|S

(i)

2
, S

(i)

3
, . . . , S

(i)

N ,D,w
(i)

, θ
(i)

, ν
(i))

S
(i+1)

2
∼ P (·|S

(i+1)

1
, S

(i)

3
, . . . , S

(i)

N ,D,w
(i)

, θ
(i)

, ν
(i))

... (4)

S
(i+1)

N ∼ P (·|S
(i+1)

1
, S

(i+1)

2
, . . . , S

(i+1)

N−1
,D, w

(i)
, θ

(i)
, ν
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The computational complexity of this scheme is reduced considerably by application of

conditional independence relations in HMMs (see also Figure 3 in [8] for a graph-theoretical

explanation):

P (St|S1, . . . , St−1, St+1, . . . , SN ,D,w,θ, ν)

= P (St|St−1, St+1,yt,w,θ, ν) (5)

∝ P (St+1|St, ν)P (St|St−1, ν)P (yt|St,w,θ)

This sampling procedure was first proposed in [10], and it has also been discussed in [8].

However, Boys et al. [8] conjectured that the resulting mixing and convergence of the Markov

chain might be slow due to the large number of component blocks, and they proposed the

following alternative sampling scheme. Define

αt(St) = P (y1, . . . ,yt, St) (6)
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which is the function computed in the forward pass of the forward-backward algorithm for
HMMs; see, for instance, [7]. Now,

P (St|St+1, . . . , SN , y1, . . . ,yN )

∝ P (St, St+1, . . . , SN ,y1, . . . ,yN )

= P (yt+1, . . . ,yN , St+1, . . . , SN |St,y1, . . . ,yt)

P (St,y1, . . . ,yt)

= P (yt+1, . . . ,yN , St+1, . . . , SN |St)αt(St)

= P (yt+1, . . . ,yN , St+2, . . . , SN |St+1)P (St+1|St)αt(St)

∝ P (St+1|St)αt(St) (7)

The simplifications carried out here follow directly from the independence relations in HMMs.

The last step follows from the fact that the first term in the second-last line is independent

of St and therefore cancels out in the normalization:

P (St = τk|St+1, . . . , SN ,y1, . . . ,yN )

=
P (St+1|St = τk)αt(St = τk)

∑

i P (St+1|St = τi)αt(St = τi)
(8)

Obviously, any scaling constant also cancels out in the normalization; hence replacing αt(St)

by some scaled version for numerical stabilization of the forward algorithm will not affect

the result. The algorithm is initialized by drawing the final state, SN , from the following

distribution:

P (SN = τk|y1, . . . ,yN ) =
αN (SN = τk)

∑

i αN (SN = τi)
(9)

The overall algorithm can thus be summarized as follows:

• Run the (scaled) forward-backward algorithm.

• Sample SN from (9).

• Sample the remaining states SN−1, . . . , S1 recursively from (8).

Note that at the end of this recursion, henceforth referred to as the stochastic forward-

backward algorithm, a whole state sequence S = (S1, . . . , SN ) has been sampled from P (S|w(i),

θ
(i), ν(i),D).

4 Data

We have compared the two sampling schemes on various synthetic and real-world DNA se-

quence alignments. All alignments contain four sequences; hence the total number of possible

tree topologies is K = 3.
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Figure 1: Simulated recombination. Four sequences are evolved along the interior branch

and the first half of the exterior branches of a phylogenetic tree (top left). At this point,

the subsequence between sites 201 and 400 in Strain 3 is replaced by the corresponding

subsequence in Strain 1 (top centre). The sequences then continue to evolve along the exterior

branches until the branch length is 0.75 times the final exterior branch length (top right).

This is followed by a second recombination event, where the subsequence between sites 601

and 800 in Strain 2 replaces the corresponding subsequence in Strain 3 (bottom left). The

sequences then continue to evolve along the exterior branches for the remaining length (bottom

centre). The resulting mosaic structure is shown in the bottom right. The first, more ancient,

recombination event corresponds to a transition from topology τ1 into topology τ2, where τ1

= [(Strain 1, Strain 2), (Strain 3, Strain 4)] and τ2 = [(Strain 1, Strain 3), (Strain 2, Strain

4)]. The second, more recent, recombination event corresponds to a transition from topology

τ1 into topology τ3, where τ3 = [(Strain 1, Strain 4), (Strain 2, Strain 3)]. Note that this

simulates a realistic scenario where an ancestor of Strain 3 incorporates genetic material from

ancestors of other extant strains, which in each case is followed by subsequent evolution.
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Figure 2: MCMC trace plots of the log likelihood. The top row shows results obtained with

the Gibbs-within-Gibbs scheme; the bottom row shows results obtained with the stochastic

forward-backward algorithm. The different columns refer to different DNA sequence align-

ments. Left column: Synthetic sequences, long branch lengths (w = 0.15). Middle column:

Synthetic sequences, short branch lengths (w = 0.01). Right column: Hepatitis B virus.

30



100 200 300 400 500 600 700 800 900 1000
0

0.5

1

P
(S

1|D
)

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

P
(S

2|D
)

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

Site

P
(S

3|D
)

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

P
(S

1|D
)

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

P
(S

2|D
)

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

Site

P
(S

3|D
)

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

P
(S

1|D
)

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

P
(S

2|D
)

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

Site

P
(S

3|D
)

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

P
(S

1|D
)

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

P
(S

2|D
)

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

Site

P
(S

3|D
)

Figure 3: Synthetic DNA sequence alignment. The left panel shows the prediction

obtained with the Gibbs-within-Gibbs scheme; the right panel shows the prediction obtained

with the stochastic forward-backward algorithm. Each panel contains three subfigures, which

show the predicted posterior probabilities of the three topologies, P (St = τ1|D) (top), P (St =

τ2|D) (middle), and P (St = τ3|D) (bottom), plotted against the site t in the DNA sequence

alignment. Top panel: long branch lengths. The MCMC simulations were run for 500 burn-in

and 500 sampling steps. Bottom panel: short branch lengths. The MCMC simulations were

run for 1000 burn-in and 1000 sampling steps.
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Figure 4: Predicted mosaic structures in real-world DNA sequence alignments.

The left panel shows the prediction obtained with the Gibbs-within-Gibbs scheme; the right

panel shows the prediction obtained with the stochastic forward-backward algorithm. Each

panel contains three subfigures, which show the predicted posterior probabilities of the three

topologies, P (St = τ1|D) (top), P (St = τ2|D) (middle), and P (St = τ3|D) (bottom), plotted

against the site t in the DNA sequence alignment. Top panel: Maize actin genes (5000 burn-in

and 5000 sampling steps). Middle panel: Neisseria (5000 burn-in and 5000 sampling steps).

Bottom panel: Hepatitis-B virus (104 burn-in and 104 sampling steps).
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Simulated recombination. DNA sequences, 1000 bases long, were evolved along a 4-species

tree, using the Kimura model of nucleotide substitution [11] with a transition-transversion

ratio of 2. Two recombination events were simulated, as shown in Figure 1. Topology τ1

is the ‘true’ topology, which applies to those parts of the alignment that are not affected

by recombination. The sequence alignment contains two recombinant regions: between sites

201 and 400 (topology τ2), and between sites 601 and 800 (topology τ3). The simulations

were repeated twice, for long (w = 0.15) and for short (w = 0.01) branch lengths of the

phylogenetic tree. Note that as the branch lengths decrease, the number of polymorphic and

topology-defining sites decreases. This reduces the information content in the alignment and

renders the detection of recombinant regions more difficult.

Maize actin genes. Gene conversion is a process equivalent to recombination, which occurs

in multigene families, where a DNA subsequence of one gene can be replaced by the DNA

subsequence from another. Indication of gene conversion between a pair of maize actin genes

was reported in [12], who showed that the Maz56 and Maz63 genes had a gene conversion

covering the last 130 nucleotides of their coding regions. We applied our algorithm to a

multiple alignment of the following four maize sequences: Maz56 (GenBank/EMBL accession

number U60514), Maz63 (U60513), Maz89 (U60508), and Maz95 (U60507). The sequences

were aligned with Clustal-W [13], using the default parameter settings. We define the three

tree topologies as follows. τ1 : [(Maz56, Maz63), (Maz89, Maz95)]; τ2 : [(Maz56, Maz89),

(Maz63, Maz95)]; τ3 : [(Maz56, Maz95), (Maz63, Maz89)]. With this definition, the ‘true’

mosaic structure shows a transition from τ1 into τ3 at the end of the alignment.

Neisseria. One of the first indications for sporadic recombination was found in the bacterial

genus Neisseria [14]. We chose a subset of the 787-nucleotide Neisseria argF DNA multi-

ple alignment studied in [15], where we selected the four strains N.gonorrhoeae (X64860),

N.meningitidis (X64866), N.cinera (X64869), and N.mucosa (X64873) (GenBank/EMBL ac-

cession numbers are in brackets). We define the topologies as follows. τ1 : [(N.gonorrhoeae,

N.meningitidis), (N.cinera, N.mucosa)]; τ2 : [(N.gonorrhoeae, N.cinera), (N.meningitidis,

N.mucosa)]; τ3 : [(N.gonorrhoeae, N.mucosa), (N.cinera, N.meningitidis)]. The mosaic struc-

ture is discussed in more detail in [1].

Hepatitis B is caused by a DNA virus with a short genome of 3200 bases. Evidence for recom-

bination was found in [16]. In the present paper we investigate a subset of four strains with the

following GenBank identifiers (accession numbers in square brackets): HPBADW1 [D00329],

HPBADW2 [D00330], HPBADWZCG [M57663], and HPBADRC [D00630]. We define the

topologies as follows. τ1 : [(HPBADW1, HPBADW2), (HPBADWZCG, HPBADRC)]; τ2 :

[(HPBADW1, HPBADWZCG), (HPBADW2, HPBADRC)]; τ3 : [(HPBADW1, HPBADRC),

33



(HPBADWZCG, HPBADW2)]. The sequences were aligned with Clustal-W, using the de-

fault parameters. Columns with gaps were discarded, giving a total alignment length of 3049

bases. Bollyky et al. [16] found a recombinant region of 189 bases in HPBADWZCG between

t = 1865 and t = 2054 (when not removing gaps: t = 2014 − 2203), corresponding to a

transition from topology τ1 into topology τ2.

5 Simulations

We carried out the MCMC simulations as reported in [1], but with a considerable reduction

in the burn-in and sampling periods. The MCMC simulations reported in [1] were run for

105−106 Gibbs sampling steps, which required several hours of CPU time (on a Sun Ultra-60).

We reduced these simulation times by two orders of magnitude to 103 − 104 Gibbs sampling

steps. These simulations require only a few minutes of CPU time, and they are hence more

realistic in terms of the computational costs a biological end-user is willing to accept. Our

main objective was to compare the performance of the stochastic forward-backward algorithm

with the Gibbs-within-Gibbs scheme for these shortened simulation times. Note that each

iteration of the stochastic forward-backward algorithm traverses the DNA sequence alignment

twice: first in the forward direction to compute α, and then in the backward direction to

sample new hidden states St. For a fair comparison between the two sampling schemes, we

therefore repeated each iteration of the Gibbs-within-Gibbs scheme (4) twice also: once in

the forward, and once in the backward direction, with the order chosen at random. A double

traverse of the sequence was then counted as one Gibbs sampling step.

6 Results

Figure 2 shows MCMC trace plots of the log likelihood for three DNA sequence alignments.

The top panel of the figure clearly demonstrates that the Gibbs-within-Gibbs sampling scheme

consistently fails to converge. The bottom panel shows the trace plots obtained with the

stochastic forward-backward algorithm, which suggest that the convergence has significantly

improved. To evaluate the predictive performance of the two algorithms, we divided each

MCMC trajectory into two parts of equal length: a burn-in period, which was discarded, and

a sampling phase, from which the marginal posterior probabilities of the K = 3 tree topologies

were computed (by application of (1)). Recall that these marginal probabilities allow us to

investigate the mosaic structure of a DNA sequence alignment: a plot of P (St = τi|D) along

the sequence alignment, t = 1, . . . , N , for all possible tree topologies, i = 1, . . . ,K, provides

clear indications about topology changes and, hence, recombination breakpoints.

The top panel of Figure 3 shows the results obtained on the first synthetic DNA sequence

alignment. The difference between the two sampling schemes is minor, and the two recombi-
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nant regions are predicted correctly; compare with the bottom right panel of Figure 1.

The bottom panel of Figure 3 shows the results obtained on the second synthetic DNA

sequence alignment. Here, the branch lengths of the phylogenetic tree have been decreased

from w = 0.15 to w = 0.01. This considerably reduces the number of polymorphic and

topology-defining sites, which renders the identification of the recombinant regions consid-

erably more difficult. In fact, only two topology-defining sites happened to lie in the first

recombinant region, which might explain why both sampling schemes failed to detect it. The

second recombinant region is clearly detected with the stochastic forward-backward algo-

rithm, while the Gibbs-within-Gibbs scheme leads to an erratic signal as a consequence of

insufficient convergence of the Markov chain.

The top panel of Figure 4 shows the prediction of gene conversion in maize actin genes.

Both algorithms predict a transition into topology τ3 at the end of the alignment, in agreement

with [12]. However, when applying the Gibbs-within-Gibbs scheme, this transition is preceded

by a transition into topology τ2. This is a spurious gene conversion event, which results from

insufficient convergence of the Markov chain and disappears when (considerably) increasing

the number of Gibbs sampling steps.

The prediction of recombination in Neisseria is shown in the middle panel of Figure 4.

When applying the stochastic forward-backward algorithm, we reproduce the results of [1];

these are the marginal posterior probabilities that the Gibbs-within-Gibbs scheme eventually

converges to. However, for the chosen simulation length of 104 Gibbs steps, the Gibbs-

within-Gibbs scheme is still far away from convergence. This is shown in the left panel of

Figure 4, which strongly deviates from the findings in [1]. Also, as opposed to the stochastic

forward-backward algorithm, the Gibbs-within-Gibbs scheme was found to exhibit a strong

dependence on the initialization of the Markov chain (results not included), which clearly

indicates insufficient convergence.

Finally, the bottom panel of Figure 4 shows the marginal posterior probabilities for the

Hepatitis-B virus sequence alignment, as obtained after 104 Gibbs sampling steps (preceded

by a burn-in phase of the same length). The Gibbs-within-Gibbs scheme leads to an erratic

signal that does not capture any true features of the mosaic structure of the alignment. On the

contrary, the stochastic forward-backward algorithm detects the mosaic structure predicted

in [16]. This concurs with the marginal posterior probabilities found in [1], to which the

Gibbs-within-Gibbs scheme converges after about 106 sampling steps, that is, after several

hours of CPU time.

7 Discussion

The combination of HMMs and phylogenetic trees has proven to be a promising approach

to the detection of interspecific recombination in DNA sequence alignments. However, the
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Bayesian MCMC sampling scheme proposed in [1] is computationally expensive due to slow

convergence and mixing of the Markov chain. At the heart of the problem is the Gibbs-within-

Gibbs scheme for sampling the hidden state sequences. This scheme was proposed in [10], and

it has been applied in several other applications since; see, for example, [17]. However, Boys

et al. [8] conjectured that its mixing and convergence properties might be slow. The authors

proposed an alternative sampling scheme, based on a modification of the forward-backward

algorithm for HMMs. Their study did not include an explicit comparison between the two

methods, though. In the present paper, we have compared both sampling schemes on various

synthetic and real-world DNA sequence alignments. Our simulations suggest that with the

stochastic forward-backward algorithm, the lengths of the MCMC simulations can be reduced

by about two orders of magnitude, from 105 − 106 down to 103 − 104 Gibbs sampling steps.

This corresponds to a decrease in the (Sun Ultra-60) CPU time from typically several hours

(required for the simulations reported in [1]) to less than 10 minutes. We trust that this

considerable reduction in the computational costs renders our phylogenetic HMM method,

which has been implemented in a freely available software package [18], a more useful tool for

practical applications. Since phylogenetic HMMs are increasingly being applied in functional

and comparative genomics, as briefly outlined in the Introduction section, we assume that

the findings of our study could be of wider interest beyond the detection of recombination.
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Physical and genetic mapping in whole genome

sequencing era: an overview

Ĺıbia Zé-Zé ∗ Luzia Gonçalves † Maria Antónia Amaral Turkman ‡

Abstract

Nowadays, a huge amount of genomic sequence information becomes available every-

day through genome sequencing projects. However, the physical methods for the con-

struction of bacterial chromosome maps, by a ’top-down’ approach using pulsed field gel

electrophoresis (PFGE) remains a powerful tool in the study of genome structure and

plasticity, namely in the framework of phylogenetics and comparative evolutionary stud-

ies.

The laboratory procedures for the construction of bacterial genomic maps, using ex-

amples of Oenococcus oeni chromosome mapping, will be presented. The advantages of

a combined statistical approach during map construction in determining the overlapping

probabilities of macrorestriction fragments and directing experimental procedures (and

saving time and money) will be discussed.

Keywords: Physical mapping; Whole genome sequencing; Overlap probabilities; Bayes’

theorem.

Abbreviations: STS, Sequence tagged sites; PFGE, Pulsed field gel electrophoresis; 2D-

PFGE, Two dimensional-Pulsed field gel electrophoresis; bp, base pairs; kb, kilo base pairs,

1.000 bp; Mb, mega base pairs, 1.000 000 bp; LAB, Lactic acid bacteria.

1 Introduction

The location of landmarks along a chromosome or DNA segment constitutes a physical map.

These landmarks are signature sequences that in bacterial physical maps are usually restric-

tion sites (specific sequences of 4-8 bp or more that are recognized and cut by restriction
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Ciência Aplicada e Tecnologia, Lisboa, Portugal.E-mail:lmze-ze@fc.ul.pt
†Unidade de Epidemiologia e Bioestat́ıstica, Instituto de Higiene e Medicina Tropical-Universidade Nova

de Lisboa, and Centro de Estat́ıstica e Aplicações-UL. E-mail: luziag@ihmt.unl.pt
‡Universidade de Lisboa, Faculdade de Ciências, Departamento de Estat́ıstica e Investigação Operacional

and Centro de Estat́ıstica e Aplicações-UL. E-mail:antonia.turkman@fc.ul.pt

39



enzymes) and in eukaryotic maps are sequence tagged sites (STS). When genes or other

significant genomic targets are located in a physical map, a genetic map is generated.

Comparative analysis of genome structure at intraspecific level enables the identification

of the genetic events (namely, homologous recombination, insertion/deletion, duplication,

transposition) and some DNA sequences possibly involved in rearrangements (as IS elements,

prophages and duplicated regions/genes). This macrodiversity is displayed through the com-

parative analysis of gene positioning and macrorestriction polymorphisms in the chromosome

maps of different strains. Comparison of genomes of strains belonging to divergent groups

can also give some insights on the genomic mechanisms driving evolution in a bacterial phy-

logenetic group.

2 The basic and technicalities of physical and genetic mapping

The first step in bacterial physical mapping typically involves the separate use of at least two

rare cutting restriction enzymes to cut the chromosome in a manageable number of fragments

(ideally, up to 30), called macrorestriction fragments, that are after separated by PFGE and

their sizes estimated by linear interpolation with two flanking size standards. PFGE is a

specific agarose gel electrophoresis system that by using alternating electric fields enables

the separation of large DNA molecules, ranging from 5 kb to more than 2.0 Mb. To avoid

chromosome breakage by mechanical shearing during DNA extraction (that would mess up

the specific assignment of DNA fragments in the chromosome), DNA molecules are purified

in agarose plugs (Sambrook et al., 1989). To help the assignment of the restriction fragments,

with each other and in the chromosome, several different approaches can be pursued.

In partial digestion experiments, by using lower enzyme concentration or reaction incuba-

tion times, the restriction reaction in suboptimal conditions is promoted. As a result, some

of the restriction sites in the chromosome remain uncut and by PFGE electrophoresis the

fragments that appear linked can be assigned as consecutive in the chromosome.

In double-digestion experiments, two restriction enzymes are used simultaneously on ge-

nomic DNA enabling the determination of fragment overlapping. These analysis of double-

digestion experiments can be troublesome, namely if the fragment overlapping is very small

(less than 10 kb). To help the assignment of double digestion fragments, a two dimensional

PFGE (2D-PFGE) can also be used. Traditionally, in 2D-PFGE experiments (Bautsch, 1988)

the restriction profiles (containing all restriction fragments) obtained with one enzyme were

excised from the gel, sequentially digested with the second enzyme and submitted to a second

electrophoresis. Nevertheless, by this approach the fragments that appear as spots in the gel

are frequently ambiguous to assign. In a slightly different version of 2D-PFGE (Zé-Zé et al.,

1998), the restriction fragments obtained with one enzyme are individually excised from the

gel and, after the second restriction digestion, submitted again to PFGE.
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Hybridization experiments are powerful tools in the assignment of DNA probes (as genes,

repetitive sequences or genomic library clones) to a specific chromosome site, enabled by

the specific annealing of the probe DNA (in single strand) with complementary chromosome

sequences previously denaturated (and so, also presented in single strand forms) (Sambrook

et al., 1989).

3 The case study: a wine bacterium

Oenococcus oeni (Dicks et al., 1995) is a lactic acid bacteria (LAB) occurring naturally in

wine and related habitats, which is characterized by its peculiar acidophilic nature and growth

in media containing high ethanol levels. This bacterium is the main responsible for the

malolactic fermentation, a fermentation that happens mostly in red wines enhancing the

stability and organoleptic properties of the wine (Garvie, 1986). Regarding the benefits, O.

oeni strains are used as starter cultures to ensure malolactic fermentation in winemaking

processes. Concerning the scientific interest in this species, several phylogenetic studies have

considered O. oeni as a fast-evolving species and highlighted their evolutionary divergence

(Yang and Woese, 1989, Martinez-Murcia and Collins, 1990, Collins et al., 1991, Martinez-

Murcia et al., 1993, Morse et al., 1996).

In the bacterial chromosome mapping of O. oeni strains (Zé-Zé et al., 1998; 2000) South-

ern hybridization was used to allocate DNA probes to PFGE blots with restriction profiles

generated by five different restriction enzymes. The location of several housekeeping genes

was achieved using homologous and heterologous probes from phylogenetically related species.

Additional experiments had to be made to determine gene transcription direction of ribosomal

genes. The first published physical map in O. oeni was of PSU-1 strain chromosome (with

1857 kb) using four restriction enzymes and enabling the mapping of 37 restriction sites using

combined PFGE and hybridization experimental approaches (Zé-Zé et al., 1998). Ten genetic

markers were also located in PSU-1 chromosome, including IS1165 insertion sequence and the

attachment sites of bacteriophages. The physical map presented an appropriate resolution as

the majority of map intervals (62.5%) are smaller than 50 kb (Figure 1). In the framework of

phylogenetic and comparative evolutionary studies in Oenococcus, an O. oeni divergent strain

GM was also selected for physical map construction, aiming to determine the processes driv-

ing genome structure and plasticity in this species. As it can be observed in Figure 2, by the

comparison of PSU-1 and GM genomic maps, we can identify several genetic events, namely

insertion and deletion events and different location of some DNA sequences (IS elements and

prophages attachment sites) (Zé-Zé et al., 2000).
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Figure 1: Physical map of the chromosome of O. oeni PSU-1 using enzymes AscI, FseI,

NotI and SfiI. Radiating out from the centre, the four annuli show the restriction sites for

the four respective enzymes. Fragments are identified by initial letter of the enzyme and

numbered in order from the largest to the smallest; the scale is in kb. The location of several

genetic markers is also shown, although the order of markers in a single fragment is arbitrary.

Direction of transcription of rrn operons is indicated by an arrow (extracted from Zé-Zé et

al., 1998).

4 Statistics as a tool in genome mapping

4.1 Overlap probabilities based on fragment lengths

The overlap detection between fragment pairs is an important step to help in physical map-

ping. The statistical analysis does not provide the identification of the “true” overlaps, but

it can help in simplifying the combinatorial puzzle where pieces are restriction fragments.

The lengths of fragments can be very informative to identify the overlapping relation-

ship between two fragments. Let N be the genome length in kilobases (kb). Consider two

fragments Ai and Bj , obtained applying enzymes A and B, separately, with fixed lengths Li
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Figure 2: Comparison of the physical and genetic maps of O. oeni strains GM and PSU-1.

Restriction sites for AscI, I-CeuI, FseI, NotI and SfiI are indicated. The circular genomes are

shown linearized from a common NotI site, identified by the linking clone p-4. B represents an

insertion and C a deletion event in GM chromosome. The location of several genetic markers

to endonuclease restriction sites is also presented (extracted from Zé-Zé et al., 2000).

and Mj . For example, if we have two fragments of a circular genome Ai and Bj, such that

Li + Mj > N , then they are obligatory overlapped. However, in general, Li + Mj ≤ N . The

overlapping relationship between two fragments obtained by applying two different restriction

enzymes, separately, is classified as nonoverlapping, partial overlapping and total overlapping.

In mathematical terms, we can describe it using a variable θij which represents the fraction of

overlap (0 ≤ θij ≤ 1). If Ai and Bj are nonoverlapped, then θij = 0. If Ai and Bj are totally

overlapped, that is, the smaller is contained in the larger, then θij = 1 and if fragments are

partially overlapped then 0 < θij < 1.

In a Bayesian perspective, Gonçalves et al. (2005) proposed a mixed prior probability

distribution for θij. The values 0 and 1 of θij are pointed out and they represent nonoverlap

and total overlap, respectively. Let pij
0
, pij

1
and pij

2
= 1 − pij

0
− pij

1
be the probabilities of
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nonoverlap and total overlap and partial overlap, respectively. For θij ∈]0, 1[ we propose a

Uniform distribution. Therefore, we can write,

f(θij) = pij
0
I{θij=0}(θij) + pij

1
I{θij=1}(θij) + pij

2
I{0<θij<1}(θij) (1)

where,

IC(θ) =











1, if θij ∈ C

0, if θij /∈ C.

Gonçalves et al. (2005) derived expressions for prior probabilities of those events, taking

into account DNA fragment lengths and under the assumption that the left-hand endpoints

of the two restriction fragments are independent random variables, each of which with a

uniform distribution along a circular genome. Here, we only remember those expressions

when Li + Mj < N ,

pij
0

=
N − (Li + Mj)

N
, (2)

pij
1

=
max(Li,Mj) − min(Li,Mj)

N
, (3)

pij
2

=
2min(Li,Mj)

N
. (4)

4.2 Adding hybridization data

Prior information, based on fragment lengths, can be combined with hybridization data via

Bayes’ theorem, in order to evaluate corresponding posterior probabilities (represented by

p∗ij
0

, p∗ij
1

and p∗ij
2

). Following previous works developed in the context of clone mapping (e.g.

Nelson and Speed, 1994), we consider a set of m probes which defines a comparison vector

D = [d1, d2, ..., dm] where each ds, s (s = 1, 2, ...,m), is a random variable which can take the

following values,

00, if probe s does not hybridize with neither fragment,

10, if probe s hybridizes with larger fragment only,

01, if probe s hybridizes with smaller fragment only,

11, if probe s hybridizes with both fragments.

Our probes are several genetic markers which are indicated by dashed lines in Figure 1. In

the next subsection, we add more details about the assumptions to characterize hybridization

data.

Now, we present an example with some pairs of fragments used in the GM map (Table

1). In this particular situation, we only used nine probes (see Gonçalves et al., 2005).
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Table 1: Some pairs of fragments of enzymes AscI and FseI: Prior and posterior overlap

probabilities

Fragments Prior Probabilities Posterior Probabilities

FseI vs AscI p
ij
0

p
ij
1

p
ij
2

p
∗ij
0

p
∗ij
1

p
∗ij
2

A1 (1089 kb) 0.057 0.184 0.759 0.074 0.070 0.856

F1 (733 kb) A2 (520 kb) 0.352 0.110 0.538 0.138 0.233 0.629

A3(323 kb) 0.453 0.212 0.334 0.868 0.000 0.132

F3 (330 kb) A3 (323 kb) 0.662 0.004 0.334 0.516 0.000 0.484

F7 (17 kb) A3 (323 kb) 0.823 0.158 0.019 0.843 0.139 0.018

Despite the reduced number of probes, it seems clear that F1 should be partial overlapped

with A1 and A2. F1 and A3 should not be overlapped. Fragments F3 and A3 have similar

lengths, therefore, prior and posterior probabilities of total overlapping are insignificant val-

ues. Therefore, a partial overlapping is possible with posterior probability equal to 0.484.

In general, small fragments were not hybridized by any DNA probes. Consequently, prior

and posterior probabilities are very similar. The posterior probabilities corresponding to the

smallest fragment of FseI (F7) tend to indicate total overlapping with the largest fragment

of AscI.

4.3 Full Bayesian analysis

In this previous approach, it was assumed that fragment lengths Li and Mj are constants such

that
∑n1

i=1
Li =

∑n2

j=1
Mj = N, where N is the genome size. However, in practice, the lengths

of the fragments and hence the genome size will be somewhat variable due to experimental

errors. Taking advantage of previous work (condensed in the last subsection) we can propose

a full Bayesian analysis where fragment lengths are considered as random variables. Instead

of constants Li and Mj , we consider two random variables Xi and Yj to describe the lengths

of fragments Ai and Bj. We assume for Xi a normal distribution with mean Li and standard

deviation equal to rLi and for Yj a normal distribution with mean Mj and standard deviation

rMj (where r is the coefficient of variation (CV)). This way of writing the standard deviation

is motivated by biological practice. In fact, small fragments can be measured very accurately

but large fragments can be associated with larger measurement errors. Values of r between

1 and 5% seem to be appropriated. In physical mapping of O. oeni, strain GM, the maximal

relative measurement error (or CV) was estimated to be less than 4.9% for fragments ranging

from 6 to 1195 kb (Zé-Zé et al., 2000). Comparing the PSU-1 physical map presented here

(Figure 1) with sequencing data from the whole-genome (Mills et al., 2005), it can suggest a

value of r less than 5%.

We still assume for θij a mixed prior probability distribution, however, pij
0
, pij

1
and pij

2

are now random variables since they are functions of the random lenghts. Combining this
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information with hybridization data with a set of m probes, we can obtain posterior proba-

bilities. Relatively to hybridization experiments, we assume that the occurrences of a probe

s (s = 1, 2, ...,m) along the genome are according to a Poisson process with rate λs (con-

stant). Additionally, we consider that each probe hybridizes independently of all the other

probes. Our aim is to compute the posterior probabilities and for that we implemented all

these specifications in WinBUGS14 program1. After 4000 burn-in iterations to ensure that

the Markov-Chain Monte Carlo (MCMC) algorithm had properly moved away from its start-

ing values, another 6 000 iterations were performed to obtain the posterior distribution of θij.

In our example, the results obtained, with r = 5%, are presented in Table 2.

Table 2: Posterior Means of Overlap Probabilities

Fragments Posterior Means

FseI vs AscI p
∗ij
0

p
∗ij
1

p
∗ij
2

A1 0.078 0.077 0.845

F1 A2 0.143 0.228 0.629

A3 0.877 0.000 0.125

F3 A3 0.519 0.000 0.481

F7 A3 0.840 0.139 0.018

As can be seen, the estimated posterior probabilities using this approach are very similar

to the ones obtained considering the fragment lengths fixed (Table 1 versus Table 2). However,

this approach describes the biological problem in a more realistic manner.

4.4 After ordering the fragments of an enzyme

It is also possible to combine, for example, the fragment length information with partial digest

data to explore other aspects relative to the fragment ordering of one enzyme. By partial

digest, in mapping of O. oeni PSU-1, the chromosomal order of the four fragments of AscI

was deduced as A1 − A2 − A3 − A4 − (A1) (Zé-Zé et al. (1998)).

In general, given a specific ordering of all fragments (n1) of enzyme A, consider a fragment

Bj of another enzyme with n2 fragments. The above expressions of partial overlapping (4) and

total overlapping probabilities (3) can be used to obtain some probabilities for the location of

Bj fragment in relation to enzyme A fragments. For example, given an order of the fragments

of enzyme AscI (Figure 1), if we choose a fragment of enzyme NotI then Nj can be located as

described in the first column of Table 3. Columns 2 and 3 show this type of probabilities for

two fragments of NotI (N1 and N2). In the laboratory, the biologist can fix some fragments

of enzyme NotI on Asc fragments step by step. For example, note N9 as described in Figure

1. If more than one fragment is located on Asc fragments, the expressions of conditional

probabilities became more complicated. In order to solve some situations, we have performed

1is freely distributed over the internet at http://www.mrc-bsu.cam.ac.uk/bugs/ winbugs/contents.shtml
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simulations of maps and we have obtained frequencies of events with practical interest. For

example, 30 000 000 maps were simulated with all fragments of AscI and NotI enzymes. We

obtained the conditional frequencies referring to N1 and N2, given that N9 was located on

union A1A2 (as shown in Figure 1). These conditional frequencies are presented in last two

columns of Table 3.

Table 3: Probabilities§/Frequencies† of events, relating fragments N1 and N2 of enzyme NotI

with AscI fragments.
§No fragments of †N9 was located

NotI were located on union A1A2

Where is Nj? N1 N2 N1 N2

1. Inside A1 0.102 0.388 0.228 0.478

2. Inside A2 0.000 0.137 0.000 0.265

3. Inside A3 0.000 0.000 0.000 0.000

4. Inside A4 0.000 0.000 0.000 0.000

5. Only on union A1A2 0.280 0.142 0.000* 0.000*

6. Only on union A2A3 0.000 0.118 0.000 0.130

7. Only on union A3A4 0.000 0.046 0.000 0.031

8. Only on union A4A1 0.070 0.071 0.101 0.039

9. Contains only A1 0.000 0.000 0.000 0.000

10. Contains only A2 0.118 0.000 0.000 0.000

11. Contains only A3 0.039 0.024 0.137 0.020

12. Contains only A4 0.118 0.073 0.181 0.037

13. Overlaps with all Asc fragments 0.272 0.000 0.354 0.000

* N9 is here.

Another type of probabilities can also be deduced to help the biologist. Let Xj be a

random variable representing the number of enzyme A fragments which Bj can overlap.

Using the above expressions of partial overlapping and total overlapping probabilities, we can

obtain the probability mass function of Xj . General theoretical expressions can be more or

less complicated, but using schematic representations, at least in some practical examples,

we can obtain them more easily. For example, N1 can be overlapped with 1, 2, 3, and 4 AscI

fragments with probabilities: 0.102, 0.350, 0.276 and 0.273, respectively.

Computation of probabilities of events of interest and simulation studies can help the

biologists in this process of inferring the arrangement of restriction fragments along a genome.

4.5 The promoting role of physical and genetic mapping in whole genome

sequencing era

In the last decade, the automation of sequencers with the use of dye molecules and the

development of capillary electrophoresis has enabled the development of a huge sequencing
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capacity. A 96 capillary sequencer can read about 70.000 high quality DNA bases in one hour.

So, most of the Institutes involved in whole genome sequencing projects report about 3 billion

bases read in one month (http://www.jgi.doe.gov/sequencing). As most whole-genome

sequencing projects use shotgun strategies, involving the construction of several genomic

libraries with different size of cloned fragments, clone redundancy is one of the problems

in genome sequencing, namely in the assembling of clones with repetitive sequences. To

overcome these problems, a consensus map is constructed. So, the finishing work in whole-

genome sequencing projects is usually the most time consuming, involving the gap closing,

the improvement of sequences quality and the verification of the assembly process (Strachan

and Read, 1999).

Probabilistic characterization and statistical methods can be powerful aids in clone map-

ping and sequencing. Standard Lander and Waterman (1998) theory has been extended to

attempt new biological development in these fields (see, for example, Wendl (2005), Piau

(2005) Wendl and Yang (2004) and Wendl and Waterston (2002)).

5 Concluding remarks

Albeit we are in the whole-genome sequencing era, the construction of physical and genomic

maps still remains a powerful tool in molecular genetics playing a main role, by giving the

chromosome landmarks that can help to assemble sequences in whole-genome sequencing

projects. The usefulness of physical and genetic mapping is clearly stated by the selection of

O. oeni strain PSU-1 as the first strain of this species for whole genome sequencing by the

Joint Genome Institute (Mills et al., 2005). In fact, PSU-1 was the only O. oeni strain with

a known physical and genetic map until 2000, the starting data of O. oeni whole genome

sequencing project. The statistical analysis of data from O. oeni strains PSU-1 and GM

presented promising results, and showed that there is coincidence between statistical and

experimental results (Gonçalves et al., 2005). Laboratory experiments in physical map con-

struction and sequencing can be less time consuming if the experiments are directed with the

help of statistical analysis.

Acknowledgements

This work has been partially supported by the project POCTI/MAT/44082/2002 (FCT -

Portugal). We also acknowledge the valuable suggestions from Prof. Rogério Tenreiro.
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Abstract

Cystic Fibrosis (CF), which is the most common lethal genetic disease with a recessive

and autosomal pattern among caucasians, is caused by mutations in the CF transmem-

brane conductance regulator (CFTR) gene. CFTR protein is an ATP-binding cassette

(ABC) transporter expressed at the apical membrane of epithelial cells where it mainly

functions as a chloride channel. Our aim is to identify marker genes and proteins show-

ing robust differential expression in human CF-vs-normal epithelial cell lines and native

tissues.

To identify genes that are differentially expressed at the level of the messenger ribonu-

cleic acid (mRNA) we used human 40K microarrays covering essentially every gene in the

human genome to measure gene expression in two pairs of CF-vs-non CF cell lines and

human nasal epithelia. To identify differential abundance of cellular proteins, we analysed

samples from nasal cells from CF patients and non-CF controls by two dimensional (2D)

gel electrophoresis.

We thereby aim to generate a short list of genes and proteins which are differentially

expressed in response to CFTR mutations. We will then be able to propose novel hy-

potheses about the influence of intracellular molecular interactions on the development of

CF pathophysiology.
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1 Introduction

Cystic Fibrosis (CF), the most common lethal autosomal recessive disease among caucasians,

is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene (Collins,

[2]). CFTR protein is an ATP binding cassette (ABC)-transporter that mainly functions as a

chloride (Cl−) channel at the apical membrane of epithelial cells lining the airways, pancreatic

ducts, intestine, biliary tree, sweat duct and vas deferens (Collins, [2]). Many studies have

revealed that CFTR plays other roles, being implicated in the regulation of several cellular

mechanisms (Schwiebert, [7]) (e.g., regulation of other channels and transporters, regulation

of vesicle trafficking, modulation of glycosylation) which may explain why CFTR protein

dysfunction causes such a pleiotropic and phenotypically variable disease. Indeed, CF af-

fects several organ systems, being clinically characterized by several distinct manifestations,

including progressive lung dysfunction, increased saline concentration in sweat and exocrine

pancreatic insufficiency (Welsh, [8]).

Despite the many advances in our understanding of CF, the knowledge of the basic mech-

anisms governing its pathophysiology remains limited. We are therefore very interested in the

identification of genes/proteins, which are consistently affected in CF tissues in comparison

to normal controls, and which therefore may act as CF biomarkers. For this purpose we have

made use of the recent technical advances in the fields of genomic and proteomic research.

2 Genomics

In the post-genomic era, following on from the sequencing of the entire human genome, it is

no longer sufficient to study individual genes, since most cellular processes, and by extension

most diseases, involve highly complex networks of interacting genes. Such interactions can

be revealed using the various new technologies and informatics tools which have emerged

alongside the international genome sequencing efforts. These include DNA microarrays, which

allow the simultaneous measurement of the activities of tens of thousands of genes, and

potentially the whole genome. The simultaneous measurement of gene activity might more

accurately be termed transcriptomics, since abundance of gene transcripts, i.e., messenger

ribonucleic acid (mRNA) molecules, is measured.

As a paradigmatic monogenetic disorder, classical CF is caused solely by mutations in

the CFTR gene, but in most cases of CF the expression of many other genes in cascades

”downstream” of the CFTR defect will also be altered. If such alterations are consistently

induced by CFTR mutations in various different cell or tissue types, then the altered gene

sets might be used as ”CF markers” in a prognostic or diagnostic capacity similar to the

”genetic signatures” recently proposed for some forms of cancer (Ebert, [3]). In our studies,

we compared gene expression across the whole human genome in two pairs of human cell lines

(with mutated vs. wild type CFTR) and in nasal epithelial cells freshly collected from CF
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patients and sex- and age-matched non-CF healthy controls. The human nasal epithelium is

an easily collectable tissue yielding numerous and well-preserved dissociated cells. These are

representative of the human superficial respiratory mucosa which reflects the physical and

biological properties of the CF target tissues of the lower airways (Beck, [1]; Ratjen, [6]). We

used such cells as an ”in vivo” model tissue for validation of results obtained in cell lines.

For each of three CF-vs-non CF comparisons (two pairs of CF-vs-non CF cell lines and

CF-vs-non CF nasal cells) we prepared two replicates and a colour swop, using a total of twelve

40K genomewide arrays (MWG Biotech, Ebersburg, Germany). All experimental steps were

performed according to the protocols defined by the supplier. Total RNAs were extracted from

samples and in vitro transcription of cRNA incorporating Cy-3 (green) or Cy-5 (red) -labelled

nucleotides was performed to achieve labelling of the resulting target molecules. Green or red

labelled CF cRNAs were then mixed in a 1:1 molar ratio with their oppositely labelled non-CF

counterparts and hybridized overnight to the 40K arrays. Non-specific cRNA was washed off

the following morning, and the arrays were scanned at the emission wavelengths for Cy-3 and

Cy-5. The raw data consisted of fluorescent emission intensity values for Cy-3 and Cy-5 for

each of the approximately 40,000 spots on each of the twelve microarrays, corresponding to

the mRNA abundance for each of the human genes represented by the spots in the CF and

non-CF total RNA samples. Intensity values from CF samples were divided by non-CF values

to give a relative expression ratio for each spot/gene independent of the colour direction (Cy-

3/Cy-5 or Cy-5/Cy-3). The gene expression ratios were then ”normalized” (Quackenbush,

[5]), essentially to bring the average fluorescence intensity/gene expression ratio across all

spots and replicate arrays to 1:1 for maximum comparability.

Statistical analyses were undertaken using a Bayesian methodology. This approach was

found to improve on the t-statistic-based methods because of the large number of genes that

are examined simultaneously, the noisiness of the data and the small number of replicates.

The method applied was the empirical Bayes method for analysing replicated two-channel

microarray data (paired data) proposed by Lönnstedt and Speed [4].

Here the number of arrays is 4, for each of the three pairs of cells studied. Each array

consists of approximately 40,000 spots. Therefore, Mij is the summarised measure, log-ratio

of gene expression, for gene i on array j,

Mij = log
2

XCF
ij

XNCF
ij

= Y CF
ij − Y NCF

ij ,

where Y s
ij is the logarithm of the expression level, X s

ij , of gene i in array j for sample s

(i = 1, ..., 40, 000; j = 1, ..., 4; s ∈ {CF,NCF}).

An extreme value (positive or negative) of Mij suggests that the corresponding gene is

differentially expressed between both cell lines. Let Ii be the indicator for whether a gene is
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differentially expressed:

Ii =

{

0 if gene i is not differentially expressed

1 if gene i is differentially expressed
.

For each gene i one is interested in whether the gene is differentially expressed, i.e., in

P (Ii = 1|Mi). Therefore, Lönnstedt and Speed [4] propose a target measure - a posterior

logarithm of odds, for being differentially expressed for each gene i,

Bi = ln
P (Ii = 1|Mi)

P (Ii = 0|Mi)
,

so that P (Ii = 1|Mi) > P (Ii = 0|Mi) if and only if Bi > 0. Note that Mi = (Mi1,Mi2,Mi3,Mi4).

They rank all genes according to this B-statistic and name the first few as the potentially

differentially expressed genes.

The components of Mi are random variables from Normal distribution with mean µi and

variance σ2

i , so that independently

Mij |µi, σi ∼ N(µi, σi) i = 1, ..., 40, 000, j = 1, ..., 4.

τi is set as na/2σ2

i to simplify calculations, where n is the number of arrays (n = 4). Conse-

quently, the indicator Ii is equivalent to

Ii =

{

0 if µi = 0

1 if µi 6= 0
,

indicating whether gene i is unchanged (µi = 0) or differentially expressed (µi 6= 0). The

Mij ’s are independent of each other.

To use all their knowledge about means, µi, and variances, σ2

i , Lönnstedt and Speed

collect the information gained from the complete set of genes in estimating the joint prior

distributions for µi and σ2

i . They let the prior distribution of the precision 1/σ2

i be Gamma

and that of µi given σ2

i be Normal. This is a conjugate prior distribution allowing the

calculation of Bi explicitly. For ν degrees of freedom and scale parameters a > 0 and c > 0,

suppose

τi ∼ Γ(ν, 1)

µi|τi

{

= 0 if Ii = 0

∼ N(0, cna/2τi) if Ii = 1
,

for all i = 1, ..., n. The parameter c expressing dependence between the priors for µi and τi

is necessary for the calculations.

By Bayes’ theorem and independence across genes

Bi = ln
P (Ii = 1|Mi)

P (Ii = 0|Mi)
= ln

(

p

1 − p
×

fIi=1(Mi)

fIi=0(Mi)

)

, (1)
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where p is the proportion of differentially expressed genes in the experiment, p = P (Ii = 1),

for any i in 1, ..., 40, 000. Usually p refers to a small portion of genes, say 1%.

The final form of the B-statistics depends on the densities fIi=1(Mi) and fIi=0(Mi), which

correspond to integrating the joint densities fIi=k(Mi, µi, τi) (for k=1 and 0, respectively) in

order to µi and τi. Hence for gene i, from (1),

Bi = ln
p

(1 − p)
√

1 + nc
+

(

ν +
n

2

)

ln

(

a + s2

i + Mi
2

a + s2

i + Mi
2

1+nc

)

.

The only gene specific part of Bi is the last ratio, which is always > 1 since 1/(1+nc) < 1. It

is deducible that an increasing differential expression (and hence an increasing Mi
2
) increases

Bi, all the more if the variance is small. If Mi
2

is small too, a ensures that the ratio cannot

be expanded by a very small variance.

There are four global parameters in the model for Bi: p, ν and a (parameters in the prior

distribution of the variance) and c (in the prior distribution of the mean). Unfortunately, there

is no consistent estimate of (p, ν, a, c). Therefore, Lönnstedt and Speed fix p and estimate

ν, a|p and c|p, ν, a. This approach imposes a light modelling structure on the observations,

and is described primarily as a way of ranking genes, which suits well this exploratory type of

study. Furthermore, it has been shown that this approach has lower false negative and false

positive rates than t-statistic-based methods.

As this method is available in R, through the function stat.bay.est (library sma), it

was very simple to determine the differentially expressed genes. Setting the proportion of

differentially expressed genes to be 0.0015, 55 and 65 genes were selected in the cell lines

pairs, which are designated here as CL1 and CL2, respectively, but the thresholds had to

be set as -6.1 for CL1 and -1.1 for CL2. The estimates of the parameters were ν = 3.03,

a = 10.60 and c = 4.15 for cell lines pair CL1, and ν = 2.18, a = 0.55 and c = 5.84 for

cell lines pair CL2. The volcano plots shown in figure 1 are not very symmetrical, leading to

selecting a different number of up- and down-regulated genes for each cell lines pair: 36 down-

against 19 up-regulated for cell lines pair CL1; 51 down- against 14 up-regulated for cell lines

pair CL2. Note that if the threshold was 0, no genes would be selected for cell lines pair CL1

and only 27 would be selected for cell lines pair CL2. To consider gene i to be differentially

expressed only if Bi > 0, p has to be increased. If p = 0.337 the same 55 genes are selected

for cell lines pair CL1 and if p = 0.0043 the same 65 genes are selected for cell lines pair CL2,

all corresponding to Bi > 0. These results may be due to lack of Normality of the data and

to the small number of replicates.

Lists of the most significantly up- or down-regulated genes in CF-vs.-non CF cell lines

and nasal cells were compared, but it was found that very few individual genes were shared

between data sets. This may be due to high experimental variability and/or to phenotypic
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Figure 1: B vs M̄ plots for cell lines pairs CL1 and CL2. The dots above the horizontal line

correspond to genes selected as differentially expressed for p = 0.0015 and thresholds of -6.1

(CL1) and -1.1 (CL2).

differences between the cultured human cell lines and the fresh native tissues from patients.

However, when genes are assigned to their functional groups it becomes clear that many

closely related, although not identical, genes are common among the data sets. Gene families

involved in cellular processes highly relevant to the pathophysiology of CF, such as inflam-

mation, proteolysis, extracellular matrix remodelling, ion transport, cell adhesion and bone

development, are thus identified in all data sets. This finding highlights the importance of

more global approaches to the analysis of such vast amounts of data using specific software

that identifies gene clusters and pathways.

3 Proteomics

To identify potential CF biological markers at the protein level, we compared the protein

profiles of nasal epithelial cells from CF versus non-CF individuals using a classical pro-

teomic methodology. Proteins from those cell samples were separated by two-dimensional

electrophoresis (2-DE), i.e., first according to their isoelectric point in an isoelectric focusing

step and then according to their relative mass, in a range of 14-150 kDa, using gradient sodium

dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). In this way, thousands of

proteins can be analysed at the same time, under the same experimental conditions.

After protein visualization by silver-staining, the digitalized images of the 2-DE gels were

analysed using a specific software package (ImageMasterTM 2D Platinum, Geneva Bioinfor-

matics SA/ Amersham Biosciences/ GeneBio, Geneva, Switzerland). This allows detection of

all protein spots present in each gel, spot–to–spot matching among all the 2-DE gels under
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study and spot quantification. Statistical analysis can be performed on groups of protein spots

for which up- or down-regulation is observed. Moreover, with this bioinformatic tool which

has powerful algorithms specifically developed for the analysis of 2DE-gels, we were able to

overcome some reproducibility problems inherent in this type of experiment (namely distor-

tions, staining problems, etc). Indeed, in this study the presence of mucus, especially in CF

nasal cell samples, made the separation and visualization of the proteins much more difficult.

Therefore, in order to standardize the intensities of silver-staining among spots present in the

several 2-DE gels (from CF and non-CF nasal cell samples), analysis was carried out by taking

into account the standardized relative intensity volume of spots (or %Vol, i.e., the volume

of each spot divided by the volume of all spots on the gel). Furthermore, through heuristic

clustering analysis, i.e., an artificial intelligence-based analysis to automatically classify sets

of gels into different classes according to their characteristic spots, the 2-DE gels were auto-

matically (and correctly) separated into two distinct classes (CF and non-CF). For a given

protein, the difference in expression levels between these two classes of gels was statistically

assessed by using the two-sample t test, for n observations, where n is the total number of

individuals analysed (CF + non-CF). Differences were considered statistically significant for

p < 0.05.

Finally, all spots of interest were excised from the 2-DE gels and hydrolysed with trypsin

enzyme. The determination of the mass of all peptides resulting from this trypsin digestion,

i.e. peptide-mass fingerprinting (PMF) analysis, was performed using matrix-laser desorp-

tion/ionization - time of flight (MALDI-TOF) spectrometry. These peptide mass spectra

were used to search for homologies and protein identification in the mass spectrometry pro-

tein sequence DataBase (MSDB) http://csc-fserve.hh.med.ic.ac.uk/msdb.html.

From the non-CF 2DE-gels, 65 spots were identified in this way and a reference 2DE-map

was thus established. Comparison of this protein profile with the one similarly obtained for

CF nasal cells, revealed a set of differentially expressed proteins (p < 0.05) that could be

related to CF symptomatology. These included proteins related to chronic inflammation, and

some others involved in oxidative stress injury. Alterations were also observed in the levels of

cytoskeletal proteins, which may be implicated in changes to cytoskeletal organization which

have been described in CF airways. Lower levels were found for some mitochondrial proteins

suggesting an altered mitochondrial metabolism in CF. Differential expression was also found

for two more enzymes that have not been previously associated with CF.

Further studies will clarify the involvement of such proteins in CF pathophysiology and

whether they are good targets for CF therapy.
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4 Conclusion

Transcriptomic and proteomic approaches such as those described above, aimed at identifying

gene products differentially expressed in association with a given pathology are just the first

step towards understanding the pathways that are putatively associated with the respective

disease. However, no functional information nor direct relationship with the pathology is

established. Elucidation of protein function is thus the next post-genomic challenge towards

the understanding of biological processes in health and disease. Strategies and tools are thus

critically needed for distinguishing genes and proteins with mere pathologic association from

those primarily responsible for the basic cellular defect(s) in such pathologies in order to

establish causal relationships in a global manner.
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[4] Lönnstedt, I. and Speed, T. (2002). Replicated microarray data. Statistica Sinica, 12,

31–46.

[5] Quackenbush, J. (2002). Microarray data normalization and transformation, Nat Genet,

32, Suppl: 496–501.

[6] Ratjen, F. and Doring, G. (2003). Cystic fibrosis, Lancet, 361, 9358, 681–689.

58



[7] Schwiebert, E.M.; Benos, D.J.; Egan, M.E.; Stutts, M.J. and Guggino, W.B.

(1999). CFTR is a conductance regulator as well as a chloride channel, Physiol Rev, 79,

145–166.

[8] Welsh, M.; Tsui, L.-C.; Boat, T.F. and Beaudet, A.L. (1995). Cystic fibrosis. In

“The Metabolic and Molecular Basis of Inherited Disease” (C.R. Scriver, A.L. Beaudet,

W.S. Sly and D. Valle, Eds.), New York: McGraw-Hill, Inc., 3799–3876.

59





Estimating gene expression missing data using PLS

regression

Ĺıgia P. Brás ∗ José C. Menezes †

Abstract

We present a method for the estimation of missing values (MVs) in DNA microarray

data that is based on partial least squares (PLS) regression and involves the reprocess of

imputed data and the use of correlations between genes and between arrays in an iterative

manner. The method was called alternating PLS imputation (APLSimpute).

The imputation efficiency of APLSimpute was assessed under different conditions (type of

data, fraction of data missing and missing structure) by the normalised root mean squared

error and the squared Pearson correlation coefficients between actual and estimated val-

ues, and compared with that of other imputation methods. Namely, we considered the

weighted K-nearest neighbours imputation (KNNimpute), local least squares imputation

(LLSimpute), partial least squares imputation (PLSimpute), and Bayesian principal com-

ponent analysis (BPCA).

For the different proportions of missing data, LLSimpute and BPCA showed the best

performance in time-series and mixed data. However, PLS-based methods are preferable

when imputing non-time series data. Combining gene-based and array-based correlation

in the estimation process by APLSimpute enhances the prediction ability in the presence

of non-time series data with high missing rates. Results also suggest that, when dealing

with time course data, the PLS-based methods should be further improved and optimised

in terms of variable selection, because they are not as capable as LLS imputation or BPCA

to take advantage of local similarity structures present in the data.

Keywords: Gene expression data, DNA microarray data, missing value estimation.

AMS Classification: 92C99.

1 Introduction

DNA microarrays allow simultaneously monitoring the mRNA levels of thousands of genes

in particular cells or tissues under a variety of conditions [1, 2, 3]. The primary aim of the
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various analysis techniques that have been developed for microarray data is at identifying

regulatory patterns or similarities in expression under different experimental conditions. In

this context, many clustering or class discovery (unsupervised) techniques (e.g. hierarchi-

cal clustering, self-organizing maps, principal components analysis), and various supervised

learning methods (e.g. support vector machines, classification trees) have been proposed (for

a review see [4, 5, 6]).

Microarray data is usually represented by large matrices of gene expression (rows) under dif-

ferent experimental conditions (columns). It is common to encounter missing values (MVs)

in such matrices, since imperfections in any of the various steps of the microarray experiment

create suspicious values, which are usually discarded and regarded as missing [7]. Due to eco-

nomic reasons or biological sample availability, repeating the microarray experiment is usually

not a feasible option. However, many downstream analysis methods used for microarray data

(e.g. classification and model-based clustering techniques) require complete matrices, being

affected by the estimates used to replace the MVs. Thus, MV estimation can be regarded as

a preprocess step essential to minimally bias the performance of microarray analysis meth-

ods. Recently, de Brevern et al. [8] studied the stability of gene clusters of microarray data

including or not MVs, defined by various hierarchical clustering algorithms, showing that the

MVs (even at a low rate) have important effects on the stability of the gene clusters.

Weighted K-nearest neighbours (KNNimpute) [9], Bayesian principal component analysis

(BPCA) method [10], local least squares imputation (LLSimpute) method [11], and partial

least squares (PLS) imputation [12] are examples of procedures for gene expression MV esti-

mation that try to use available information to preserve relationships in the entire dataset. In

this paper, we propose a new PLS-based method called alternating PLS imputation (APLSim-

pute). The performance of APLSimpute is compared with that of other MV imputation

methods using four publicly available gene expression datasets for various rates of MVs and

type of missing structure.

2 Methods

The imputation methods considered herein can be classified into three main groups: the

cluster-based method (KNNimpute), the Bayesian approach (BPCA), and methods based on

regression (LLSimpute, PLSimpute and APLSimpute). In this section we give a brief overview

of these imputation methods and propose a new PLS-based method called alternating PLS

imputation (APLSimpute).

Using the notation of [12], a particular gene with MVs to be estimated is called target gene,

whereas the genes with available information for estimating the MVs of the target gene are

called candidate genes. Each target gene i, xi, can be split into an available and missing part,

which will be denoted, respectively, by xobs

i and xmiss

i .
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2.1 Cluster-based method

In the weighted K-nearest neighbour imputation, KNNimpute [9], MVs are imputed by com-

bining the expression levels of K -nearest genes chosen based on a weighted Euclidean distance.

The value for K must be empirically determined since there are no theoretical standards for

selecting its value. For a given target gene xi, the weighted Euclidean distance dik between

the target gene i and each candidate gene k is calculated. Then, the missing entry j of

xi is estimated by the weighted average of the expression values of the K selected can-

didate genes in experiment j. The weight wik for the kth neighbour gene of target gene

i is normalized by the sum of the inverse distances for all K neighbours (1). The code

for KNN imputation method was downloaded from the Helix group at Stanford University

(http://smi-web.stanford.edu/projects/helix/pubs/impute).

wik =

1

dik
∑K

k=1

1

dik

(1)

2.2 Bayesian method

Oba et al. [10] proposed an estimation method for MVs that is based on Bayesian principal

component analysis (BPCA). BPCA method consists of three steps: principal component

(PC) regression, Bayesian estimation, and an expectation-maximization (EM)-like repetitive

algorithm. Because of the PC regression step, the method depends on the number of principal

axes (eigenvectors), K. However, Oba et al. [10] have found that BPCA exhibits its best results

with K = n− 1 (where n is the number of samples or arrays), obviating the need to tune the

K value in advance. Further details about BPCA method are given in [10] and the code was

available at http://hawaii.aist-nara.ac.jp/~shige-o/tools/.

2.3 Regression-based methods

The imputation methods based on regression that will be considered herein are the local least

squares method (LLSimpute) of Kim et al. [11], and the partial least squared imputation

method (PLSimpute) proposed by Nguyen et al. [12]. The main difference between regression-

based and cluster-based methods lies in the fact that the latter uses a weighted average to

obtain the coefficients (weights) for the linear combination of the nearest neighbours. On

the other hand, rather than employing a heuristic rule, regression-based methods use an

objective function (least squares) for optimising the weights for combining the candidate

genes. Therefore, we expect that regression-based estimates will surpass those from cluster-

based methods.
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2.3.1 LLS imputation

LLSimpute exploits local similarity structures in the data together, representing a target gene

as a linear combination of K -nearest neighbour genes selected using the Euclidean distance as

a similarity measure [11]. The method comprises two steps. Given a target gene xi, in the first

step, the K -nearest neighbours of xi are found based on the Euclidean distance by ignoring in

each gene the missing positions of the target gene. In the second step, least squares regression

is used to optimise the coefficients of the linear combination of the K similar genes in the

non-missing positions of the target gene. Then, xmiss

i is estimated by a linear combination

of the expression values of the neighbour genes in the target gene missing positions. To

take advantage of non-missing entries of neighbouring genes that have MVs, each MV is

initially estimated by gene-wise averages. Kim et al. [11] implemented a heuristic method

for estimating the parameter K inside LLSimpute, where different values of K are used to

estimate missing positions artificially generated in the non-missing data matrix. Further

details about LLSimpute algorithm can be found in [11], and the method was available in

Matlab code at http://www.cs.umn.edu/~hskim/tools.html.

2.3.2 PLS imputation

PLSimpute applies PLS regression to estimate the missing expression values [12]. PLS belongs

to a class of regression models that attempts to find the relationship between explanatory

and response variables by assuming that they are generated by a common set of underlying

factors [13, 14, 15].

In PLSimpute, the set of candidate genes for target gene i, XCi , is constructed by selecting

those genes with available values in all the missing entries of the target gene i. Then, XCi

is partitioned according to the available values and missing positions of the target gene into

XCi,obs and XCi,miss, respectively. Shortly, in the PLS regression context, one seeks to capture

the most important mode of covariation between XCi,obs and xobs

i (training data) subject to

orthogonality constraints for the linear combination of the candidate genes. In order to

improve the estimates from the PLS algorithm, instead of using all candidate genes, Nguyen

et al. [12] uses only those genes with highest sum of squared PLS weights from the PLS fit.

Further details about the algorithm can be encountered in [12]. PLS computations require

XCi,obs to be complete, so it is necessary to use a method to perform initial estimates and

fill in the missing entries. Following Nguyen et al. [12], PLSimpute was implemented using

initial estimates from KNN imputation to form a complete matrix XCi,obs . The code for

PLSimpute was implemented in Matlab using the algorithms available in the Internet page

http://dnguyen.ucdavis.edu/.html/supplemental.html [12]. For PLS regression, data

was mean-centred and scaled to unit variance.
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2.3.3 APLS imputation

Regarding the data space used for clustering and MV imputation, most of the methods

proposed in the literature for handling MVs in microarray gene expression data use only rela-

tionships between genes (gene or row space). The use of relationships in the gene space as a

basis for estimation is driven by the cellular gene co-regulation and co-expression in functional

processes. However, for time course experiments, we may also have relationships in the array

space (column space) between adjacent time points. This may also occur when biologically

similar samples are used in the array hybridisations.

Considering the idea of combining the estimates obtained based on relationships in the gene

space or in the array space, we developed a new imputation method based on PLS regression

called alternating partial least squares imputation (APLSimpute). In this method, the esti-

mates obtained from gene-based relationships and array-based relationships are used in an

iterative fashion. Given a gene expression matrix X with N missing elements, the outline for

APLSimpute is given below:

Step 0 Initialisation: replace the MVs in X by the estimates given by gene averages, obtain-

ing Xcomplete(0)

;

Step 1 Using Xcomplete(0)
, apply the PLS algorithm in the gene space (i.e. using the genes

as variables) in order to obtain a vector of estimates (ŷ(1) = ŷgene) for the N missing

entries, and update the complete gene expression matrix into Xcomplete(1)

;

Step 2 For each hth cycle (h = 2, . . . ):

a) Using Xcomplete(h−1)

, re-estimate the MVs by PLS regression in the array space

(ŷarray) and update the complete expression matrix;

b) Re-estimate the MVs using the PLS algorithm in the gene space, obtaining ŷ (h) =

ŷgene and Xcomplete(h)

;

c) Determine δ(h) =
∑N

j=1
[ŷ

(h−1)

j − ŷ
(h)

j ]2, the sum of squared differences between the

MV estimates.

Step 3 If δ(h) < τ , stop. Otherwise return to step 2 and iterate until convergence.

The convergence criterion was set to τ = 10−3 , and in general, it was reached for h = 3.

When compared to PLSimpute, APLSimpute handles the need to obtain a complete matrix,

XCi,obs, for the PLS modelling in a different way. Whereas in PLSimpute the MVs are initially

imputed by KNN imputation whenever a target gene is considered, APLSimpute performs a

single step of initial imputations by substituting all MVs in X by gene averages before the

PLS-based imputation. By doing this, the matrix of candidate genes for a given target gene

comprises all genes except the latter and it has no missing elements, so XCi,obs is ready to be
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employed in the PLS modelling.

While various schemes have been developed to perform variable selection in PLS regression,

we opted to simply apply in APLSimpute the same strategy as that of PLSimpute to restrict

the number of candidate genes (i.e. variables) to use in the MVs estimation. So, although

variable selection is an important issue in regression analysis, it will not be regarded herein.

3 Experimental

In this study, we utilised four publicly available datasets. The first dataset comes from a

study of the cell cycle regulated genes in the yeast Saccharomyces cerevisiae [16]. It consists

of time-series microarray data from a cdc15- and cdc28-based synchronisation, and will be

denoted by TS1. We considered a further dataset (TS2), which only comprises the cdc28-

based synchronisation data from [16]. The third dataset belongs to a study of gene expression

regulated by the calcineurin/Crz1p signalling pathway in S. cerevisiae [17]. This dataset can

be classified as a mixed experiment, since it comprises both time course and non-time series

data, and will be referred to as MIX dataset. The fourth dataset is from a study of human

cancer cell lines [18]. This dataset, which can be classified as a non-time series, will be called

NTS. All datasets consist of cDNA microarray experiments, and the dimensions of the data

matrices before (original dataset) and after removing all genes with MVs (complete dataset)

are presented in Table 1, together with the structure of missing entries in the original datasets.

Prior to the analysis, data were logarithmically (base 2) transformed (except for the cases

where data sets were already downloaded in log2 scale).

Datasets

TS1 TS2 MIX NTS

p × n (original dataset) 6178 × 41 6178 × 17 6166 × 24 9712 × 64

p × n (complete dataset) 869 × 41 1383 × 17 4380 × 24 6115 × 64

Total missing rate (%) 8.3 6.1 3.8 3.9

Missing rate per gene (%)

< 5% 82.5 22.4 84.8 82.2

5–10% 9.3 66.8 4.4 6.2

10–20% 5.0 9.1 4.3 5.9

20–50% 2.5 0.9 5.2 4.6

≥ 50% 0.7 0.8 1.3 1.1

Table 1: Dimension of the data matrices before and after removing the missing elements,

total missing rate and missing rate per gene in the original datasets.
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In order to evaluate the accuracy of the imputation methods, we introduced artificial

missing entries to a complete (i.e. without MVs) expression matrix. First, the complete

gene expression matrix was constructed from the real dataset (G) by discarding the missing

elements. Next, the test set X was constructed by randomly removing a specific proportion of

the entries (1%, 5% and 10%) from the complete expression matrix. Moreover, with the aim

of mimicking realistic missing patterns, we constructed test datasets in a different way. We

randomly assigned MVs to the elements in the p rows of the complete matrix by sampling p

rows (genes) of G, and using their missing locations. This led to a similar missing structure

for the test dataset X as that of the original set G.

To obtain results unbiased with regard to the portion of the data that is missing, we run five

independent rounds of both procedures. The following notation will be used for identifying

the type and rate of MVs in the test matrices. E.g., TS11% will denote the TS1 dataset with

1% of missing entries introduced randomly, while TS1uneq represents the TS1 dataset with

unequally distributed MVs.

The imputation methods were run in Matlab 6.5.0 (The MathWorks Inc., 2002), except

KNNimpute, which was run in the free software R (Version 2.0.1, 2004). Different values

for the model parameters were tested for KNNimpute, PLSimpute and APLSimpute, and

only the results obtained using the values yielding the best prediction performance will be

presented herein.

For every dataset, each imputation method was applied to recover the introduced MVs, and

the accuracy of the method was evaluated by calculating the error between actual (yj) and

imputed values (ŷj) using the normalised root mean squared error (NRMSE):

NRMSE =

√ � N
j=1

(yj−ŷj)
2

N

σy

. (2)

σy is the standard deviation for the N real values corresponding to the total missing

entries over the whole matrix. The squared Pearson correlation coefficients between actual

and imputed values were also calculated.

The bias on the methods, i.e. a consistent under- or overestimation of the true values was

also tested using a robust estimator based on a rank test, the Wilcoxon signed rank test [19].

Considering the residuals εj = yj − ŷj associated with a given method, we are interested in

testing if the residuals are evenly distributed around zero. The null hypothesis (H0) tested

is that negative and positive residuals coming from a given imputation method are equally

likely.

The performance of two different imputation methods was compared by comparing their mean

squared errors of prediction (MSEP), which is equivalent to a test comparing the variances

of two groups of samples. Herein, we used the Levene’s test [20], which was proposed as an

alternative to using the variance ratio as a test statistic to compare two samples in terms
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of the amount of variation that they possess [21]. So, the data values are transformed and

subject to an analysis of variance to produce the usual F -statistic for a test of whether the

means vary significantly between the samples. We opted to use the form of the test where

the absolute deviation from the sample median (instead of the sample mean) is applied as

a transformation, since it provides good robustness against many types of non-normal data

and retains good power [21]. In this test, H0 states that the variance (or MSEP, in our case)

is equal across both methods, while the alternative hypothesis (H1) states that the variances

are different between the two estimates. For both Wilcoxon signed rank test and Levene’s

test, a significance level of 5% was considered, so H0 was rejected if the obtained p-value was

inferior or equal to 0.05.

4 Results and discussion

When dealing with MVs from TS experiments (especially TS1), the prediction ability is very

much influenced by the rate of missing entries (Figure 1). Concerning the type of missing

entries (i.e. uniformly or unequally distributed), results indicate that the structure of missing

entries in the test dataset is a relevant aspect. Worse estimates are in general obtained when

dealing with data with a pattern of MVs resembling that of the original experiment (even if

these ones have similar or higher global missing rates; Figure 1 and Table 1).

For every data type and missing rate and pattern, the prediction performance of the distinct

imputation methods was compared using the Levene’s test at a 5% significance level. BPCA

and LLSimpute give statistically similar predictions for MIX and NTS data (0.09 < p-values <

0.75). For the imputation of TS2 data, BPCA outperforms LLSimpute (p-values = 0), while

the opposite is seen on TS1 data (p-values < 6.4 × 10−6). Both BPCA and LLSimpute give

particularly good results when applied to TS data, outperforming KNNimpute (p-value = 0)

and PLS-based methods (p-values = 0). This supports the fact that BPCA and LLSimpute

were designed to efficiently take advantage of the similarity structures on the data. BPCA

method is able to capture useful information by a Bayesian optimisation process, while LL-

Simpute optimises the neighbouring (local) similarity structures encountered in TS data by

least squares in order to obtain the estimates. However, although generating better estimates

for TS missing entries, BPCA and LLSimpute are less robust than cluster-based or PLS-based

methods to increments of the proportion of MVs in this type of experiments (Figure 1).

In spite of not having an optimisation criterion, KNN-based estimates outperform those from

PLS-based methods in TS2 data with more than 1% missing rate (Figure 1; p-values <

7 × 10−3). This suggests that a more stringent procedure should be employed for selecting

significant variables (genes or arrays) in PLS regression in order to optimally explore the

local similarity structures in the data. However, for the other datasets, PLS-based methods

outperform KNNimpute (p-values < 1.9 × 10−7).

68



For the estimation of NTS missing data, PLSimpute and APLSimpute outperform BPCA

(p-values < 1.15 × 10−6 and < 5.07 × 10−9, respectively), LLSimpute (p-values < 3.6 × 10−3

and < 1.5 × 10−4, respectively) and KNNimpute (p-values = 0).

Although the prediction errors obtained with APLSimpute are smaller than those from

PLSimpute (Figure 1), the estimation ability of both methods is statistically equivalent

(0.13 < p-values < 1.0), except for TS110% data (p-value = 2.8 × 10−7) and NTS10% data

(p-value < 1.3 × 10−5).

Figure 1: NRMSE for the imputation methods in the different types of datasets.

The methods were further evaluated in terms of bias using the Wilcoxon signed ranks test

(data not shown). Results indicate that methods based on PLS regression or in Bayesian

analysis are less biased than KNNimpute or LLSimpute. PLS-based imputation methods

are particularly preferable in terms of generating unbiased estimates when dealing with NTS

data.
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5 Conclusion

Overall, for the different proportions of missing data, LLSimpute shows the best performance

on TS1, while BPCA is preferable for TS2 data. For MIX data, both BPCA and LLSimpute

give statistically equivalent estimates. For the imputation of NTS data, PLS-based methods

are preferable. In NTS data with 10% total missing rate, the combined use of both gene-based

and array-based correlations by the APLSimpute method provides superior prediction per-

formance than PLSimpute, suggesting that the combined utilization of correlation between

both genes and arrays can be of value.

Results also suggest that, when dealing with time course data, the PLS-based methods should

be further improved and optimised in terms of variable selection, because they are not as ca-

pable as LLS imputation or BPCA imputation to take advantage of local similarity structures

present in such data.
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Abstract

In this work we consider the problem of selecting informative genes from the thou-

sands of genes whose expression is usually measured in microarray experiments. Firstly,

the selection is done by taking into account the information about the class membership

(disease) of each sample; we try to find which of the measured genes have relevant infor-

mation to discriminate between the different diseases (classes) by using Decision Trees [1].

Surprisingly, in the five datasets analysed, only a few of the thousands of genes were se-

lected; it seams that most of the genes are not good to discriminate between the diseases.

Secondly, we approach the problem by finding the Principal Components of the most

expressed genes. Two variants are used: the usual Principal Component Analysis (PCA)

using the Pearson’s correlation matrix and a “weighted” version which is introduced in

this work. This “weighted” PCA consists in using an adaptation of a new rank correlation

coefficient that gives more importance to higher ranks and which was introduced by Pinto

da Costa & Soares in [7].

Keywords: Microarrays, Decision Trees, PCA, Weighted Rank Correlation.

1 Introduction

This work is concerned with the extraction of informative genes and principal components of

genes (known as “eigengenes” [10]) from microarray data. Part of this problem has already

been considered by Pinto da Costa & Silva in [6], where the authors used other methods of

Data Analysis, mainly Partial Least Squares and Clustering. Here the aim is first of all to see

if the genes whose expression is usually measured in microarray experiments have discrimina-

tory information to distinguish between the various sample conditions. Then, a “weighted”
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§Dep. de Matemática, Universidade de Évora, Portugal. E-mail: mmo@uevora.pt.
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version of Principal Component Analysis (PCA) is introduced to find some linear combina-

tions of gene expression containing the main information present in the data. Contrarily to

the usual PCA, the one introduced by us gives more importance to larger expression values,

as we think these are the most important in microarray studies.

The outline of the remaining of the paper is as follows. In the next section we briefly de-

scribe the technique of building decision (classification) trees, and focus mainly in the popular

method CART [1]. Then, five microarray datasets are analysed with this technique. In section

3 we consider the problem of finding a few linear combinations of gene expression amongst the

most expressed genes and that account for most of the variation in the microarray datasets.

This is done by the popular technique of PCA which finds new variables, represented by linear

combinations of gene expression, which have maximum variance and are uncorrelated. In the

first part, the usual PCA using the Pearson’s correlation matrix is used; then, a “weighted”

PCA version is introduced. This “weighted” PCA gives higher weights to larger expression

values. These two versions of PCA are then compared in the five datasets considered. Finally,

section 4 presents our work conclusions.

2 Selecting genes with decision trees

In this section we use Decision Trees, particularly CART [1], to see which of the thousands

of genes whose expression is usually measured in microarray experiments are good predictors

of the different diseases (classes). We start by a summary description of this technique.

CART [1] builds regression and classification trees for predicting continuous dependent

variables (regression) and categorical predictor variables (classification). The classic algorithm

was popularized by Breiman et al. [1] (see also the work by Ripley in [8]). Besides this

algorithm, there are numerous more for predicting continuous variables or categorical variables

from a set of continuous predictors and/or categorical factor effects. In many cases, these

algorithms specify a linear combination (design) of continuous predictors and categorical

factor effects (e.g., with two-way and three-way interaction effects) to predict the response

variable. This is the case, for instance, of GLM (General Linear Models), GRM (General

Regression Models) and GDA (General Discriminant Function Analysis).

Here, we are interested in the case of predicting a categorical response variable, corre-

sponding to the different classes (diseases) in microarray data, and we do not seek a linear

combination of the predictors to that end. For instance, in figure 2 we can see that the (de-

cision) classification tree will determine a set of logical if-then conditions (instead of linear

equations) for predicting or classifying cases instead. The interpretation is straightforward:

for instance, in the NCI dataset case, given a sample, if the gene 2024 has an expression value

greater than 0.18501 and the gene 6277 has an expression value smaller than -0.24 and the

gene 44 has an expression value greater than 0.03, then the tree predicts COLON for such a
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sample.

Tree classification techniques, producing accurate predictions or predicted classifications

based on few logical if-then conditions, have a number of advantages over many of those alter-

native techniques pointed out before. In most cases, the interpretation of results summarized

in a tree is very simple. This simplicity is useful not only for purposes of rapid classification

of new observations, but can also often yield a much simpler “model” for explaining why

observations are classified or predicted in a particular manner. Additionally, tree techniques

are nonlinear and nonparametric because there is no implicit assumption that the underlying

relationships between the predictor variables and the dependent variable are linear, follow

some specific non-linear link function or that they are even monotonic in nature.

The computational details involved in determining the best split conditions to construct a

simple yet useful and informative tree are quite complex and we suggest the reader the book by

Breiman et al. [1], which gives an excellent mathematical description of this powerful method.

A good general discussion of tree classification and regression methods, and comparisons with

other approaches to pattern recognition and neural networks, is also provided by Ripley in

[8].

A major issue that arises when applying regression and classification trees to “real” data

contaminated by random error noise of high level concerns the decision when to stop splitting

tree branches. If not stopped, the tree algorithm will ultimately “extract” all information

from the data, and will eventually predict with perfect accuracy the classes of our training

set. Of course, it is far from clear whether such (complex) results (with many splits) will

replicate in a sample of new observations; most likely they will not. This is because the last

splits were obtained with only very few observations and have therefore no generalisation

power. In the beginning, this problem was solved by defining a stopping criterion. Many

criteria were tested, but the results were never satisfactory because sometimes it seemed that

nothing was gained by continuing splitting but, further down the tree, the decrease in error

was again significant. This problem was solved in CART [1], by building a very large tree,

eventually with only one observation in each leaf, and then prune it backwards until finding

the best subtree. Nevertheless, this brought serious computational problems, because the

number of subtrees increases exponentially with the size of the tree; again, this problem was

elegantly solved by the authors of CART, who have demonstrated how to find the optimal

subtree in linear time.

2.1 Results

We considered five different datasets containing gene expression from samples (instances)

having or not one of possibly various forms of cancer (classes). Obtained from the urls

http://www.lsi.us.es/~aguilar/datasets.html and http://www-stat.stanford.edu/

~tibs/ElemStatLearn/data.html, the datasets are identified as follows: Colon cancer (2
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classes: 1 - Tumor, 2 - Normal); Embryonal tumours (of the central nervous system) (2

classes: 1 - Tumor, 2 - Normal); Global cancer map (14 classes: 1 - Breast, 2 - Prostate, 3

- Lung, 4 - Colorectal, 5 - Lymphoma, 6 - Bladder, 7 - Melanoma, 8 - Uterus Adeno, 9 -

Leukemia, 10 - Renal, 11 - Pancreas, 12 - Ovary, 13 - Mesothelioma, 14 - CNS); Leukemia

(2 classes: 1 - ALL, 2 - AML); NCI (14 classes: 1 - CNS, 2 - Renal, 3 - Breast, 4 - NSCLC,

5 - Unknown, 6 - Ovarian, 7 - Melanoma, 8 - Prostate, 9 - Leukemia, 10 - K562B-repro,

11 - K562A-repro, 12 - Colon, 13 - MCF7A-repro, 14 - MCF7D-repro). Figure 1 illustrates

the distribution in the training and (whenever available) test sets of the instances among

the classes; it can be seen that the most balanced distribution is that related to the Global

cancer map dataset. All experiments, whose results are shown below, were carried out using

bash-scripting and Matlab 7.0.0.19901 (R14) under Linux.
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Figure 1: Distribution in the training and (whenever available) test sets of the instances

among the classes for the five datasets.

For each of the datasets, decision tree (performance) assessment and selection were done

using, respectively, 10-fold cross-validation and the one standard deviation rule.
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Normal Tumor

   x1671 < 59.8281

(a) Colon cancer

Tumor Normal

   x2474 < 434

(b) Embryonal tumours

ALL AML

   x4847 < 994

(c) Leukemia

Leukemia

Breast Uterus__Adeno Lymphoma CNS

Renal Colorectal

Bladder Pancreas Mesothelioma Melanoma

   x14221 < 908

   x4047 < 17.5    x854 < 1133.5

   x7029 < −74.5    x10353 < 332    x462 < 167.5

   x5036 < −35    x1771 < 37

   x2171 < 14.5    x849 < −125.5

(d) Global cancer map

RENAL NSCLC

BREAST MELANOMA LEUKEMIA COLON

   x2024 < 0.18501

   x5899 < 0.78    x6277 < −0.24

   x3668 < −0.08    x44 < 0.03

(e) NCI

Figure 2: Decision trees for the five datasets, where xn denotes the expression of the n-th

gene.
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Dataset
Available

genes

Decision tree

Selected

genes

Terminal

nodes

Classification error

Training

10-fold

Test

A

cross-validation priori

Colon cancer 2000 1 2 13% 24% 35%

Embryonal tumours 7129 1 2 17% 20% 35%

Global cancer map 16063 10 11 23% 44% 65% 83%

Leukemia 7129 1 2 0% 13% 9% 29%

NCI 6830 5 6 34% 81% 86%

Table 1: Statistics relative to the decision trees for the five datasets.

Figure 2 depicts the chosen trees, and table 1 shows some statistics concerning the number

of selected genes for class discrimination, the number of terminal nodes which in this case

correspond to the number of identified classes, and the classification error on the training and

(whenever available) test sets, where the columns named “10-fold cross-validation” and “A

priori” contain, respectively, an estimate of the true test error and the error one would get if

all instances were labelled with the most representative class in the training set. The results

reveal that only a few of the thousands of genes have a relevant expression to discriminate

between classes; moreover, in two of the five datasets, some of the classes were not identified

by the decision trees. Hence, we conclude that not only unusable measure of gene expression

is being made, but also that important genes are not being considered at all.

3 Finding eigengenes using weighted and unwheighted PCA

In this section we seek a few linear combinations of the genes that account for most of the

variation present in microarray data. This is done by using Principal Component Analysis

(PCA), introduced by Karl Pearson (1901) and Hotelling (1933) (see [2, 4, 3]). Let us des-

ignate by X = (X1, X2, . . . , Xg)
T a vector containing all expression measurements for the

g genes. Thus, our data consists in n vectors X1,X2, . . . ,Xn in a space of g dimensions,

where n is the number of samples. Mathematically, the PCA problem consists in finding a

subspace of the original space which maximizes the dispersion of the points projected onto

that subspace. Let Y1,Y2, . . . ,Yn denote the projected points onto the subspace corre-

sponding to the first M principal components of the sample X1,X2, . . . ,Xn in the original

space. This subspace is the one that maximizes the trace of the total dispersion matrix of

the projected points, S̃T =
∑n

i=1
(Yi − m̂)(Yi − m̂)T , where m̂ is the mean vector of the pro-

jected sample. The solution to this optimisation problem (see [4]) is given by the eigenvectors

corresponding to the M largest eigenvalues of the covariance matrix of the initial sample:
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Σ̂ = 1

n−1

∑n
i=1

(Xi − µ̂)(Xi − µ̂)T , where µ̂ is the mean vector of the original sample. For

various reasons, it is common to start by standardising the data, so that all the variables

have the same importance in the analysis. In our case this consists in subtracting to each

observation the average gene expression and divide by the corresponding standard deviation.

With this initial transformation, the principal components obtained are a linear combination

of the original gene expression and the coefficients of these linear combinations are given

by the components of the eigenvectors of the usual correlation matrix based on Pearson’s

correlation coefficient r.

In this work, we introduce a “weighted” version of PCA. This “weighted” version consists

in giving more importance to observations whose expression values are higher, which we think

makes sense for microarray data, given that the higher the expression value the more probable

is that the gene in question is related to the particular disease. To that end, this “weighted”

PCA uses a correlation coefficient that gives higher weights to observations that take larger

values and that corresponds to a new rank correlation coefficient, introduced by Pinto da

Costa & Soares in [7], that gives more importance to higher ranks. We now describe this

coefficient based on Spearman’s one [9].

Usually, to calculate Spearman’s rank correlation coefficient we must first rank the ob-

servations in each sample x and z, corresponding to the expression of genes g and g ′, from 1

(highest rank) to n (lowest rank). We thus obtain r(xi) and r(zi), where xi and zi are the

pair of values corresponding to observation i in each sample and r(xi) returns the rank of

value i in the first series. For sake of simplicity, let us use the ranks directly rather than the

values in the series, that is, Ri = r(xi) and Qi = r(zi). The Spearman’s rank correlation

coefficient, rS , is given by the expression:

rS =

∑n
i=1

(

Ri − R
) (

Qi − Q
)

√

∑n
i=1

(

Ri − R
)2 ∑n

i=1

(

Qi − Q
)2

,

where R and Q are the average ranks. However, for computational purposes, a more conve-

nient expression which assumes there are no ties is the following:

rS = 1 −
6
∑n

i=1
(Ri − Qi)

2

n3 − n
.

It is clear from this rewritten form of rS that the calculation of the distance between two

ranks in Spearman’s coefficient is given by

D2

i = (Ri − Qi)
2,

which does not take rank importance into account. In [7], Pinto da Costa & Soares propose

the following alternative distance measure:

W 2

i = (Ri − Qi)
2
(

(n − Ri + 1) + (n − Qi + 1)
)

= D2

i

(

(n − Ri + 1) + (n − Qi + 1)
)

.
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The first term of this product is D2

i , exactly as in Spearman’s coefficient, and represents

the distance between Ri and Qi; the second term represents both the importance of Ri and

Qi. Taking this expression as the distance, the authors obtain the weighted rank measure of

correlation

rW = 1 −
6
∑n

i=1
(Ri − Qi)

2
(

(n − Ri + 1) + (n − Qi + 1)
)

n4 + n3 − n2 − n
,

which yields values between +1 and –1. Some properties of the distribution of the statistic

rW , including its sample distribution, are analysed in [7, 5]: in particular, the expected value

of this statistic is zero when the two variables are independent and its sampling distribution

converges to the gaussian when the sample size increases. A table of the most significant

percentiles is given in [7].

Our aim now is to use the two correlations (Pearson’s r and “weighted” rW ) as inputs for

the PCA and compare the results obtained. First of all, because we have many more variables

(genes) than observations (samples) in the considered datasets, we will start by filtering the

genes that we think are most important. This is done by considering only the most expressed

genes. Secondly, we apply the “weighted” and unweighted PCA to the chosen genes and find

the new variables, corresponding to the principal components, which are a linear combination

of the chosen genes. These principal components have been called “eigengenes” [10]. Then, as

suggested in [2], suppose that for instance the first principal component is
∑

aixi, where the

ai are the coefficients in that component and xi is the expression level for gene i. Restricting

attention to those genes for which |ai| > c, for some chosen cut-off value c, allows us to focus

on a small set of genes that might be used in a future microarray experiment, for instance.

3.1 Results

For each of the datasets, the 15 most expressed genes were used in the usual (Pearson’s r)

and in the “weighted” (rW ) PCA.

Figure 3 shows the cumulative explained variance for a number of principal components,

i.e., eigengenes, ranging from 1 to 15, and two major conclusions are drawn: although the

eigengenes are different, the cumulative explained variance is almost the same in both ap-

proaches to PCA; apart from the Global cancer map dataset, the minimum number of eigen-

genes needed to explain at least 80% of the total variance is about 5. Table 2 presents the

selected genes in the first two eigengenes, ordered from top to bottom by decreasing order of

importance, which is measured by the absolute value of the correspondent coefficient in the

linear combination representing the eigengene.

4 Conclusions

Under the context of supervised selection of genes in microarray data by means of decisions

trees, the present work showed that only a few of the thousands of genes whose expression
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Figure 3: Cumulative explained variance (C.e.v.) for each of the approaches to PCA - usual

(Pearson’s r) and “weighted” (rW ) - in the five datasets.

is measured are relevant to discriminate either between the existence or not of a cancer or

between different forms of cancer; moreover, in some cases, there was not enough information

to carry out such discrimination. Hence, we conclude that not only unusable measure of gene

expression is being made, at the expense of high monetary costs let us say, but also that

important genes are not being considered at all.

In the unsupervised approach, the usual (Pearson’s r) and a “weighted” (rW ) Principal

Component Analysis (PCA) were used to select both the so-called eigengenes, a compressed

representation of gene expression through principal components, and the most important

genes in some of the most important eigengenes. Most of the times, the two forms of PCA

selected different genes or the same genes but in a different order of importance; nevertheless,

we observed that the associated eigengenes explain almost the same total variance of gene

expression.
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Dataset Colon cancer Embryonal tumours Global cancer map

Correlation

coefficient

r rW r rW r rW

Eigengene 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

Selected

genes

1 2 10 2 7096 1222 5199 5938 44 19 11503 9869

23 3 23 3 46 5997 6226 47 7184 7158 7184 1765

9 24 1 878 6773 19 19 45 47 4199 44 1222

7 10 6 24 5199 5199 5997 7096 7187 1765 7187 5058

6 878 24 7 19 7096 46 5997 11503 9869 47 4199

10 23 2 26 6226 46 7096 5199 10712 10712 7158

26 22 3 11 45 45 6773 19 11414 4199 19

4 9 22 4199 5507 1222 11438 11414

2 7 1765 1765 1222 1765

3 4199 1765 1222

16 4199 11438

5058 5058

Dataset Leukemia NCI

Correlation

coefficient

r rW r rW

Eigengene 1st 2nd 1st 2nd 1st 2nd 1st 2nd

Selected

genes

1765 4199 4454 4044 6150 6391 6393 6391

879 1222 1765 879 6393 6392 6152 6392

896 5998 896 912 6151 6393 6151 256

1222 6026 4044 5648 6152 6415 6150 6415

4454 912 4482 930 6392 4701 6392 257

4482 879 4299 4482 6391 6150 6391 6393

4299 1222 896 5732 6152 3518 6150

6026 6026 4178 256 6151 6151

5998 257 4701

Table 2: Selected genes in the first two eigengenes for each of the approaches to PCA - usual

(Pearson’s r) and “weighted” (rW ) - in the five datasets.
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Gene expression measures of oligonucleotide

microarray technology

Fatma Haouari ∗ Mohamed Limam †

Abstract

To search for more optimal methods with better detection of differential gene expres-

sion, different standard gene expression measures are explored. Gene expression measure

is a process consisting of four main steps: background correction, normalization, Perfect

Match correction and summarization. By combining different steps from several perfor-

mant methods of gene expression measurement, four new measures are proposed. Their

performances are assessed based on model fit, differential expression between probe sets

and differential expression between RNA samples, using oligonucleotide microarray data

from spike-in study and part of a dilution study. MAS method has the best fitting to the

model expressing the relation between gene expression values and concentrations since it

shows slopes very near to one. The RMA with LiWong summarization (RLW) method

shows a good fitting to the model better than Robust Multi-array Average (RMA) method.

We notice also that ignoring the background step, in the RMA method, improves the de-

tection of differential expression between RNA samples and between probe sets. Also, we

noticed that, in the RMA method, by replacing the quantile normalization method by

the contrast one, this gives good results in detecting differential expression between probe

sets.

Keywords: oligonucleotide microarray, gene expression, differential expression, model fit.

1 Introduction

High density oligonucleotide microarray technology, developed by Lockhart et al. ([12]), is

a promising biotechnology which measures the expression level of thousands of genes simul-

taneously in parallel and in a single hybridization assay. It is widely used in many research

applications such as: identification of genes that express differently under various experimen-

tal conditions, improvement of the process of disease diagnosis, in pharmacogenomics and

in toxicogenomics. After the scanning step, a huge amount of gene expression intensities is

∗LARODEC, Institut Supérieur de Gestion, Tunis. E-mail: Fatma.haouari@laposte.net.
†LARODEC, Institut Supérieur de Gestion, Tunis. E-mail: Mohamed.limam@isg.rnu.tn.
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obtained at the probe level. Then, to generate at the gene level, expression measures suit-

able for analysis, it is necessary to summarize this probe level data. Li et al. ([11]), Naef

et al. ([13]), Affymetrix ([1]), Chu et al. ([4]), Irizarry et al. ([9]), Irizarry et al. ([10]),

Cope et al. ([5]), Gautier et al. ([7]), Wu et al. ([16]), and others, proposed gene expression

methods and evaluated them according to different criteria. Gautier et al. ([7]) showed that

gene expression measure is a process with four main steps. The first is background correction

consisting in the removal of the optical noise and non-specific hybridization affecting intensity

data. The second is normalization which is the process of eliminating, or at least reducing,

variation of non-biological origin mentioned by Hartemink et al. ([8]). The third is Perfect

Match correction which describes the way of correcting for non-specific binding. The last step

is summarization of probe level data into summary expression values. These four modules

can work independently of the process, which provides the possibility to remove a step or

to replace it by another one. In this paper, we used functions provided by the Affy package

implemented by Gautier et al. ([7]) using the R statistical software, introduced by Venables

et al. ([15]). We used in addition other R packages to generate four new gene expression mea-

sures. Those packages are implemented in the bioconductor project and can be downloaded

(http://www.bioconductor.org). These new methods consist in combining different steps

of the process of gene expression from different methods such as Mas 5.0 of Affymetrix ([1]),

Multiplicative Model-based expression index method of Li et al. ([11]) and robust multiarray

analysis method (RMA) of Irizarry et al. ([9]) and other normalization methods such as the

contrast method of Astrand ([2]) and the quantile method of Bolstad et al. ([3]). These new

methods are evaluated based on criteria of special interest in biomedical research such as,

model fit and differential expression between RNA samples and differential expression be-

tween probe sets using spike-in studies and dilution study. Different gene expression methods

are discussed in Section 2. Next, different steps of gene expression methods are combined in

Section 3. Then, the new methods are evaluated based on model fit, differential expression

between probe sets and differential expression between RNA samples in section 4.

2 Methods of gene expression measurement

In this section, we discuss three standard gene expression measures namely: RMA, MBEI

and Mas 5.0. Irizarry et al. ([10]) conducted an evaluation study and showed that RMA and

MBEI provide more consistent detection of differential expression between RNA samples and

probe sets than those presented by Affymetrix ([1]), Mas 5.0 and Mas 4.0. The three methods

perform also similarly in terms of accuracy (bias) but with better precision with respect to

the RMA measure.
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2.1 Multiplicative Model-based expression index

MBEI method proposed by Li et al. ([11]), and implemented in their software DNA-Chip

Analyzer (dChip), uses a non-linear normalization method to account for differences between

intensities across arrays. Then, it fits the following statistical model for one probe set in

multiple arrays:

yij = PMij − MMij = θiΦj + εij, (1)

where PMij and MMij are the intensities of the jth probe pair in the ith sample, θi represents

the expression level for a gene in the ith sample, Φj is the additional rate of increase for the

jth PM probe pair and a random error εij assumed to be N(0,σ2). This model is identifiable

only under the constraint
∑

j Φ2

j = J , where J is the number of probe pairs in the probe set

The expression measure is computed as follows:

a) Normalization of probe intensities using the non-linear normalization method of Li et

al. ([11]).

b) Fitting of the model defined in (1) to the normalized data to obtain gene expression

measures.

This method is the first gene expression measure based model. And one of his disadvantages

is that her model parameters must be estimated from a training data set, and can therefore

be less accurate in the case of a small or heterogeneous data set.

2.2 Mas 5.0 signal method

Mas 5.0 signal method is the latest version of Affymetrix ([1]) algorithms for gene expression

measurement. It consists in computing a signal value, a gene expression measure, from the

combined background-adjustement, both PM and mismatch (MM) values of the probe set.

And by using Tukey biweight algorithm we compute a robust average of the values log(PMij

- IMij), where PMij represents PM intensities of the jth probe pair in the corresponding ith

probe set, and IMij is the ideal mismatch of the jth probe pair in the corresponding ith probe

set. The signal value is calculated through the following steps:

a) Cell intensities are preprocessed for global background.

b) An ideal mismatch value is calculated and substracted to adjust the PM intensity.

c) The adjusted PM intensities are log-transformed to stabilize the variance.

d) The biweight estimator is used to provide a robust mean of the resulting values.

e) Finally, signal is scaled using a trimmed mean.
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In contrast to previous methods based on PM - MM differences, Affymetrix uses the IM

quantity, never bigger than PM, to correct for non-specific binding. Due to this alternative,

this Affymetrix method has became more accurate than all other gene expression measures.

2.3 Robust Multi-array Average

RMA method proposed by Irizarry et al. ([9]) uses the average of log transformed, back-

ground subtracted PM values for gene expression calculation and fits a robust linear model,

by applying a median polish technique, described by Venables et al. ([15]), on this model,

yij = µin + αjn + εijn, (2)

where yijn is the background adjusted, normalized, and log-transformed PM intensities, µin

is the log expression level for array i on the probe set n, αjn is the probe-effect on probe

set n and j represents probes in one probe set, j = 1,...,J, εijn is an independent identically

distributed error term with mean 0. For the identifiability of the parameters it is assumed

that
∑

j αj = 0 for each probe set. The expression measure is computed through the following

steps:

a) Background correction of the PM probes using a model based on observed intensity,

assumed to be the sum of signal and noise.

b) Normalization of corrected PM probes using quantile normalization.

c) Making a log transformation to obtain the additive model defined in (2).

d) Fitting of the additive model using median polish technique to calculate the gene ex-

pression measure.

As shown by Irizarry et al. ([10]), RMA gene expression method is considered a standard since

it gives the most precise gene expression measures and it is the best in detecting differential

expression between probe sets and samples.

3 Combination and generation of gene expression measures

In this section, different methods used for the generation of the new gene expression measures

are discussed and different combined methods and the way of producing them are presented.

3.1 Background correction

This step of the process is not implemented in many gene expression measures. The widely

used background correction methods are those given by Affymetrix ([1]), which is the pro-

cedure mentioned in this paper in section 3.3.1, and the one given by Irizarry et al. ([9]) in

their RMA method.
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3.1.1 The RMA background correction.

Irizarry et al. ([9]) ignore the MM probes and assume that PM intensities are composed of

signal and background signal caused by noise and non-specific binding. The background is

denoted by bgijn, where i represents arrays, i = 1,...,I, j represents probes in one probe set,

j = 1,...,J, and n represents probe sets, n = 1,...,N and it follows a normal distribution with

parameters µ and σ. Background corrected values are estimated as follows,

B(PMijn) ≡ E(sijn|PMijn), (3)

where

E(sijn|PMijn = s) = a + b
φ(a

b
) − φ( s−a

b
)

Φ(a
b
) + Φ( s−a

b
) − 1

, (4)

with PMijn denotes the PM intensities, sijn stands for signal, a = s - µ - σ2α and b = σ.

3.2 Normalization

Many normalization methods are presented in the literature. Schadt et al. ([14]) and Li

et al. ([11]), proposed a non-linear baseline method based on non-linear relations. Astrand

([2]) proposed a contrast based method consisting in fitting a smooth curve to the feature

intensities at the log scale. Bolstad et al. ([3]) introduced cyclic loess method based on M

vs A method of Dudoit et al. ([6]). Bolstad et al. ([3]) proposed also the quantile method

consisting in transforming the distribution of probe intensities in a set of arrays the same.

Bolstad et al. ([3]) compared these several methods and showed that the quantile method

reduces significantly bias and variance as compared to other methods, and that it is the most

time consuming.

3.2.1 Contrast based method

Astrand ([2]) introduces the contrast based method as a non-linear procedure for normalizing

the raw feature intensities, i.e. the PM and MM intensities. As the cyclic loess method, it is

another extension of the M versus A method which fits a smooth curve in scatter plots, with

the log feature intensity differences on the y-axis, and the log intensity means on the x-axis.

This method is faster than the cyclic loess method, however, the computation of the loess

smoothers is time consuming.

3.2.2 Quantile method.

The principle of this method, as presented by Bolstad et al. ([3]), is to make the distribution

of probe intensities in a set of arrays the same. The method is motivated by the idea that we

could give to two separate data sets the same distribution by transforming the quantiles of

each to have the same value. This could be done by projecting probe intensities of the set of
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arrays onto the unit vector ( 1√
N

,..., 1√
N

) to get normalized data. The projection is equivalent

to taking the average of the quantile in a particular row of a matrix, having arrays as columns

and intensities as rows. By substituting this value, for each of the individual elements in that

row, we have

projdqi = (
1

N

N
∑

j=1

qij, ...,
1

N

N
∑

j=1

qij), (5)

where d is the unit vector mentioned above, qij is the row of probe i in column j and N

denotes the number of arrays. The quantile based method provides a fast procedure to

normalize multiple chips based on the assumption of a common distribution.

3.3 PM correction

This step cannot be independent of the process of gene expression measurement, since it is

a way of correcting the PM values which are implemented in each gene expression method.

Except the Mas 5.0 method, which adopts a PM correction method based on alternatives

and parameters, the majority of gene expression measures correct PM intensities by simply

ignoring the MM intensities or subtract the MM quantity from the PM quantity.

3.3.1 Mas 5.0 PM correction method

As reported in Affymetrix ([1]), and for many reasons, the MM value can be larger than PM

value. In this case, it can’t be an estimator for the amount of signal in the PM intensity.

Instead, an idealized value (IM) can be estimated based either on the average ratio between

PM and MM, or a value slightly smaller than PM. Three cases for determining the ideal

mismatch, for probe pair j in probe set i, can be distinguished depending on parameters:

IMi,j =











MMi,j, if MMi,j < PMi,j
PMi,j

2
(SBi)

, if MMi,j ≥ PMi,j and SBi > contrastτ

PMi,j, if MMi,j ≥ PMi,j and SBi ≤ contrastτ

(6)

where contrast τ = 0.03, scale τ = 10 and SBi represents the value of the specific background

ratio for the probe set which is calculated as follows:

SBi = Tbi(log2(PMi,j) − log2(MMi,j)), (7)

where j represents the probe pairs, j = 1,...,ni and i the respective probe set and Tbi is the

one-step Tukey’s Biweight algorithm. The first case, where the mismatch value provides a

probe-specific estimate of stray signal is the best situation. In the second case, the estimate

is not probe-specific, but at least it provides information specific to the probe set. The third

case involves the least informative estimate, and it is weakly based only on probe-set specific

data.
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3.4 Summarization

3.4.1 Median Polish Technique

Venables et al. ([15]) present the median polish technique as a robust data analysis technique

used to test the significance of various factors in a multifactor model. It models the response

variable as: data = common value + factor-1 effects + ... + factor-n effects + residual. For

each factor, we do the following:

a) Calculate the medians for each level of a factor (these are the factor effects).

b) For each value of the response variable, subtract the corresponding level median.

The above steps are repeated until the ratio of the sum of the residuals from the current step

and the residuals from the previous step are less than some cut-off value (normally only 2 or

3 passes are required).

3.5 Combination

As shown by Irizarry et al. ([10]), RMA gene expression method is considered a standard

since it is the best in detecting differential expression between probe sets and samples, and

it gives the most precise gene expression measures. Different steps of the RMA method

are interchanged with the different steps of the other mentioned methods. By this way, we

generate four other gene expression measures mentioned in table 1. Wu et al. ([16]) adopted

this procedure where they replaced only the background correction step of the RMA method

by a GC-background method that they implemented in their PM-only GC-RMA method.

The modification of the background step gave more accurate gene expression measure.

Method Background Normalization PM Summarization

correction correction

RMA rma quantile pmonly median polish

RWB - quantile pmonly median polish

RIM rma quantile mas median polish

Rcontras rma contrast pmonly median polish

RLW rma quantile pmonly LiWong

Table 1: Different combinations for proposed gene expression methods.
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3.5.1 RMA without background correction (RWB)

Expression measures are computed using RMA method but by omitting the background

correction step. This method will allow us to see the effect of dont removing noise and

non-specific binding from data.

3.5.2 RMA using the ideal IM method as PM correction (RIM)

Expression measures are computed by replacing the PM correction method mentioned in the

RMA method by the one implemented in the MAS 5.0 expression measure.

3.5.3 RMA with contrast normalization method (Rcontras)

In this method, we ignore the same distribution feature of the quantile method to replace it

with the smooth curve of the contrast normalization method. So, we take the PM probes in

pairs to compute the differences and means of the MVA plots on which is based the contrast

based method. We choosed this normalization method because it proved her performance in

reducing variance and bias as reported by Bolstad et al. ([3]).

3.5.4 RMA with LiWong summarization (RLW)

In this method, we applied on the PM corrected intensities the multiplicative model of the

summarization step followed by MBEI method of Li et al. ([11]) to summarize the probe level

data.

4 Results

In this section, we evaluate the four proposed methods based on model fit and differential

expression between RNA samples and probe sets using the dilution study and the spike-in

study. For the second criterion, we use the observed fold change in expression which is usually

used to assess differential expression between replicate arrays.

4.1 Data description

Evaluation is based on data used by Irizarry et al. ([9]), Bolstad et al. ([3]) and others. It is

a benchmark, composed of two sets of experiments, a dilution/mixture experiment for liver

tissue and central nervous system (CNS) samples and a spike-in experiment. The two studies

are available from the web at http://qolotus02.genelogic.com/datasets.nsf/.

1) The dilution/mixture data
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The dilution/mixture data series consist of 75 HG-U95A arrays, where two sources of RNA,

liver and central nervous system cell line are investigated. There are 30 arrays for each source,

broken into 6 groups at 5 dilution levels. The remaining 15 arrays, split into 3 groups of 5

chips, involve mixtures of the two tissue lines in the following proportions: 75:25, 50:50, and

25:75.

2) Spike-in study:

The spike-in data sets consist of experiments where 11 different cRNA fragments were added

to the hybridization mixture of 98 HG-U95A GeneChip arrays at different picomolar (pM)

concentrations. The 11 control cRNAs were BioB-5, BioB-M, BioB-3, BioC-5, BioC-3, BioDn-

5 (all E. coli), CreX-5, CreX-3 (phage P1), and DapX-5, DapX-M, DapX-3 (B. subtilis).

3) The varying concentration series data set, B1

For an individual array, all of the 11 control cRNAs were spiked-in at the same concentration

and this concentration is varied across arrays, taking the values 0.0, 0.5, 0.75, 1, 1.5, 2, 3, 5,

12.5, 25, 50, 75, 100 and 150 pM.

4) The spike-in data sets B2

This data set consists of a 12 x 12 cyclic Latin square, with each concentration appearing

once in each row and once in each column. The 12 concentrations used are 0.5, 1, 1.5, 2, 3,

12.5, 25, 37.5, 50, 75, and 100 pm. The 12 combinations of concentrations used on the arrays

are taken from the first 11 entries of the 12 rows of this Latin square. Of the 12 combinations

used, 11 are conducted on three arrays and one on just two arrays.

4.2 Model fit Comparison

In order to evaluate the gene expression measures in terms of model fit, as in Bolstad et al.

([3]), we look to this criterion in the context of the spike-in series. In particular we use the

data set B1 for this criterion just described. We compute the gene expression measures for

each of the 26 arrays as a group using each of the gene expression methods mentioned in this

paper. To the spike-in probe sets, we fit the following linear model in the log scale,

Log2E = β0 + β1Log2c + ε (8)

where E are the values of the expression measures, c are the concentrations, β0 is a constant,

β1 is the slope estimate, and ε is a random error. To guarantee a good fit to the model, we

eliminate the array with spike-in concentration 0 because of the log use. The ideal result

would be to have slopes that are near one. Table 2 shows the slope estimates for each of the

11 spike-in probe sets, relatively to the 11 control cRNA chosen in this data set.
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Probe set MAS MBEI RMA RIM back Rcontras RLW

BioB-5 at 0.976 0.842 0.339 0.868 0.752 0,081 0,917

DapX-M at 0.834 0.792 0.829 0.795 0.725 0,052 0,749

DapX-5 at 0.889 0.695 0.813 0.737 0.608 0,127 0,815

CreX-5 at 0.982 0.870 0.962 0.901 0.776 0,050 0,998

BioB-3 at 1.095 0.829 0.900 0.842 0.737 0,092 0,941

BioB-M at 1.157 0.780 0.799 0.892 0.696 0,142 0,873

BioDn-3 at 0.781 0.594 0.591 0.583 0.559 0,084 0,652

BioC-5 at 0.970 0.826 0.856 0.828 0.751 0,073 0,858

BioC-3 at 1.304 0.773 0.860 0.803 0.677 0,103 0,884

DapX-3 at 0.891 0.820 0.863 0.873 0.748 0,063 0,864

CreX-3 at 0.291 0.029 0.046 0.043 0.021 -0,042 0,086

Table 2: Regression slope estimates for each of the 11 spike-in probe sets.

If we exclude the CreX-3 at probe set from the rest of the cited spike-in probe sets, the

RMA, MAS and RLW methods give slopes closer to one and the MAS method shows the best

results. It indicates a good relationship between gene expression values and concentrations.

For the rest of the methods, we observe a downward bias in the slope estimates. The average

R2 for the spike-in probe sets, excluding CreX-3, are 0.882 for the MAS method, 0.954 for the

MBEI method, 0.871 for the RMA method, 0.953 for the RIM method, 0.953 for the RWB

method, 0.013 for the Rcontras and 0.885 for the RLW method. And the median standard

errors of each gene expression method are 0.055 for the MAS method, 0.033 for the MBEI

method, 0.040 for the RMA method, 0.035 for the RIM method, 0.029 for the RWB method

0.212 for the Rcontras and 0.043 for the RLW method. We notice that between all the gene

expression methods the RMA, MAS and RLW method have high slopes, a better fitting model

and more precise slope estimates.

4.3 Comparison of differential expression between RNA samples

To achieve this comparison, we refer to the analysis mentioned in Cope et al. ([5]). In optimal

conditions, the Affymetrix protocol calls for 15 µg of RNA, but in practice the amount of target

mRNA available for the hybridization reactions can be amplified or decreased. It depends

on the cells, the tissue type under study and from experiment to experiment. Expression

ratio estimates (fold changes) are relative and should not co-vary with RNA quantity. To

simulate extreme variation in total quantity of RNA, we use a data set from the dilution

study, where the lowest concentration at 1.25 µg and the highest at 20 µg are used. For each
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gene, observed expressions are first averaged across replicates to obtain a single mean value

for each sample and dilution. Then, for each gene, we computed log fold change estimates

between liver and CNS samples using the 10 arrays in the 1.25 µg concentration group with

each of the five expression measures. After that, we computed estimates using the arrays in

the 20 µg concentration group. Log base 2 fold change estimates of gene expression between

liver and CNS samples, computed from arrays hybridized to 1.25 µg of cRNA, were plotted

against the same estimates obtained from arrays hybridized to 20 µg for all five measures. The

ideal result would be to have a curve fit with one as coefficient correlation. The plot resulting

from applying RMA method is presented in figure 1 in order to make a clear comparison to

this method, taken as reference.
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Figure 1: Plot of RMA method.

Figure 1 shows a good linear fit relation between the distributions in the two samples, which

is justified by the correlation coefficient given in table 2.

Method RMA RWB RIM Rcontras RLW

Correlation coef 0,912 0,932 0,753 -0,235 0,422

Table 3: The correlation coefficients of the five methods.

The correlation coefficient of fold change estimates from the different concentrations, given

in Table 2, shows that RMA and RWB provide more consistent estimates than the other

methods. Also, we notice that RWB performs better than RMA as it is shown from figure 2

and Table 2. The figures and tables results that the noise corrected by the RMA background

may be informative. In effect, these results are expected since it is shown in Cope et al. ([5]),
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Naef et al. ([13]), and others, that MM probes may also detect signal. The situation is also

similar here and the modification performed on data by applying RMA background correction

may lead to the deformation of results. The worst result is noticed in figure 4 relative to the

RMA with contrast normalization method. The methods using the two feature probes PM

and MM detect better differential expression between RNA samples. The RLW, figure 5,

shows many genes with n-fold discrepancy. The plot of figure 3 shows a result better than

the Rcontras and RLW methods.
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Figure 2: Plot of RWB method.
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Figure 3: Plot of RIM method.
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Figure 4: Plot of Rcontras method.
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Figure 5: Plot of RLW method.

4.4 Comparison of differential expression between probe sets

We now compare the performance of the five methods in detecting differential expression

between probe sets using the data set from the spike in study. Each probe set is expressed

at a different concentration between the two triplicates, this allow us to compare differential

expressions at the probe set level. We compute expression measures for each of the six arrays

using each of our methods. For each of the six arrays studied, expression measures E11n,
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E12n, E13n, E21n, E22n, E23n were obtained in their respective scale, log for the four first

methods and natural for the RLW method, for each probe set n = 1, . . . , N. We then

compute the averages Ei·n = (1/3)
∑

3

k=1
Eikn, i = 1, 2, n = 1, . . . , N. After that, for the

probe sets representing spike-in RNAs, we compute fold changes as the ratio of the average

expressions. The following figures show MVA plots of the average expressions values versus

fold change values. A great deal of information about the distribution of observed fold changes

can be read from such plot. The ideal is to have high absolute differential expressions and the

method can distinguish them explicitly. That is to say we can see points drawn separately

from the agglomeration of points in the plot. From the first plot, figure 6, relative to the RMA

method and the figure 7 and figure 9, we see probe sets drawn distinctly out of the cloud of

points, and they are differentiated by their large absolute fold changes. Those differentially

expressed probe sets are the 10 out of 11 genes differentially expressed relative to the probe

sets mentioned in Table 4. Figure 8 and figure 10, relatively to the RIM and RLW methods,

show a large cloud. It didn’t distinguish the appropriate probe sets differentially expressed.

In the plots 8 and 10 the probe sets with high differential expressions are not actually spike-

in ones. We notice a mixture of points, which is difficult to differentiate. Therefore, the

method with smaller cloud of points spread, RMA and RWB methods, are the best in terms

of detection of differentially expressed probe sets. The RWB method, by reference to RMA

method, turns out to be the best because it has less spread cloud points than the other.

The plot related to the RMA with contrast normalization method shows good results for this

comparison criterion and demonstrates a good detection capability of differentially expressed

probe sets. This is an expected result since the contrast normalization method is based on

MV A plots as is mentioned earlier.
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Figure 6: Plot of the RMA method.
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Figure 7: Plot of the RWB method.
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Figure 8: Plot of the MAS method.

99



2 4 6 8 10 12 14
A

-6

-4

-2

0

2

4

6

M

Figure 9: Plot of the Rcontras method.
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Bayesian two-gene interaction models in complex

binary traits
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Abstract

Current two-gene interaction models for complex binary traits assume linear effects of

either gene in a given mathematical scale of penetrance. However, this assumption is much

closer to a statistical than to a genetic description of penetrance. Therefore, few genetic

interpretations can be taken from these models. To address this problem, we propose

a novel statistical framework, the allelic penetrance approach, that models dominance

and recessiveness in a single diallelic gene with reduced penetrance. Using this approach,

we develop new two-gene interaction models with more genetic information, including

the specification of the phenotype-conferring alleles at each gene as well as their genetic

behavior. As an example, we fit the models to data on the susceptibility to experimental

cerebral malaria in mice using Bayesian analysis via Gibbs sampling.

Keywords: binary traits, genetic interaction, allelic and external penetrance, Gibbs sam-

pling, Bayesian model fitting.

1 Introduction

Binary traits are biological characters classified into two categories (e.g., susceptibility or

resistance to a certain disease). Their inheritance can be simple or complex. Simple binary

traits are only affected by a single gene and exhibit often Mendelian dominant or recessive

inheritance. Therefore, one can predict the phenotype through the genotype of an individual.

In contrast, the so-called complex binary traits are the outcome of an intrincated network of

genetic and environmental factors, that makes extremely difficult to predict the phenotype

from the genotype. At an extreme case, genetically identical individuals can manifest either

one or the other phenotype.

Penetrance is the most important concept to analyze complex binary traits (Griffiths et

al., 2000) and embodies the conditional probability of an individual inheriting the phenotype
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†Departamento de Matemática, Instituto Superior Técnico, Portugal. E-mail: dpaulino@math.ist.utl.pt.
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of interest given its genotype. It is often stated that simple binary traits have complete

penetrance, which take the values 1 or 0 depending whether the genotype is conferring or

not the phenotype, respectively, while complex binary traits have reduced penetrance (values

between 0 and 1).

Several models for penetrance have been proposed to infer the genetic interaction of two

genes in complex binary traits. Those models are generalized linear models (GLM) (McCul-

lagh and Nelder, 1989) with random component following a Binomial-product distribution

and systematic component

g (πij) = λ + αi + βj , (1)

where πij is the penetrance of genotype i of gene 1 and of genotype j of gene 2, g (·) is a

link function and
∑

i αi =
∑

j βj = 0. The most popular link functions are the identity

(additive model), logarithm (multiplicative model; Hodge, 1981), complementary logarithm

(heterogeneity model; Risch, 1990), logit (logistic model; Stewart, 2002) and probit (liability

model; Pearson, 1900; Dempster and Lerner, 1950). However, it is recognized that these

models are much closer to a statistical rather than genetic description of the penetrance, and

so few genetic interpretations can be taken from these models (Cordell et al., 2001).

The recent study on susceptibility to cerebral malaria in mice illustrates the difficulties of

interpreting current two-gene interaction models (Bagot et al., 2002). The authors reported

the identification of two disease-associated loci through a genetic mapping on a F2 progeny of

a backcross between a resistant and a susceptible strain, where F1 progeny was crossed with

susceptible parental strain. GLM were fitted to data to infer about genetic interaction of the

two loci. The usual goodness-of-fit tests did not rule out some of these models, but provided

evidence against others. Even though some GLM could fit the data, Bagot et al. (2002) could

not from that infer what kind of genetic interaction of the two loci is actually controlling the

trait.

This paper proposes new two-gene interaction models with improved genetic interpreta-

tion, namely, the phenotype-conferring alleles are clearly specified as well as their genetic

behavior (dominant or recessive). These models are based on a new approach to reduced

penetrance, the allelic penetrance approach (Sepúlveda, 2004; Sepúlveda et al., 2004, 2005).

The basic idea of the approach is to decompose penetrance in an internal component pertain-

ing to the penetrance of the alleles in the genotype and in an external component attributable

to factors other than the genotype under study.

The structure of the paper is the following. First, we introduce the allelic penetrance

approach for a single diallelic gene (Section 2). The framework is then extended in order

to embody different genetic interaction mechanisms for two-gene diallelic genes (Section 3).

A Bayesian analysis via Gibbs sampling is suggested to fit the models to experimental data

(Section 4) and is applied to cerebral malaria data (Section 5). Finally, concluding remarks

are presented (Section 6).
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2 The allelic penetrance approach

The allelic penetrance approach aims to decompose penetrance in its main components. To

do this, consider the most simple case: a single diallelic locus. In such a system, the main

factors affecting penetrance would be: (i) the two alleles at the controlling locus, (ii) the

contribution of the rest of the genome and (iii) the variability of environmental factors. The

usual interpretation for reduced penetrance postulates the existence of environmental and

other genetic factors, which can modify the action of the phenotype-conferring allele (Griffiths

et al., 2000; Nadeau, 2001). However, experimental genetics is rich in examples of reduced

penetrance in pure lines maintained under strict environmental conditions. This suggests that

somehow the genotype has an intrinsic stochastic property of being expressed at the level of

the phenotype. Moreover, there are some evidences that reduced penetrance can actually be

attributed to the alleles themselves, such as the cases of loss-of-function mutations (Lalucque

and Silar, 2004) and the ”metastable epialleles” (Rakyan et al., 2002).

Based on these observations, penetrance can be decomposed in a sum of two components:

an internal component attributable to the probability of the alleles of the genotype being ex-

pressed at the level of the phenotype and an external component pertaining to the probability

of the phenotype being affected by other (genetic and/or environmental) factors than the gene

under study. The probability of an allele being expressed at the level of the phenotype is from

now on referred to as the allelic penetrance.

Consider a gene with alleles a and b that control partially the expression of a binary trait.

Let a be a dominant allele over allele b with respect to the phenotype of interest. In absence

of external factors, the phenotype is ascribed to the expression of at least one allele a.

Let πg be the penetrance of genotype g = aa, ab, bb, respectively. Denote the penetrances

of alleles a and b by πa and πb, respectively. On the basis of the above reasoning, we define

the internal component of penetrance as the allelic expression probabilities of each genotype

towards the phenotype of interest. Considering independent allelic expressions, the internal

component of penetrance is

πint
g =











π2

a + 2πa (1 − πa) , if g = aa

πa, if g = ab

0, if g = bb

(2)

In this framework the external component of penetrance refers to the action of external

factors to the gene under study in promoting the phenotype. This action is assumed to be

only relevant in the absence of expression of allele a. That is, external factors acts as a

”backup mechanism” for the expression of the phenotype of interest. In this line of thought

external factors can force the phenotype to be the one of interest when none of the alleles of

the genotype is being expressed or even when the non-conferring alleles b are being expressed.

Considering πext as the probability of the external factors favoring the phenotype of interest,
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the external component of penetrance is then

πext
g =

(

1 − πint
g

)

πext =











(1 − πa)
2 πext, if g = aa

(1 − πa)πext, if g = ab

πext, if g = bb

. (3)

The final formula of penetrance is just the sum of internal and external components, i.e.,

πg = πint
g + πext

g =











π2

a + 2πa (1 − πa) + (1 − πa)
2 πext, if g = aa

πa + (1 − πa) πext, if g = ab

πext, if g = bb

. (4)

Consider now that allele a is recessive with respect to phenotype. Here it is assumed that

the phenotype is acquired when there is no expression of the dominant allele b and there

is expression of at least one allele a. Using the above reasoning, the internal component of

penetrance is

πint
g =











π2
a + 2πa (1 − πa) , if g = aa

πa(1 − πb), if g = ab

0, if g = bb

. (5)

The external component of penetrance follows previous reasoning and therefore external fac-

tors act solely when the alleles a are not expressing the phenotype. In this line of thought we

have the following external component of penetrance

πext
g =

(

1 − πint
g

)

πext =











(1 − πa)
2 πext, if g = aa

(1 − πa) (1 − πb)πext, if g = ab

πext, if g = bb

. (6)

Finally, by summing (5) and (6) the penetrance of the phenotype follows

πg =











π2
a + 2πa (1 − πa) + (1 − πa)

2 πext, if g = aa

πa (1 − πb) + (1 − πa) (1 − πb)πext, if g = ab

πext, if g = bb

. (7)

3 Statistical models for two–locus joint action

Here we extend the decomposition of penetrance for the two dialelic gene case, i.e.,

πg1g2
= πint

g1g2
+ πext

g1g2
, (8)

where πint
g1g2

and πext
g1g2

are the internal and the external components of penetrance, respectively,

for the combined genotype g1 in gene 1 and g2 in gene 2. As stated in the single gene case,

external factors are only relevant when there is no allelic expression of the two interacting
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genes towards the phenotype of interest. Therefore, the external penetrance can be factorized

as

πext
g1g2

=
(

1 − πint
g1g2

)

πext, (9)

which substituted in equation (8) leads to the following general formula of penetrance

πg1g2
= πint

g1g2
+
(

1 − πint
g1g2

)

πext. (10)

Different genetic interaction mechanisms can be considered by specializing the internal com-

ponent of penetrance. Some of them are described as follows.

3.1 Independent Action Models

The independent action models (IAM) rely on the so-called genetic heterogeneity (Risch, 1990;

Vieland and Huang, 2003), which establish that the phenotype is acquired by the independent

action of each gene. Here, each gene has a phenotype-conferring allele, which can be either

dominant or recessive. Thus, there are four types of IAM according to the genetic behavior

of the phenotype-conferring alleles at each gene: dominant-dominant, dominant-recessive,

recessive-dominant and recessive-recessive.

Derivation of the penetrances according to IAM follows almost straightfowardly from what

has been written so far. The internal component of penetrance is simply defined by the proba-

bilities of expression of the phenotype-conferring alleles at either gene towards the phenotype

of interest. Since heterogeneity means independent action of the two genes at the level of

the phenotype, the internal component of penetrance satisfies the probabilistic relationship

for the union of two independent events, each one referring to the allelic expressions of each

gene, i.e.,

πint
g1g2

= φg1
+ φg2

− φg1
φg2

, (11)

where φg1
and φg2

are the probabilities of expression of the phenotype-conferring alleles at

genotypes g1 and g2, respectively. If the phenotype-conferring allele at one gene is dominant,

then the corresponding φgi
follows equation (2). Analogously, if the phenotype-conferring

allele is recessive, then the respective φgi
is determined by equation (5). Finally, external

factors are included in the model through (10) with πint
g1g2

determined by (11).

3.2 Inhibition Models

In the early days of Genetics, Bateson (1909) described a phenomenon termed epistasis

whereby an allele of a given gene prevents an allele of another gene from manifesting its

effect. Nowadays, epistasis has been used in many contexts with different and often conflict-

ing meanings that has led to a lack-of-consensus about its formal definition (Phillips, 1998;
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Cordell, 2002). As a consequence, many authors have proposed different models to deal with

epistatic effects: additive models adapted from quantitative genetics considering penetrance

as a quantitative trait (Fisher, 1918; Cockerham, 1954; Kao and Zeng, 2002), multiplicative

models (Hodge, 1981), and heterogeneity models (Risch, 1990; Vieland and Huang, 2003).

Every author claims that epistasis is present when his model does not fit the data under

study.

Here we recall Bateson’s definition of epistasis to develop inhibition models (IM). These

models describe a type of interaction where one gene confers the phenotype by the expression

of its respective phenotype-conferring allele, whereas the other gene simply inhibits the phe-

notypic expression of the former by its inhibiting alleles. Phenotype-conferring or -inhibiting

alleles can be considered either dominant or recessive.

Consider that gene 1 confers the phenotype of interest and gene 2 inhibits the expression

of the former. In this case, the internal penetrance relates to the probability of the phenotype-

conferring alleles at gene 1 being expressed with no expression of phenotype-inhibiting alleles

at gene 2. Thus, the internal component of penetrance satisfies

πint
g1g2

= φg1

(

1 − φ∗
g2

)

, (12)

where φg1
is the probability of genotype g1 expressing the phenotype of interest and φ∗

g2
is

the probability of genotype g2 having an inhibitory behavior. Dominance and recessiveness

are included in the model by replacing φg1
and φ∗

g2
by the single-gene internal penetrances

(2) and (5), respectively. Finally we include external factors in penetrance through equation

(10) with internal penetrance given by the above equation.

3.3 Minimum Alleles Models

Falconer (1965) coined the term liability to refer to an unobserved quantitative continuous

trait influenced by genetic and environmental factors that controls the inheritance of a multi-

factorial disease. Under this concept, the phenotype is inherited when liability of an individual

exceeds a certain threshold. Usually liability is assumed to follow a (standard) Gaussian dis-

tribution with genes contributing additively to its mean (Pearson, 1900; Dempster and Lerner,

1950; Risch et al., 1993). One can also model liability by the (standard) Logistic distribution,

which leads to the popular logistic model.

Recently Stewart (2002) proposed the concept of allelic liability to model the inheritance

of multifactorial diseases. In his work, disease occurs when the number of disease-conferring

alleles in an individual exceeds a critical value. Based on this idea the minimum allele models

(MAM) establish that the phenotype of interest is inherited when the joint expression of the

phenotype-conferring alleles at both genes exceeds a certain level. Note that dominance and

108



recessiveness are not included in the model, because what matters here is the cumulative

expression of phenotype-conferring alleles.

It is worth noting that MAM requiring at least one phenotype-conferring allele being ex-

pressed is identical to IAM with dominant phenotype-conferring alleles at both genes, because

both models rely on the same condition for the expression of the phenotype. This shows that

different genetic interaction mechanisms can be described mathematically using the same

requisite for the inheritance of phenotype.

Let xi represent the number of phenotype-conferring alleles in the genotype of gene i = 1, 2.

Let also Yi be the random variable that indicates the number of those alleles expressing the

phenotype at gene i = 1, 2. According to the allelic penetrance approach, Yi|xi has a Binomial

distribution with xi trials and probability of success given by the allelic penetrance πi of the

phenotype-conferring allele at gene i = 1, 2. Assuming independence between Y1 and Y2, the

probability mass function of the total number Y of phenotype-conferring alleles expressing

the phenotype given combined genotype (x1, x2) is determined by

P [Y = y|x1, x2] =

x1
∑

l=0

P [Y1 = l|x1, x2]P [Y2 = y − l|x1, x2], (13)

where

P [Yi = yi|x1, x2] =

(

xi

yi

)

πyi

i (1 − πi)
xi−yi . (14)

Thus, MAM entails the following internal penetrance

πint
x1x2

= P [Y ≥ k|x1, x2] =

x1+x2
∑

y=k

P [Y = y|x1, x2], k = 1, . . . , 4, (15)

where P [Y = y|x1, x2] is given by (13) with k ≤ x1 +x2. As in IAM, the effect of the external

factors are included in the model by (10) with πint
g1g2

as calculated by (15).

4 Bayesian analysis

Penetrance data from experimental crosses are usually represented in the form of I×J×2

contingency tables, where I and J are the number of genotypes of each gene and the dimension

of the third variable refers to binary trait under study. For instance, I = J = 3 and I = J = 2

when analyzing data from a F2 progeny of an intercross or a backcross, respectively. Like in

GLM, we consider the Binomial-product distribution as sampling model.

We follow a Bayesian analysis for the purpose of model fitting. Here it is assumed prior

independence among the parameters of the models. Since allelic and external penetrances

are new concepts in genetic interaction modeling, it is reasonable to specify non-informative

(Uniform) prior distributions for them.
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Table 1: Cerebral malaria data where si and ri denote the alleles inherited from susceptible

and resistant strains in locus i = 1, 2, respectively. Penetrance refers to susceptibility.

Genotypes Phenotype

Locus 1 Locus 2 Susceptible Resistant Penetrance

s1s1 s2s2 35 10 0.78

r2s2 25 23 0.52

r1s1 s2s2 27 21 0.56

r2s2 9 40 0.18

The great complexity of the proposed models shows per se that posterior distributions

for parameters are impossible to be handled analytically. To overcome this problem, we

use Markov Chains Monte Carlo methods via Gibbs sampling with the help of WinBUGS

(Spiegelhalter et al., 2003). Sepúlveda (2004) shows that full conditional distributions are

log-concaves, which allows the software to use the adaptive rejection method (Gilks, 1992).

The diagnostics of convergence is performed in the Bayesian Output Analysis software (Smith,

2003) and can be found elsewhere (Sepúlveda, 2004).

Since many models can fit the data, we design a strategy of model selection and comparison

which can be performed in real time. First, we evaluate empirically the effects of the alleles

of each gene with respect to the phenotype of interest. In this way we can establish which are

the most plausible phenotype-conferring alleles as well as the potential phenotype-inhibiting

alleles. Second, we calculate the deviance information criterion (DIC) (Spiegelhalter, 2002)

and posterior mean of Pearson’s parametric function (PMP) for each model, selecting those

with the lowest values for both measures. Finally, we compare the selected models through

prior preditive probability (PPP) and sum of logarithm of conditional preditive ordinates

(SLNCPO). The best-fitted models are the ones with the highest values for both measures.

Bayesian estimation in the best-fitted models requires essentially the calculation of pos-

terior mean, median and standard deviation for allelic, external and genotypic penetrances.

Highest posterior density (HPD) credible intervals are determined through a method proposed

by Chen and Shao (1999). We also compute a credible region for c genotypic penetrances by

the cartesian product of the γ1/c × 100% individual HPD credible intervals for these param-

eters.

5 Application to cerebral malaria data

Here we fit our models to the cerebral malaria data referred to in Section 1, considering sus-

ceptibility as the phenotype of interest. With this purpose we first present the notation for

our models: IAM(s1/S2) is an IAM with phenotype-conferring alleles s1 and S2 at loci 1 and

2, respectively, where capital and small letters denote dominant and recessive alleles, respec-

110



tively. For inhibition models we use the same kind of notation, but we add the superscripts

c and i in each allele to denote phenotype-conferring and -inhibiting alleles, respectively (for

instance, IM(sc
1
/Ri

2
)). Finally, MAMk(s1/s2) is a MAM with phenotype-conferring s1 and s2

at loci 1 and 2, respectively, which requires at least the expression of k alleles to acquire the

phenotype. Alleles in these models are always represented by small letters.

Table 1 shows the genotypes and phenotypes for the F2 generation of the experimental

cross. The observed data suggests that the alleles derived from the susceptible strain at either

gene tend to increase the penetrance of susceptibility. Taking into account this observation,

we first select IAM and MAM with phenotype-conferring alleles derived from the susceptible

strain, whereas IM are chosen with one phenotype-conferring allele in one locus derived from

the susceptible strain and one phenotype-inhibiting allele from the resistant strain in the other

locus. However, there are some IM that parameterize the data solely by external penetrance

(for instance, IM(sc
1
/ri

2
)). We exclude these ones, because they provide very little information

about the underlying genetic interaction. Therefore, we select 12 models: the four types of

IAM with phenotype-conferring alleles s1 and s2, MAMk(s1/s2), k = 1, 2, 3, 4, IM(Sc
1
/Ri

2
),

IM(Ri
1
/Sc

2
), IM(Ri

1
/sc

2
) and IM(sc

1
)/Ri

2
)).

Note that the models with some recessive allele are overparameterized. This is a conse-

quence of modelling internal penetrance of recessive alleles using two allelic penetrances, one

for the dominant allele and another for the recessive allele (see equation (5)). Since the resis-

tant parental strain was observed to be 100% resistant to the disease while the other strain was

not fully susceptible, we could avoid overparametrized models by assuming that phenotype-

conferring and -inhibiting alleles have reduced allelic penetrance while the remaining alleles

have complete allelic penetrance.

Table 2 presents the observed values of PMP and DIC for the models described above.

There are 5 models that show low values for these measures, namely, IAM(S1/s2), IAM(s1/s2),

IM(Sc
1
/Ri

2
), MAM2(s1/s2) and MAM3(s1/s2). Following our model selection procedure, we

calculate PPP and SLNCPO estimates for these 5 models (see again Table 2). The results

distinguish clearly IAM(s1/s2) and MAM3(s1/s2) from the remaining models. Taking account

of the previous results, we conclude that these two models are the ones that best fit the

experimental data.

At this stage of the analysis, we can conclude that the two following genetic interaction

mechanisms can explain the observed data: (1) the alleles derived from the susceptible strain

at either locus are recessive and sufficient to cause the disease, or (2) both loci act together

so that susceptibility is inherited when there are at the two loci jointly at least three alleles

derived from the susceptible strain expressing the phenotype.

To conclude this analysis, Table 3 presents estimates for different parameters of the models,

where the credibility degree of each individual HPD interval for genotypic penetrances is setup

at 98.7% in order to obtain a 95% overall credibility degree for the respective credible regions.
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Table 2: Comparison and selection of genetic interaction models.

Model PMP DIC SLNCPO PPP

IAM(S1/S2) 16.660 36.262 — —

IAM(S1/s2) 7.449 26.335 -118.587 6.06 × 10−8

IAM(s1/S2)) 9.215 28.249 — —

IAM(s1/s2)) 3.210 22.643 -116.424 1.28 × 10−6

IM(Sc
1
/Ri

2
)) 7.859 22.878 -118.797 1.45 × 10−7

IM(Ri
1
/Sc

2
)) 9.219 26.248 — —

IM(Ri
1
/sc

2
)) 15.140 34.600 — —

IM(sc
1
)/Ri

2
)) 17.840 37.359 — —

MAM1(s1/s2) 16.660 36.262 — —

MAM2(s1/s2) 6.090 25.266 -117.806 2.21 × 10−7

MAM3(s1/s2) 3.038 22.035 -116.243 1.41 × 10−6

MAM4(s1/s2) 19.660 37.734 — —

Figure 1: Prior (dashed line) and posterior (solid line) densities of πs1s1/s2s2
for the best-fitted

models.

The estimates show that both models are almost indistinguishable in terms of genotypic

penetrance estimates. Figure 1 displays the plots of prior (dashed line) and posterior (solid

line) densities of πs1s1/s2s2
for each model. This figure shows that there is a strong update of

the respective prior distributions by experimental data.

6 Concluding remarks

The present work proposes an allelic penetrance approach to model genetic interactions in

complex binary traits. This framework is based on two types of basic parameters: allelic and

external penetrances. The allelic penetrance is an intrinsic stochastic property of phenotypic

expression of the alleles and agrees with current observations of stochastic gene expression.
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Table 3: Posterior estimates of IAM(s1/s2) and MAM3(s1/s2).
a95% and b98.7%.

IAM(s1/s2)

Parameters Mean Median SE HPD IC

πs1
0.243 0.278 0.057 0.125 0.348a

πs2
0.278 0.278 0.056 0.167 0.388a

πext 0.195 0.191 0.053 0.102 0.306a

πs1s1/s2s2
0.759 0.761 0.042 0.649 0.855b

πs1s1/s2r2
0.537 0.539 0.065 0.379 0.691b

πs1r1/s2s2
0.579 0.581 0.062 0.418 0.727b

πs1r1/s2r2
0.195 0.191 0.055 0.077 0.335b

MAM3(s1/s2)

Parameters Mean Median SE HPD IC

πs1
0.702 0.704 0.111 0.485 0.915a

πs2
0.776 0.781 0.111 0.584 1.000a

πext 0.211 0.208 0.057 0.105 0.322a

πs1s1/s2s2
0.782 0.785 0.042 0.663 0.871b

πs1s1/s2r2
0.512 0.512 0.058 0.374 0.651b

πs1r1/s2r2
0.542 0.543 0.056 0.397 0.670b

πs1r1/s2r2
0.211 0.208 0.057 0.087 0.358b

The external penetrance is the probability of external factors, other than the genes under

study, favoring the phenotype and it is assumed to be constant over the genotypes of genes

under analysis. In future work, we intend to model external penetrance in order to include

covariates embodying different environmental factors or genetic backgrounds. In this regard

it would be particularly important to include pertinent information on parental strains and

F1 generation of experimental genetic crosses.

The proposed genetic interaction models have the advantage of providing clear genetic

interpretation. However, some models present the disadvantage of being saturated or over-

parametrized models in backcross data. In the cerebral malaria example, this problem was

overcome by attributing reduced allelic penetrance for phenotype-conferring and -inhibiting

alleles and complete allelic penetrance for the non-conferring alleles, because susceptible

parental strains exhibit reduced penetrance and its resistant counterpart show complete pen-

etrance. Therefore, the usage of the models in backcross data is only recommended when the

phenotype of interest shows reduced penetrance while the alternative phenotype has complete

penetrance in their respective parental strains.

Finally, the two best-fitted models for cerebral malaria data suggest future experiments in

the genetic dissection of the trait. Thus, we expect that the susceptible single-locus congenic
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strains would be either susceptible or resistant to cerebral malaria infection if IAM(s1/s2) or

MAM3(s1/s2) hold, respectively.
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Statistical analysis in mapping quantitative genetic

traits

Elisabete Fernandes ∗ Lúısa Canto e Castro † Carlos Penha-Gonçalves ‡

Abstract

The majority of the measurable inherited traits have quantitative nature and present

wide variation in the population. The genetic factors controlling such traits are named

quantitative trait loci (QTLs).

The statistical problem of localization of QTLs has come to deserve great attention

in the last decades. Interval mapping using the likelihood approach has been the most

commonly used method for QTLs mapping in experimental crosses. This method assumes

that quantitative phenotypes follow a normal distribution in the population. The interval

mapping model is illustrated with data originated from an intercross experiment to identify

QTL contributing to variance in the amount of immunoglobulin IgM in serum of mice.

The application of interval mapping method revealed the presence of a controlling

locus located between the markers D13Mit115 and D13Mit266 on chromosome 13.

Keywords: quantitative trait loci; interval mapping; immunoglobulin IgM.

AMS classifications: 49A05, 78B26.

1 Introduction

There are many biologically and economically important traits in higher organisms which are

quantitative, not qualitative. Traits such as body weight in humans, beef cattle, or mice; blood

pressure or glucose level in humans, and oil content in corn, are all examples of quantitative

traits. The underlying distribution of the quantitative traits is continuous. The values of the

traits are measured, not observed or counted, and these traits may be influenced by many

genes and environmental factors.

Quantitative trait loci (QTLs) are genes that influence quantitative traits. QTL refers to

a locus or a specific region in the genome (not necessarily a single gene) associated with a

quantitative trait.
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For a long time, geneticists and breeders have tried to obtain QTL information in order to

manipulate them and through that to improve traits. Recently, with the rapid advancement

in molecular biology, it has become possible for scientists to gain fine scale genetic maps

for various organisms by determining the genomic positions of a number of genetic markers

(restriction fragment length polymorphism, isozymes, random amplified polymorphic DNA),

and to obtain a complete classification of marker genotypes by using codominant markers

(Liu [5]). These advances greatly facilitate the investigation of individual QTL.

Various statistical approaches have been developed to identify QTLs by using markers

(DNA portion, with position and genotype known). Lander and Botstein [4] proposed interval

mapping to detect and localize QTL by using a maximum likelihood method. Their method

combined Todays [7] idea, which used two markers flanking a region where two QTL might

fall, and Wellers idea [8], which used the maximum likelihood methods to estimate the location

and effects of QTL. The expectation maximization (EM) algorithm (Dempster et al. [3]) was

used to calculate the maximum likelihood estimates.

Calculating thresholds is a very important practical issue in the design and analysis of

QTL. Due to the multiple tests on the whole genome, the usual pointwise significance level

based on the chi-square approximation is inappropriate, since the tests are not independent

among marker loci. A shuffling approach can be used to determine the empirical distributions

of statistics (Churchill and Doerge [2]).

In this article, we describe the typical intercross experimental and data structure. We

illustrate the use of the interval mapping with one data set on the amount of immunoglobulin

IgM in serum of mice.

2 Interval mapping

2.1 Intercross Experimental and Data Structure

To generate a population for QTL mapping, two phenotypically distinct inbred lines differing

in the phenotype of interest, P1 and P2, are chosen as parents. It is assumed that these lines

are homozygous for all loci. At each locus, the genotypes of parents P1 and P2 are MM and

mm, respectively. The crossbred F1 generation is then heterozygous with genotype Mm at all

loci, receiving one allele from each parent. The F1 individuals are mated among themselves

to produce a F2 generation of intercrossed mice, in which each mouse has probability 1/4,

1/2 and 1/4 of being MM, Mm and mm, respectively.

In an intercross experiment, each individual of the progeny is scored for one or more

traits. Here, the quantitative phenotype is the amount of immunoglobulin IgM in serum of

mice. The mice are typed at a number of genetic markers spread out over the all genome.

At each of these marker loci, it is determined for each individual of the progeny whether the

genotype is MM, Mm and mm.
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A genetic map, specifying the relative locations of the markers, may be known or estimated

using the data of the current experiment. Such map gives the linear order of markers on the

various chromosomes. The distance between markers in a genetic map is given by map

distance, in the units centiMorgans (cM). Two markers are separated by d cM, if d is the

expected number of crossovers between the markers in 100 meiotic products.

Crossover is the exchange of genetic material between a homologous pair of chromosomes

in meiosis. The gametes resulting from the odd number of crossovers between two loci are

recombinants. Recombination frequency, or recombination fraction r is defined as the pro-

portion of recombinants individuals in the population. The recombination fraction between

two loci depends on the distance between these two loci on the chromosome. An appropri-

ate mapping function, such as Haldanes function converts the recombination fraction in map

distance. In this article, we use the map distances of the markers included in the database of

the Whitehead Center for Genome Research (USA) (Mouse Genome Informatics, MGI).

Typical experiments involve between 100 and 1000 progenies and use between 90 and 300

genetic markers. Here, we use 136 mice and 99 markers.

2.2 Model

The interval mapping approach is based on a search for a putative QTL, with alleles a and

b, between two adjacent markers M1 and M2. Flanking markers M1 and M2 are linked with

recombination fraction r and the QTL is located between the two markers with recombination

fraction r1 from marker M1 and r2 from marker M2.

When r is small (two markers are tightly linked) no double crossover is assumed and the

relationship of these recombination fractions is

r = r1 + r2 (1)

We consider a sample of n individuals from a F2 population. Let yj and mj denote the

quantitative phenotype and the multipoint marker data, respectively, for the individual j.

In the F2 model, given the QTL genotype aa or ab or bb, the trait is assumed normally

distributed with mean µ1 = µaa or µ2 = µab or µ3 = µbb and common standard deviation σ.

The likelihood function of the parameter vector θ
∗ = (µaa, µab, µbb, σ, pij) is given by

L (θ∗|y,m) =
n

∏

j=1

3
∑

i=1

pij
1

√
2πσ

e

�
−(yj−µi)

2

2σ2 �
(2)

where pij is the conditional probability that the individual j has genotype i, given the marker

data and the QTL position. For example p1j=Pr(QTL genotype of individual j is aa |

genotype of markers M1 and M2 for individual j is Mj). Theses probabilities are in table 1

(Liu [5]).
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Genotypes

Number of markers P (aa|Mj) P (ab|Mj) P (bb|Mj)

1 M1M1M2M2 1 0 0

2 M1M1M2m2 r2/r r1/r 0

3 M1M1m2m2 (r2/r)
2 2r1r2/r

2 (r1/r)
2

4 M1m1M2M2 r1/r r2/r 0

5 M1m1M2m2
r1r2

(1−r)2+r2

(1−r)2+r2

1
+r2

2

(1−r)2+r2

r1r2

(1−r)2+r2

6 M1m1m2m2 0 r2/r r1/r

7 m1m1M2M2 (r1/r)
2 2r1r2/r

2 (r2/r)
2

8 m1m1M2m2 0 r1/r r2/r

9 m1m1m2m2 0 0 1

Table 1: Expected QTL genotype frequency condicional on genotypes of the flanking markers

M1 and M2 in F2 populations with no double crossover.

2.3 Parameter Estimation

The likelihood function in 2 is complicated and it is difficult to obtain analytical estimates of

all unknown parameters, θ
∗ = (µaa, µab, µbb, σ, pij). In practice, however, the following can

be done:�
”chromosome walking” technique: since M1 and M2 are known markers on the map

with known recombination fraction r, start maximizing likelihood at marker M1, then

move along the chromosomal segment toward marker M2 in small steps (e.g. 1 cM), by

iterative change of r1 and r2, therefore assuming r1 and r2 known. Thus, the parameters

pij (j = 1, 2, 3) are known, because they are function of r1 and r2.

For each position, maximize the likelihood and obtain maximum likelihood estimates

(MLEs) for θ = (µaa, µab, µbb, σ) by expectation maximization (EM) algorithm (Demp-

ster et al. [3]). Next, a likelihood ratio (LR) statistic is constructed to test the hypothe-

ses,

H0 : µaa = µab = µbb (no QTL in the interval)

Ha : µaa 6= µab ∨ µaa 6= µbb ∨ µab 6= µbb (a QTL in the interval)

This statistic is distributed as a chi-square variable with two degrees of freedom.�
If there are more markers on the chromosome, repeat the procedure for each pair of

markers. Thus, the hypotheses are tested at each position in an interval, for all intervals

of the genome.�
The position with significantly largest LR statistic or LOD score (base 10 logarithm of

120



the likelihood ratio) is inferred to be the location of the gene, and the MLEs at the

position are the estimates of the parameters.

The EM algorithm is a popular method for maximum likelihood analysis in incomplete

data problems. The major reasons for its popularity are that its M-step involves only com-

plete data maximum likelihood estimation and its convergence is stable (Meng et al. [6]).

For QTL mapping problem, EM has been a powerful tool to obtain MLEs and applied by

several researchers (Broman [1], Lander and Botstein [4], Zeng [9]). In this section, the EM

algorithm is applied to derive the MLEs of equation 2 by treating the putative QTL as missing

information.

Under the full model (equation 2), assume at iteration k + 1 we have estimates of the

parameters θ̂
(k)

by EM algorithm. Then, let z1j , z2j and z3j be unobserved variables,

z1j =

{

1, if the QTL genotype for individual j is aa;

0, otherwise.

z2j =

{

1, if the QTL genotype for individual j is ab;

0, otherwise.

z3j =

{

1, if the QTL genotype for individual j is bb;

0, otherwise.

The complete data likelihood function (equation 2) may be written as

Lc (θ|x) =
n

∏

j=1

3
∏

i=1

[

pij
1

√
2πσ

e

�
−(yj−µi)

2

2σ2 � ]zij

(3)

where x = (y,m, z) is vector of complete data. The complete data log likelihood function is

LogLc (θ|x) =

n
∑

j=1

3
∑

i=1

[

zijlog (pij) − zijlog
(√

2πσ
)

− zij
(yj − µi)

2

2σ2

]

In the E-step we compute the conditional expected complete data log likelihood function

given the observed phenotypes, that is

Q
(

θ|θ(k)

)

= E
[

LogLc (θ|x) |y,m,θ(k)

]

(4)

for such, it is enough to calculate

z
(k)

ij = Ê
[

zij |y,m,θ(k)

]

=
pijφ(yj;µ

(k)

i , σ(k))
3

∑

i=1

pijφ(yj;µ
(k)

i , σ(k))
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where φ(yj ;µi, σ) is the density function for normal distribution with mean µi and standard

deviation σ. Thus,

Q
(

θ|θ(k)

)

=
n

∑

j=1

3
∑

i=1

[

z
(k)

ij log (pij) − z
(k)

ij log
(√

2πσ(k)

)

− z
(k)

ij

(yj − µ
(k)

i )2

2(σ(k))2

]

In the M-step we find θ̂
(k)

to maximize the conditional expected log likelihood function

Q
(

θ|θ(k)

)

, simply, by taking the derivatives of Q
(

θ|θ(k)

)

, such as

δQ

δµi

=
n

∑

j=1

z
(k)

ij

(yj − µi)
2

σ2

δQ

δσ
=

n
∑

j=1

3
∑

i=1

[

z
(k)

ij

−1

σ
+ z

(k)

ij

(yj − µi)
2

σ3

]

The MLEs of µaa, µab, µbb and σ are given by

µ̂(k+1)

aa =

n
∑

j=1

z
(k)

1j yj

n
∑

j=1

z
(k)

1j

(5)

µ̂
(k+1)

ab =

n
∑

j=1

z
(k)

2j yj

n
∑

j=1

z
(k)

2j

(6)

µ̂
(k+1)

bb =

n
∑

j=1

z
(k)

3j yj

n
∑

j=1

z
(k)

3j

(7)

σ̂(k+1) =

√

√

√

√

1

n

n
∑

j=1

z
(k)

1j

(

yj − µ̂(k+1)

aa

)2

+ z
(k)

2j

(

yj − µ̂
(k+1)

ab

)2

+ z
(k)

3j

(

yj − µ̂
(k+1)

bb

)2

We iterate until the estimates converge.

2.4 Overall significance level

Determining the threshold of the test statistic is complicated. Many factors, such as the

genome size, genetic map density and the proportion of missing data, may affect the distri-

bution of the test statistic under the null hypothesis. The usual pointwise significance level
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based on the chi-square approximation is inadequate because the entire genome is tested for

the presence of a QTL (multiple testing).

Churchill and Doerge [2] proposed a permutation procedure to obtain an empirical thresh-

old. Trait and marker data are separated and trait data are ”shuffled”. In doing so, the

linkage relationship between QTL and the markers is broken. Thus, we are actually analyz-

ing data under null hypothesis. This ”shuffling” is repeated 1000-10000 times and each time

the obtained value of the test statistics is stored. After obtaining many replicates, the values

of these test statistics are sorted from the smallest to the largest. The 90th or 95th or 99th

percentile of the empirical test statistics distribution is taken as a ”threshold”. If the value of

the test statistic obtained from the original data exceeds this threshold, linkage is detected.

3 Application

Using genetic marker information, a number of statistical methods have been developed (Lan-

der and Botstein [4], Liu [5]) to identify and estimate the positions of QTLs. The interval

mapping is the method most used to identify QTLs. In this section, real data are used to

detect and to locate QTLs by interval mapping.

To search genes controlling the levels of serum immunoglobulin in mice, a genetic intercross

experimental was performed with the C57BL/6 and BALB/c mouse strains. We considered

in this data set (our unpublished data) the phenotype of immunoglobulin IgM levels that was

analyzed in serum of 136 F2 female mice. The mice were also typed for 99 markers on the

19 chromosomes. We did not include markers on X chromosome in this analysis because in

this study design only two genotypic classes can be found for chromosome X. We used the

map distances (centiMorgan, cM) of the markers included in the database of the Whitehead

Center for Genome Research (USA) (Mouse Genome Informatics, MGI).

We applied the interval mapping to these data. Genome-wide LOD thresholds were ob-

tained by permutation tests (Churchill and Doerge [2]), using 1000 permutation replicates.

The estimated 90%, 95% and 99% genome-wide LOD thresholds for the interval mapping

were 2.88, 3.07 and 3.39, respectively. For each chromosome, the position with the highest

LOD score is in table 2.

Figure 1 shows the maximum LOD score as a function of map position (cM) for 19

chromosomes. The position with significantly largest LOD score is accepted as the most

likely position of the QTL. Thus, the results indicated evidence for one QTL within the

region defined by the markers D13Mit115 and D13Mit266 (Lod score = 4.38), more exactly

in the position 16 cM from the centromere of chromosome 13. This QTL was unknown.

Figure 2 shows the detailed chromosome 13 LOD score plot. The estimates of parameters are

µ̂aa = 568, µ̂ab = 421, µ̂bb = 335 and σ̂ = 192. The interval mapping was implemented by
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software R/qtl (Broman [1]).

Chr Pos. (cM) LOD µ̂aa µ̂ab µ̂bb σ̂

1 43.1 1.53 521 397 432 201

2 52.5 1.31 537 425 384 202

3 2.4 1.11 488 415 378 203

4 66.0 0.64 389 420 471 204

5 0.0 0.86 480 397 455 203

6 34.5 1.42 453 387 493 202

7 37.0 1.45 370 467 380 201

8 43.0 0.88 483 418 387 203

9 57.0 1.81 444 456 327 200

10 59.0 0.94 470 442 369 203

11 10.0 0.40 402 417 469 205

12 16.0 1.21 400 407 505 202

13 16.0 4.38 568 421 335 192

14 40.0 2.10 536 405 391 199

15 29.2 0.86 469 397 473 203

16 33.9 0.33 420 442 389 205

17 23.2 0.81 384 460 400 204

18 47.0 1.05 366 454 442 203

19 53.0 0.81 394 457 386 204

Table 2: Peak of LOD scores and estimates of the respective parameters, obtained through

the interval mapping.

Figure 1: Plot for 19 chromosomes. Figure 2: Plot for chromosome 13.
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4 Discussion

The QTL mapping methods can be classified into three categories based on the number

of markers used in the analysis. They are single-marker, two-marker and multiple-marker

methods. With only one marker being used in QTL mapping, the effects are underestimated

and the position cannot be determined by the t-test. In addition, the power is not high with

the single marker likelihood ratio test (LRT).

The interval mapping is a two-marker method. With a fine scale genetic marker map

throughout the genome, interval mapping can be performed at any position covered by mark-

ers, and the method can create a systematic strategy for detecting QTLs. Compared with

the t-test, interval mapping has several advantages. These include:�
The probable position of the QTL can be inferred by the support interval;�
It is more powerful and needs fewer progeny to detect QTLs than the one-marker ap-

proach (Lander and Botstein [4], Zeng, [9]).

However, there are still some problems associated with the interval mapping:�
We cannot find out how many QTLs we have in the segment;�
If there is no QTL in the tested interval, the likelihood profile can still exceed the

threshold if there is a QTL in another region on the chromosome (”ghost QTL”).�
It is not efficient to use only two markers at a time to do the test, because the information

from other markers is not used.

The application of the interval mapping detected only one QTL between the markers

D13Mit115-D13Mit266 of chromosome 13. The maximum LOD score is 4.38 and the estimates

of parameters are µ̂aa = 568, µ̂ab = 421, µ̂bb = 335 and σ̂ = 192. In the future, it will be

useful to analyze more markers including those that can produce a more dense mapping of

QTLs and better LOD score peak definitions. A biological role of this locus in controlling the

level of serum IgMs is likely to have relevance in the homeostasis of the immune system.
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Abstract

In this paper, we propose a new statistic test Tm defined as the maximum term of the

m− 1 components of the partitioning of the Pearson chi-squared statistic X2

P formulated

by Kimball [6]. The limiting distribution of Tm is also derived.

Furthermore, we compare the results obtained from the statistics X2

P and Tm to test

the homogeneity of codon contexts of the complete ORFeome sequences of 3 yeast species,

namely Saccharomyces cerevisiae, Saccharomyces mikatae and Schizosaccharomyces pombe.

The statistic Tm has the advantage that their components identify the codon contexts re-

sponsible for eventual rejection of the homogeneity leading to results that are easier to

interpret than those obtained using adjusted residuals as suggested by Haberman [4].

Keywords: contingency table, Pearson chi-squared statistic, partitioning, ORFeome, codon

context, phytogenetic tree, residual analysis, extreme value distribution.

AMS classifications: 62P10, 60G70, 92D15.

1 Introduction

Consider two populations A1 and A2 each one described by a multinomial probability distribu-

tion with m mutually exclusive categories. Let (p11, p21, . . . , pm1) and (p12, p22, . . . , pm2) de-

note m unknown parameters in the populations A1 and A2, respectively, where
∑m

i=1
pij = 1,

for j = 1, 2. Note that, for each j, known m−1 parameters, the formulae
∑m

i=1
pij = 1 allows

to calculate the remaining one.

Suppose that a sampled data set cross-classified from the populations A1 and A2 are in a

m × 2 contingency table.

We deal with the general goodness-of-fit problem for testing the null hypothesis H0 : pi1 =

pi2, i = 1, 2, . . . ,m, against the alternative hypothesis H1 : pi1 6= pi2, for at least one i.

∗Department of Mathematics, University of Aveiro, Portugal. E-mail: adelaide@mat.ua.pt.
†IEETA, University of Aveiro, Portugal. E-mail: monsanto@ieeta.pt, jlo@det.ua.pt.
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One method used to test H0 is based on the Pearson chi-squared statistic X 2

P .

As Lancaster [7] and Irwin [5] demonstrated (see [3] and references therein), the statistic

X2

P can be decomposed into m − 1 mutually independent components. Each component is

asymptotically distributed as a chi-square random variable with one degree of freedom (df)

and each one is an appropriate statistic for testing a particular contrast. Kimball [6] derived

one general formulae for these components.

We propose to use the Tm statistic test defined by the maximum term of these m− 1 compo-

nents instead of the sum of these m − 1 components.

It is worth mentioning that Choulakian and Mahdi [2] had also proposed a statistic test de-

fined by the maximum term of m−1 asymptotically chi-squared distributed random variables

with one df, although assuming an alternative one-side hypothesis. However, Choulakian and

Mahdi’s representation does not define a partition of X 2

P .

Applying classical Extreme Value results1, we derive the limiting distribution of Tm, under

linear normalization, as both m and the total sample size tend to +∞.

The rest of the paper is organized as follows. The formulae of computation of the statistic

Tm and its limiting distribution are given in the next section. In Section 3 we conduct a

simulation study to see how the statistics X2

P and Tm work. In the last section we apply

Pearson’s statistic X2

P and the statistic Tm to analyze the homogeneity associated to gene

primary structure on three yeast species: Saccharomyces cerevisiae, Saccharomyces mikatae

and Schizosaccharomyces pombe. The real data set on the complete coding sequences (OR-

Feome) of the genome of these three yeasts involves a large number of observations and can be

analyzed under several categorized random variables each having several mutually exclusive

categories. Attending to some codon context rules in the gene primary structure unveiled

by Moura et al.[9], we test the homogeneity of the distribution of the codons for which the

nucleotide 3′-neighbor is Adenine for S. cerevisiae versus S. mikatae and for S. cerevisiae

versus S. pombe. We compare the results obtained when we use the statistics X 2

P and Tm.

Considering the statistic Tm we identify the categories responsible for the rejection of the null

hypothesis of homogeneity leading to results that are easier to interpret than when residual

analysis is applied to identify the cells responsible for a significant chi-square value.

2 Theoretical results

Let Nij be a random variable representing the number of observations falling into category

i that are sampled from the population Aj , for i = 1, 2, . . . ,m and j = 1, 2, and let Ni� =

Ni1 + Ni2. Let nij and ni� denote one realization of Nij and Ni�, respectively, n
�1 and n

�2 the

sample size obtained from the populations A1 and A2, respectively, and n = n
�1 + n

�2 the

total sample size.

1In, for instance, Leadbetter et al. [8].
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The Pearson chi-squared statistic

X2

P =
2

∑

j=1

m
∑

i=1

(

Nij −
n

�iNi�

n

)

2

n
�iNi�

n

,

can be partitioning into m − 1 asymptotically chi-squared components each having one df.

Kimball [6] has derived convenient formulae to apply the partitioning method of X 2

P showed

by Lancaster [7] and Irwin [5]. Kimball partitioned X 2

P into m−1 asymptotically independent

chi-squared statistics X2

1
, X2

2
, . . . , X2

m−1
, deriving the following general formulae for Xi

2, i =

1, 2, . . . ,m − 1,

X2

i =
n2

(

Ni+1,2(N11 + N21 + . . . Ni1) − Ni+1,1(N12 + N22 + . . . ni2)
)

n1�
n2�

Ni+1, �
(N1�

+ N2�
+ · · · + Ni�)(N1�

+ N2�
+ · · · + Ni+1, �

)
.

The statistic X2

i is the Pearson chi-squared statistic used to test the null hypothesis H0,i :

pi+1,1 = pi+1,2 and it is calculated from the 2 × 2 contingency table constructed from the

original m× 2 contingency table in the following way: its first row is obtained collapsing the

first i categories of the m× 2 contingency table, and its second row is the (i+1)th row of the

m × 2 contingency table.

Note that the null hypothesis H0 of homogeneity between A1 and A2 can be written, equiva-

lently, as a intersection of m− 1 null hypotheses, each one corresponding to the homogeneity

of two sub-populations of A1 and A2 with two categories: one is common with the original

populations and the other is obtained by collapsing the remaining in some appropriate way.

In particular, we take

H0 =

m−1
⋂

i=1

H0i .

Thus, the statistic test

Tm = max(X2

1
, X2

2
, . . . , X2

m−1
) ,

may also be used to test the null hypothesis H0 of homogeneity between A1 and A2.

The statistic Tm represents the maximum term of m − 1 independent random variables each

asymptotically chi-squared distributed with one df, as n → +∞. Hence,

lim
n→+∞

P (Tm ≤ t) = F m−1(t) , t ∈ R,

where F is the chi-squared distribution function with one df.

Results well known from Extreme Value Theory allows for obtaining the limiting distribution

of Tm, under convenient normalization, as m,n → +∞. Namely, since the chi-squared dis-

tribution function belongs to the domain of attraction of a Gumbel distribution2, there exist

2See, for instance, Leadbetter et al. [8]
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sequences of normalization constants {am > 0 : m ∈ N} and {bm > 0 : m ∈ N} such that

lim
m→+∞

lim
n→+∞

P (Tm ≤ am−1t + bm−1) = lim
m→+∞

Fm−1(am−1t + bm−1)

= exp(−exp(−t)) , ∀t ∈ R. (1)

One can take bm such that 1 − F (bm) = 1

m
and am = 1

mF ′(bm)

3.

In practical situations, when n becomes large we reject H0, at level of significance α, if the

observed value of Tm is greater than tm, where F m−1(tm) = 1 − α. If both n and m become

large, then we can take the limiting behavior in (1) and, we reject H0, at level of significance

α, if the observed value of Tm is greater than tm
∗ = am−1(−ln(−ln(1 − α))) + bm−1. In this

case we can identify each of the categories i which have a X 2

i greater than tm, and we can

plausibly say that each of these shows a deviation from the null hypothesis.

3 Simulation study

For m = 5, 10, 20, 50, 100 we simulated 10000 m × 2 contingency tables with equally likely

categories and n
�1 = n

�2 = 10000.

For each simulated contingency table we tested the null hypothesis of homogeneity using both

Pearson’s statistic X2

P and the statistic Tm. The observed p-values are available at http://-

www.bio.ua.pt/genomica/lab/. In Table 1 are summarized some results for m = 5 and

m = 100.

For levels of significance α = 0, 05; 0, 01; 0, 001 both the statistics X 2

P and Tm reject the null

hypothesis of homogeneity for a small percentage of simulated contingency tables. For exam-

ple (see Table 1), that percentage is 5, 26% (=(318 + 208)100%) for m = 5, α = 0, 05, when

one used the statistic Tm to test H0, and it is 5,03% when one consider the statistic X 2
p .

Our simulation results showed that the percentage of contingency tables for which the statis-

tic Tm leads to the rejection of H0, but not the statistic X2

P , is similar to the percentage of

contingency tables for which the statistic X2

P leads to the rejection of H0 and no rejection

when the statistic Tm is used.

The advantage of the statistic Tm is to allow identification of the categories responsible for

the rejection of H0 with easy interpretation (see Section 4).

4 Application to real data

Using the software ANACONDA (available at http://www.bio.ua.pt/genomica/lab/) we

constructed maps of codon pairs context for S. cerevisiae, S. mikatae and S. pombe. These

3See Reiss and Thomas [10], p. 52.
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m = 5 m = 100

pTm
≤ α pTm

> α pTm
≤ α pTm

> α α

pX2
p
≤ α 318 185 76 370 0,05

pX2
p

> α 208 9289 386 9168

pX2
p
≤ α 41 48 3 85 0,01

pX2
p

> α 46 9865 78 9827

pX2
p
≤ α 1 3 0 9 0,001

pX2
p

> α 6 9989 8 9983

Table 1: For each m and α considered, is indicated the number of m × 2 contingency tables,

between 10000 simulated with m equally likely categories, with p-value greater than α and

lower than α. The p-values were calculated using Pearson’s statistic X 2

p and the statistic Tm.

pTm
= P (Tm > TmObs|H0) where TmObs represents the observed value of the statistic Tm for

each simulated contingency table. A similar notation was used for pX2
p
.

maps clearly show that each codon has a set of preferred 3’-codon neighbors and rejects a set

of other codons, indicating that codon context is highly biased in these three yeast species.

For S. cerevisiae an important feature of gene primary structure that modulates mRNA de-

coding accuracy is codon pairs that have the nucleotide A (Adenine) in the first position of

the second codon 4.

Since S. cerevisiae and S. mikatae have diverged from each other 5 million years ago only but

S. pombe has diverged 420 million years from the other two (Figure 1), one was expecting

that the codon context rules for the latter species would be rather different from those of the

former two species and very similar for S. cerevisiae and S. mikatae.

We tested this working hypothesis using the statistics X 2

P and Tm and their limiting dis-

tributions herein established. We used the complete ORFeome sequences of S. cerevisiae,

S. mikatae and S. pombe genomes and we tested the homogeneity of the codon contexts

XY Z − A1, where each of X, Y , Z is the nucleotide A, C (Cytosine), G (Guanine), and T

(Thymine), respectively, on the corresponding position in the first codon of a codon-pair and

A1 indicates that the first nucleotide of the second codon of the codon-pair is A. Note that

all 43 codons except the three stop codons belong to the set of codon contexts XY Z − A1.

We summarized the data in two 61 × 2 contingency tables and we took the categories alpha-

betically ordered. The contingency tables and all the intermediate and final computations

are available at the URL http://www.bio.ua.pt/genomica/lab/.

In Table 2 are summarized the observed values for the 16 first components X 2

i and the

4For example, XXU-AYY. For details see Moura et al [9].
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420Myears 170Myears

5Myears

S. cerevisiae

S. mikatae

S. bayanus

S. pombe

Candida albicans

Figure 1: The phylogenetic tree showing the divergency times of several yeast species used in

this study.

observed adjusted residual values5.

The observed values for the statistics test are: for S. cerevisiae vs S. mikatae X 2

p = 326, 49

and Tm = 37, 70 and for S. cerevisiae vs S. pombe X2
p = 28196, 3 and Tm = 3646, 4. For

m = 61, we have am−1 = 1, 756 and bm−1 = 5, 731 and, tm = 18, 54 and t∗m = 17, 86, for

α = 0, 001. Then, both the statistics X2
p and Tm lead to reject H0 at level of significance

0,001. For S. cerevisiae vs S. pombe we obtained values of the statistics test clearly greater.

Considering the m−1 = 60 components of the statistic Tm and the adjusted Pearson residual

values we can identify codon contexts responsible for a significant value for the statistics Tm

and X2
p , respectively.

When we tested the homogeneity between S. cerevisiae and S. mikatae we observed that

the components Xi
2, i = 1, 2, . . . , 60, are not so large. This suggests that the context rule

XY Z−A1 is almost identical for these two yeasts. Indeed, only the contexts AAG-A, GAA-A,

GAG-A and GAU-A contribute for the rejection of H0, at level of significance 0,001. However,

this conclusion is not so clear when the analysis of residuals is applied. Some statistically

significative values of the adjusted Pearson residual are not associated to one row but only to

one cell by row in the 61× 2 contingency table. Our approach leads to results that are easier

to interpret than those obtained from the analysis of residuals. The adjusted residuals values

are more appropriate to complement testing of independence.

For the comparison of S. cerevisiae vs S. pombe, we obtain large values for the statistics X 2

P

and Tm, and its components, clearly leading to the rejection of the homogeneity of the codon

context rule XY Z − A1 between these two yeasts species, thus confirming the divergence of

these yeasts observed in the phylogenetic tree (Figure 1).

5For its formulae, see Everitt [3], p. 47, or Agresti [1], p. 81.
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codon contexts Xi
2 adjusted residual

XY Z − A1 Cer Cer Cer Mik Cer Pom

vs Mik vs Pom

AAA − A 4,24 -5,09 -5,15 5,15

AAC − A 9,256 494,5 -0,63 0,76 24,0 -24,0

AAG − A 37,707 730,4 -5,57 6,69 38,8 -38,8

AAU − A 2,568 23,04 -2,32 2,79 22,4 -22,4

ACA − A 9,039 3,101 2,78 -3,10 15,2 -15,2

ACC − A 1,709 5,723 1,13 -1,36 14,8 -14,8

ACG − A 0,432 39,13 0,59 -0,71 2,58 -2,58

ACU − A 0,831 627,1 -1,05 1,26 -1,31 1,31

AGA − A 13,287 857,2 -4,11 4,95 42,5 -42,5

AGC − A 2,832 100,3 1,31 -1,57 0,79 -0,79

AGG − A 3,191 190,3 1,52 -1,82 22,9 -22,9

AGU − A 17,838 85,86 -4,67 5,62 2,57 -2,57

AUA − A 0,0005 81,19 -0,64 0,76 28,5 -28,5

AUC − A 5,209 190,4 -3,06 3,68 5,11 -5,11

AUG − A 0,943 107,4 -1,85 2,22 -15,5 15,5

AUU − A 13,627 935,9 2,94 -3,53 14,6 -14,6
...

UUU − A 5,979 569,0 2,45 -2,93 -2,37 2,37

Table 2: The observed values for the 16 first components X 2

i of the statistic Tm and the

observed adjusted residual values associated to the statistic X 2

P , when is tested the homo-

geneity of the codon contexts XY Z − A1 between S. cerevisiae and S. mikatae and between

S. cerevisiae and S. pombe.

This type of analysis can be useful for comparing mRNA decoding rules between different

genomes.
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134


