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Dear Colleagues,
CIM is already actively engaged in developing important 
and exciting activities for mathematicians with the sup-
port of the associated members.
 To start, we are pleased to announce The Summer 
School on Algebraic and Enumerative Combinatorics that 
will be held in July, 2–13, 2012. The school will consist 
of four courses lead by mathematicians Francesco Bren-
ti, Christian Krattenthaler, Marc Noy and Vic Reiner. 
While targeted to graduate students and post-doctor-
ate researchers, the content will also prove beneficial to 
other level researchers, as well. In addition to the formal 
courses, there will also be short talks presented by sum-
mer school participants. The program will be hosted in 
the beautiful Centro de Estudos Camilianos, designed 
by the 1992 Laureate of the Pritzker Architecture Prize 
Álvaro Siza. 
 Another significant announcement is CIM’s inaugu-
ral launch of the Pedro Nunes Medal. In 2011, the steering 
committees of CIM and SPM joined together to develop 
the proposal, which was enthusiastically supported. Lat-
er this year we will begin the process to convene an in-
ternational panel to solicit and select the first recipients. 
Selection of medalists will be based on the meritorious 
research accomplishments with an emphasis on contri-
butions to the development of mathematics in Portugal.  
Additional details will be provided in the near future.
 The final activity I would like to bring to your atten-
tion is CIM’s upcoming contribution to the international 
program Mathematics of Planet Earth (MPE 2013 — www.

crm.umontreal.ca/Math2013/en/). To support this global effort, 

CIM is organizing two international conferences and cor-
responding advanced schools: Planet Earth, Mathemat-
ics of Energy and Climate Change, 25–27 March 2013, 
with the Advanced School Planet Earth, Mathematics of 
Energy and Climate Change, 18–23 March and 27–28 
March 2013; and Planet Earth, Dynamics, Games and 
Science, 2–4 September 2013, with the Advanced School 
Planet Earth, Dynamics, Games and Science, 26–31 Au-
gust and 5–7 September 2013.
 Each international conference will have around 15 
keynote speakers and 30 thematic sessions for a total of 
approximately 100 speakers. The invited keynote speak-
ers are top researchers in mathematics and science whose 
discoveries have had a great impact on the progress of sci-
ence. The Portuguese Society of Mathematics (SPM), the 
Portuguese Society of Statistics (SPE) and the Portuguese 
Society of Operational Research (APDIO) enthusiastical-
ly support the conferences and advanced schools we are 
organizing for MPE-2013. The Advanced School Planet 
Earth, Mathematics of Energy and Climate Change will 
be hosted at Faculdade de Ciências, Universidade Lisboa 
(FCUL).  The Advanced School Planet Earth, Dynam-
ics, Games and Science will be hosted at Escola Superior 
de Economia e Gestão, Universidade Técnica de Lisboa 
(ISEG-UTL).  The two international conferences will be 
hosted in Calouste Gulbenkian Foundation.
In closing, on behalf of the CIM Board, I would like to 
thank you for your continued support and interest.

Alberto Adrego Pinto
President of CIM

http://www.crm.umontreal.ca/Math2013/en/
http://www.crm.umontreal.ca/Math2013/en/
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4th Porto Meeting on Mathematics for Industry
Porto, Portugal
June 07-09, 2012
[http://cmup.fc.up.pt/cmup/mathindustry/2012/]

The purpose of this meeting is to focus the attention on 
the many and varied opportunities to promote applica-
tions of mathematics to industrial problems. Its major 
objectives are:

Development and encouragement of industrial and 
academic collaboration, facilitating contacts 
between academic, industrial, business and 
finance users of mathematics.

Through “bridging the industrial/academic 
barrier” these meetings will provide 
opportunities to present successful 
collaborations and to elaborate elements such 
as technology transfer, differing vocabularies 
and goals, nurturing of contacts and resolution 
of issues.

To attract undergraduate students to distinctive 
and relevant formation profiles, motivate them 
during their study, and advance their personal 
training in Mathematics and its Applications to 
Industry, Finance, etc.

The meeting will be focused on short courses, of three 
one-hour lectures each, given by invited distinguished re-

searchers, which are supplemented by contributed short 
talks by other participants and posters of case studies.
 The meeting will be followed by the 86th Europe-
an Study Group with Industry 2012 that will take place 
in ISEP—School of Engineering, Polytechnic of Porto, 
Portugal, between the 7th and the 12th of May 2012.

86th European Study Group with Industry 2012 
ISEP—School of Engineering, Polytechnic of Porto, 
Portugal
May, 7-13, 2012

The purpose of these meetings is to strengthen the links 
between Mathematics and Industry by using Mathemat-
ics to tackle industrial problems, which are proposed by 
industrial partners. This meeting is part of the series of 
European Study Groups and will count with the partic-
ipation of several European experts with a large experi-
ence in this type of events.  
 More information on Portuguese Study Groups is 
available at http://www.ciul.ul.pt/~freitas/esgip.html, while general 
information on  study groups and related aspects is avail-
able at the International Study Groups website:

http://www.maths-in-industry.org,
the Smith Institute:

http://www.smithinst.ac.uk,
and the European Consortium for Mathematics in In-
dustry:

http://www.ecmi-indmath.org/info/events.php.

Summer School on Algebraic and Enumerative 
Combinatorics, 
Centro de Estudos Camilianos—S. Miguel de Seide
July 2-13, 2012

The Summer School on Algebraic and Enumerative 
Combinatorics will be held in July, 2-13, 2012, at the 
Centro de estudos Camilianos, in a building of Álva-
ro Siza, the 1992 Laureate of the Pritzker Architecture 
Prize. The Centro de estudos Camilianos is in S. Miguel 
de Seide, near to Guimarães, Portugal, where the partici-
pants are expected to be lodged. The school will focus on 
four courses, given by Francesco Brenti, Christian Krat-
tenthaler, Marc Noy and Vic Reiner. The topics to be ad-
dressed by the speakers are, respectively, Combinatorics 
of Coxeter Groups, Map Enumeration, Asymptotic Enu-
meration of Topological Graphs and Reflection Group 
counting and q-counting, and the courses are mainly di-
rected to graduate and post-graduate students, as well as 
researchers. There will also be time for some contributed 
short talks by participants.
 More information available at:

http://www2.fc.up.pt/pessoas/agoliv/SC/default.htm

Coming Events

http://www.ciul.ul.pt/%7Efreitas/esgip.html
http://www.maths-in-industry.org
http://www.smithinst.ac.uk
http://www.ecmi-indmath.org/info/events.php
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Carla Gomes is a professor of computer science at Cornell University, with joint 
appointments in the computer science, information science, and Dyson School of applied 
economics and management departments. Her research has covered several themes in artificial 
intelligence and computer science, from the integration of constraint reasoning, operations 
research, and machine learning techniques for solving large-scale constraint reasoning and 
optimization problems, to the use of randomization techniques to improve the performance 
of exact search methods, algorithm portfolios, multi-agent systems, and game play.
Recently, Gomes has become immersed in the establishment of computational sustainability, 
a new interdisciplinary field that aims to develop computational methods to help balance 
environmental, economic, and societal needs to support a sustainable future. Gomes has 
started a number of research projects in biodiversity conservation, poverty mapping, the 
design of “smart” controls for electric cars, and pattern identification for material discovery 
(e.g., for fuel cell technology). Gomes obtained a PhD in computer science in the area of 
artificial intelligence and operations research from the University of Edinburgh. She also 
holds an MSc in applied mathematics from the Technical University of Lisbon. Gomes is the 
lead principal investigator on an award from the National Science Foundation’s Expeditions 
in Computing program, the director of the newly established Institute for Computational 
Sustainability at Cornell, and a fellow of the Association for the Advancement of Artificial 
Intelligence. Gomes is currently a Fellow at the Radcliffe Advanced Study Institute at 
Harvard University. 
Carla Gomes was an invited speaker at the 10th Intelligent Data Analysis Symposium, held in 
Porto from 29 to 31 October. The opportunity of having Carla Gomes in Porto motivated the 
present interview.

Summer School “Dynamic Models in Life Sciences”

The Summer School “Dynamic Models in Life Sciences” was coorganized by the Centro Internacional 
de Matemática (http://www.cim.pt), the European Society for Mathematical and Theoretical Biology (http://www.

esmtb.org) and the European Mathematical Society (http://www.euro-math-soc.eu/) with financial support from the 
Fundação para a Ciência e a Tecnologia (http://www.fct.pt) and Centro de Matemática e Aplicações  (Univer-
sidade Nova de Lisboa), Centro de Matemática e Aplicações Fundamentais (Universidade de Lisboa) 
and Centro de Investigação em Matemática e Aplicações (Universidade de Évora).
 These summer schools are organized every year in a different European country. This was the first 
time Portugal hosted the event.
 During one week in the warm weather of Evora in Summer (24th to 30th July 2011), 6 speakers 
presented the state-of-the art in their respective fields to more than 40 participants coming from 13 dif-
ferent countries. Participants mostly consisted of PhD students and post-docs in Mathematics, Biology 
and Physics. An important point was the Portuguese presence in the event, larger than expected.
 Apart from the mini-courses (listed below), there was a poster session, where students could pre-
sent their work and receive feedback from leading specialists in the field.
 One afternoon was reserved to a visit to the Ducal Palace in Vila Viçosa followed by a traditional 
Alentejano dinner with local music. 

Mini-courses: Dynamical models of Cancer (David Dingli, Mayo Clinic, USA); Adaptive dynamics 
and the evolution of pathogens (Eva Kisdi, University of Helsinki, Finland); Modelling Meso-evolution: 
adaptive dynamics and beyond (Hans Metz, Leiden University, The Netherlands); Stochastic and De-
terministic Processes in Spatial Population Dynamics (Sergei Petrovskii, University of Leicester, UK); 
Mathematical Models in Hemodynamics. (Adelia Sequeira, Universidade Técnica de Lisboa, Portugal); 
Ecology and Eco-epidemiology. (Ezio Venturino, Universitá di Torino, Italy).

Organizers: Fernando Carapau (Évora), Fabio Chalub (Lisbon), Francisco Santos (Lisbon), Nico Stol-
lenwerk (Lisbon).

by JoãoGama [Fac. de Economia da Univ. do Porto] 
and Márcia Oliveira [LIAAD-INESC TEC, and FEP, Univ. do Porto]

with Carla Gomes
An Interview

http://www.esmtb.org/
http://www.esmtb.org/
http://www.fct.pt/
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 How and why did you start working in the field of 
Computational Sustainability?
Besides being a professor at the computer science and 
information science departments at Cornell University, 
I am also a professor at the Dyson School of applied 
economics and management, which is actually part of 
the college of agricultural and life sciences. So, at some 
point, some of my students from Dyson were working 
on problems concerning the wildlife corridors. Since 
they were designing corridors using very simplistic 
approaches, they asked my help in order to design them 
in a more rigorous way. Besides this, due to the land-
grant missions of Cornell University and my previous 
intensive research on latent squares, I started working 
on the design of experiments involving fertilizers, 
using the so called spatially balanced latent squares. 
The scope of this work was, as I said, within the land-
grant missions of Cornell. This means that, a long time 
ago, the State gave land to the Cornell University and 
so Cornell, as a counterpart, has to, at some extent, 
provide services to the community. One of the services 
is to advise farmers in how to use fertilizers. To do 

so, Cornell researchers run experiments on different 
fertilizers and tell farmers the amount of fertilizers 
they should use depending on the soil, on the weather, 
etc. Since my all career was based on working on 
latent squares, one day researchers from the crop 
and soil science asked my help in doing this. At that 
time, I thought that would be an easy problem to solve 
but I found out it was not, since we could only build 
spatially-balanced latent squares for squares of 6 by 6, 
which was too small, since they needed to experiment 
up to 30/35 fertilizers at the same time. And I got 
intrigued. After thinking deeply about the problem, we 
were able to make incredible progress and I started 
getting interested in learning about so many problems 
for which you really need serious computation. Due 
to my intersections with the college of agricultural 
and life sciences, pretty soon I realized that a lot of 
the problems in these fields involve management of 
resources, highly dynamic systems and huge volumes of 
data. For instance, you need to gather data to monitor 
the environment and then analyze and interpret it. But 
how can you extract and analyze patterns from such 

large volumes of data? In fact, I realized that in ecology, 
in biology and in environmental sciences, a lot of the 
problems have tremendous computational challenges 
and there are not that many computer scientists 
working in this area. That’s why NSF (National Science 
Foundation) held a program called “Expedition in 
Computing”, which aimed at providing grants to truly 
transformative research in computer science, that would 
set a new research direction for the field. Ideally, also 
with broad societal impact. This was a very competitive 
program and the entire USA submitted proposals (MIT, 
Stanford, Berkeley, Cornell, etc.). After several phases, 
they ended up selecting three proposals. One of them 
was our proposal. Since the topics of this program were 
really up to the candidates, I proposed to create this 
new field of Computational Sustainability and invest 
dramatically in terms of research in this area, especially 
because the computational challenges are so dramatic.

How Computational Sustainability will be 
transformative in terms of the impact in the future?  
From NSF perspective, they were very much interested 
in programs that would be transformative in terms 
of computer science, but also with broad impact. 
From our perspective, we believe that Computational 
Sustainability can be transformative in the sense 
that the issues concerning sustainability are really 
deep research questions which often force us to 
look at aspects, such as dynamics, that we have not 
encountered when studying other problems. Since 
sustainability means planning today and thinking in 
terms of the future, you absolutely need to consider 
dynamics. So, basically, by looking at these problems, 
computer scientists are exposed to new issues that they 
haven’t really worked with before and, therefore, we 
really need to have methodological advances to address 
them. This is the main reason why our own research is 
centered on these three topics: “dynamical systems”, 
“constraint reasoning and optimization and statistics”, 
“machine learning and data mining” (Figure 1). The 
most interesting thing in this is that the problems in 
each area per se really push the frontiers of the state-
of-the-art today, and if we work at the synthesis of 

methodologies from different areas, this will lead to 
fundamental new methodological developments in the 
field. For example, the problem of material discovery 
that I’ve talked about in my presentation at IDA 2011, 
is a good example where data mining and machine 
learning per se are not going to solve the problem. 
Optimization per se is not going to solve the problem. 
You really need to develop methodologies that bring 
together ideas from different fields. And that it is really 
exciting.

People from optimization and from dynamical 
systems are model-based. In Machine Learning and 
Data Mining models are generated from data. There 
are different ways of using data and different mental 
attitudes. 
My background is more in terms of optimization and 
reasoning but I realized that all these real-world models 
need to learn the parameters from older models. So, 
what you would say it is a machine learning problem, 
maybe I would say it is what we call an in voice 
optimization problem, in the sense that you know 
there’s an optimization problem and now you want 
to know the parameters that minimize or maximize 
something. What’s interesting is that all the models 
rely on data, so this artificial separation between 
optimization and machine learning does not make much 
sense. For instance, in the decision making process, 
one of the steps is “data acquisition”. Here, you have 
sensors that collect data, for instance, about flight calls 
or signals, but what you want to know is species. So, 
after collecting data, you need to interpret it. To do so, 
it is common to perform model fitting. But, sometimes, 
you need to go back because you realize that your initial 
samples are very biased, and so you need to collect 
more data to increase the accuracy of the models. 
Another important step is related to policy optimization: 
I am going to make decision in terms of what areas to 
protect for the birds, which is based on the data I got. 
And, because of data, I may even have to go back to 
define my procedures in terms of collecting data, and 
even to reformulate my own objectives, because this 
project is not linear and gives you a lot of feedback. 
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Sympletic surface group representations
and Higgs bundles
by Peter Gothen*

1. IntroductIon

A surface group is the fundamental group of a surface. In 
this article we survey some results on representations of 
a surface group on a real vector space preserving a sym-
plectic form.  We emphasize in particular some results 
which have been obtained using holomorphic and alge-
braic geometry, through the use of Higgs bundles and 
a fundamental result known as the non-abelian Hodge 
Theorem. Though this theory itself is rather involved, the 
results on surface group representations can be explained 
without bringing it into play and this is one of our main
aims.
 This paper is organized as follows. After some pre-
liminaries, we start by focusing on the case of represen-
tations in ℝ􏺾􏺾 with its standard symplectic form. Here 
we explain some seminal results of W. Goldman which 
are closely related to uniformization of surfaces by the 
hyperbolic plane.
 We then move on to higher dimensional representa-
tions and explain some results which generalize those of 
Goldman and also point out some differences with the 
2-dimensional situation.
 Finally, we briefly outline how methods from ho-
lomorphic and algebraic geometry can be applied to the 
study of surface group representations through Higgs 
bundles and the non-abelian Hodge Theorem. This beau-
tiful theory involves algebra, geometry, topology and 
analysis and has a long history. A few important mile-
stones can be found in the work of Narasimhan-Seshadri 
[22], Atiyah-Bott [1], Donaldson [5], Hitchin [17], Cor-
lette [4] and Simpson [24].
 We have left out many important and fascinating as-
pects of surface group representations. To finish this in-
troduction we mention a few places where the interested 
reader may find further information and references and 
also other points of view. Nice surveys are provided in 
Goldman [14] (emphasizing the point of view of geomet-
ric structures on surfaces) and Burger-Iozzi-Wienhard
[3] (emphasizing methods from bounded cohomology). 
For an application of Higgs bundle theory to representa-

tions in isometry groups of hermitian symmetric spaces 
of the non-compact type, see the survey [2].

2. Surface group repreSentatIonS 
and character varIetIeS

Let Σ be a compact oriented surface without boundary 
of genus 𝑔𝑔. The fundamental group of Σ has the stand-
ard presentation

𝜋𝜋􏺽􏺽Σ = ⟨𝑎𝑎􏺽􏺽, 𝑏𝑏􏺽􏺽, … , 𝑎𝑎𝑔𝑔, 𝑏𝑏𝑔𝑔 ∣ ∏􏺽􏺽􏺽􏺽􏺽􏺽𝑔𝑔[𝑎𝑎􏺽􏺽, 𝑏𝑏􏺽􏺽] = 􏺽􏺽􏺽

in terms of generators and relations.
 Let 𝐺𝐺 be a connected semisimple Lie group. In 
this paper we are mainly interested in the case when 
𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 is the real symplectic group but we shall 
also have occasion to consider the cases 𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺𝐺𝐺 𝐺𝐺 and 
𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐺𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. Since all of these groups 
are defined via a linear action on a vector space, the mo-
tivation for the following definition is clear
Definition 2.1.—A representation of 𝜋𝜋􏺽􏺽Σ in 𝐺𝐺 is a ho-
momorphism

𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → 𝐺𝐺.
In view of (2.1) a representation 𝜌𝜌 is uniquely prescribed 
by a 􏺾􏺾􏺾􏺾-tuple (𝐴𝐴􏺽􏺽, 𝐵𝐵􏺽􏺽, … ,𝐴𝐴𝑔𝑔, 𝐵𝐵𝑔𝑔) of matrices in 𝐺𝐺 satisfy-
ing the relation ∏[𝐴𝐴𝑖𝑖, 𝐵𝐵𝑖𝑖] = 􏺽􏺽. Thus, if we denote  the set 
of all representations by

Hom(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺 𝐺 𝐺𝐺𝐺 𝐺 𝜋𝜋􏺽􏺽Σ → 𝐺𝐺𝐺.

we get an identification

Hom(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺 𝐺 􏿺􏿺(𝐴𝐴􏺽􏺽, 𝐵𝐵􏺽􏺽, … ,𝐴𝐴𝑔𝑔, 𝐵𝐵𝑔𝑔𝐺

           ∣ ∏􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽[𝐴𝐴􏺽􏺽, 𝐵𝐵􏺽􏺽] = 􏺽􏺽􏿽􏿽 ⊂ 𝐺𝐺
􏺾􏺾􏺽􏺽

.

with a subspace of the set of 􏺾􏺾􏺾􏺾-tuples of matrices in 𝐺𝐺.

3. fuchSIan repreSentatIonS

Consider the upper half plane model of the hyperbolic 
plane

ℍ􏺾􏺾 = {𝑧𝑧 = 𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧 𝑧 𝑧𝑧 𝑧 𝑧𝑧𝑧.

The metric is 𝑑𝑑𝑑𝑑􏺾􏺾 = (𝑑𝑑𝑑𝑑􏺾􏺾 + 𝑑𝑑𝑑𝑑􏺾􏺾)/𝑑𝑑􏺾􏺾 which has constant cur-
vature −􏺽􏺽. The group of orientation preserving isometries 
of ℍ􏺾􏺾 can be identified with PSL(􏺾􏺾􏺾􏺾􏺾, acting on ℍ􏺾􏺾 via 

(2.1)

(2.2)

This is a very iterative process, even though in terms 
of disciplines you have people doing machine learning, 
optimization, etc., but clearly there are interactions that 
have to be effective.

Your research topic – Computational Sustainability - 
involves very different areas.
Yes, we have a very interdisciplinary group, which 
involve mathematicians, biologists, sociologists, 
computer scientists, and that’s exactly the point of our 
project.

You succeed in a very competitive society. What 
are your recommendations for those who aspire to 
become leaders on their research field? 
Be passionate about your research. Always set high-
standards, have the courage to ask and address very 
hard and risky questions, since those are the most 
rewarding when you succeed. Be driven and committed. 
Work hard, very hard. Focus on important questions 
and not trivial ones, and be obsessed about that. For 
women, you need to be really confident and positive, 
since they tend to think they are not good enough. 
Challenge yourself. In terms of research topics it is very 
important to know what the community is doing and to 
be aware of the hard topics, not only for you to follow 
the literature, but at the same time for you to have a 

chance to pose different questions, but related to those 
of the community. Sometimes you do not really know 
the answers to your problems, but you need to be able 
to deal with this kind of uncertainty. One thing that is 
very important is collaborations and networking. That it 
is how you make progress in research, how you bridge 
together areas that are completely different and that will 
generate fundamental new ways to solve the problems. 
For the young people, it is important to network, go 
to conferences, to try to interact with researchers, 
to actively look for collaborations, to get involved in 
research projects, to network a lot, to travel a lot, to 
be on program committees, etc. Basically, you need to 
learn how to “sell your work”, which means that it is 
important to do great work, but it is also very important 
to be able to talk about your work in a way that’s going 
to be easy to communicate with people. You need to 
learn how to give talks that are going to be appealing, 
that people find exciting, so they can get interested and 
follow up on your work. Write beautiful papers. Publish 
a lot, otherwise you may perish. It is often good to do 
a Pos-doc so that you can go and collaborate and get a 
lot of research going. Finally, make your own luck, your 
serendipity, and create opportunities by interacting, 
collaborating and doing a lot of things, since as Louis 
Pasteur said “chance favors the prepared minds”.

* CMUP, Faculdade de Ciências da Universidade do Porto
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Möbius transformations:

𝑧𝑧 𝑧 𝑎𝑎𝑧𝑧 𝑎 𝑎𝑎
𝑐𝑐𝑧𝑧 𝑎 𝑐𝑐

.

for a ×􏺾􏺾-matrix

𝐴𝐴 𝐴 􏿴􏿴 𝑎𝑎 𝑎𝑎𝑐𝑐 𝑐𝑐 􏿷􏿷 ∈ SL(􏺾􏺾􏺾􏺾􏺾􏺾

A subgroup Γ ⊂ PSL(􏺾􏺾􏺾􏺾􏺾 is Fuchsian if it is discrete. In 
this case the orbit space ℍ􏺾􏺾/Γ is a surface of constant neg-
ative curvature. If ℍ􏺾􏺾/Γ is compact, it must have genus 
at least 2, as follows from the Gauss-Bonnet Theorem.
 Conversely, assume that Σ is a compact oriented sur-
face without boundary of genus 𝑔𝑔 𝑔 𝑔𝑔. Then Σ admits a 
hyperbolic metric and is therefore locally isometric to 
ℍ􏺾􏺾 . The local isometries patch together to give the glob-
ally defined developing map

Σ̃ → ℍ􏺾􏺾,

where Σ̃ → Σ is the universal cover. This map is a ho-
meomorphism and therefore we obtain a Fuchsian rep-
resentation

𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → PSL(􏺾􏺾􏺾􏺾􏺾

an a corresponding isometry

Σ ≅ ℍ􏺾􏺾/𝜋𝜋􏺽􏺽Σ.

4. reductIve repreSentatIonS and the   
 character varIety

Suppose that 𝐺𝐺 is a linear group with a defining funda-
mental representation 𝑉𝑉 , such as all of the previously 
mentioned groups (with the exception of PSL(􏺾􏺾􏺾􏺾􏺾). It 
is then clear what we should mean by a reductive (or 
semisimple) representation. Namely, it should be one for 
which the fundamental representation 𝑉𝑉  is semisimple, 
i.e., such that each invariant subspace has an invariant 
complement.{1} We denote by

Hom+(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺 𝐺 Hom(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺
the subspace of reductive representations.
 Of course we should consider representations equiv-
alent if they correspond under some change of basis in 
the fundamental representation 𝑉𝑉 . Therefore we make 
the following definition.

Definição 4.1.—Representations 𝜌𝜌􏺽􏺽 and 𝜌𝜌􏺾􏺾 are isomor-
phic if there exists a 𝑔𝑔 𝑔 𝑔𝑔 such that

𝜌𝜌􏺽􏺽(𝛾𝛾𝛾 𝛾 𝛾𝛾𝜌𝜌􏺾􏺾(𝛾𝛾𝛾𝛾𝛾
−􏺽􏺽            for all 𝛾𝛾 𝛾 𝛾𝛾􏺽􏺽Σ.

We wish to consider the set of all isomorphism classes 
of representations. For technical reasons, which we shall 
explain below, we restrict attention to reductive repre-
sentations.

Definição 4.2.—The character variety for representa-
tions of 𝜋𝜋􏺽􏺽Σ in 𝐺𝐺 is the orbit space

ℛ(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺 𝐺 𝐺𝐺𝐺
+(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺𝐺𝐺𝐺,

where 𝐺𝐺 acts by overall conjugation:

𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−􏺽􏺽          for 𝛾𝛾 𝛾 𝛾𝛾􏺽􏺽Σ.

Since by (2.2), the space Hom+(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺  is contained 
in 𝐺𝐺􏺾􏺾􏺾􏺾 it has a natural topology and we give ℛ(Σ,𝐺𝐺𝐺 
the quotient topology. The restriction to reductive 
representations makes it possible to show that in this 
topology the character variety is Hausdorff.
 There is a very natural notion of deformation equiva-
lence of representations 𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → 𝐺𝐺 which can be con-
veniently encoded in the language of character varieties. 
Two representations 𝜌𝜌􏺼􏺼 and 𝜌𝜌􏺽􏺽 are said to be deformation 
equivalent if there is a continuous family of representa-
tions 𝜌𝜌𝑡𝑡 ∶ 𝜋𝜋􏺽􏺽Σ → 𝐺𝐺, 𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡 𝑡𝑡𝑡 connecting them. Since 𝐺𝐺 
is connected we have the following result.

Proposition 4.3.—Two representations 𝜌𝜌􏺼􏺼 and 𝜌𝜌􏺽􏺽 are 
deformation equivalent if and only if the points they rep-
resent in the character variety ℛ(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺 belong to the 
same connected component.

Thus, if we wish to classify representations of 𝜋𝜋􏺽􏺽Σ up to 
deformation equivalence, we are actually looking to de-
termine the set of path connected components

𝜋𝜋􏺼􏺼(ℛ(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺𝐺.

5. InvarIantS of repreSentatIonS

Let 𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → 𝐺𝐺 be a representation. We shall associate 
an invariant 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐􏺽􏺽𝐺𝐺 as follows. Let 􏾪􏾪𝐺𝐺 be the univer-
sal covering group of 𝐺𝐺. Then we have an exact sequence

􏺽􏺽 􏺽 􏺽􏺽􏺽􏺽𝐺𝐺 􏺽 􏾪􏾪𝐺𝐺
𝑝𝑝
−􏺽 𝐺𝐺 􏺽 􏺽􏺽.

Take elements �̃�𝐵𝐴𝐴𝑖𝑖, �̃�𝐵𝑖𝑖 ∈ 􏾪􏾪𝐺𝐺  such that

𝑝𝑝𝑝 �̃�𝐵𝐴𝐴𝑖𝑖) = 𝜌𝜌𝑝𝜌𝜌𝑖𝑖)     and     𝑝𝑝𝑝􏾪􏾪𝐵𝐵𝑖𝑖) = 𝜌𝜌𝑝𝜌𝜌𝑖𝑖).

The invariant is then defined as

𝑐𝑐𝑐𝑐𝑐𝑐 𝑐 ∏𝑔𝑔
𝑖𝑖𝑐𝑖𝑖[�̃�𝐵𝐴𝐴𝑖𝑖,􏾪􏾪𝐵𝐵𝑖𝑖] ∈ 𝜋𝜋𝑖𝑖𝐺𝐺.

Let 𝐻𝐻 𝐻 𝐻𝐻 be a maximal compact subgroup. Then 𝐺𝐺 re-
tracts onto 𝐻𝐻  and hence the invariant takes values in 
𝜋𝜋􏺽􏺽𝐻𝐻 𝐻 𝜋𝜋􏺽􏺽𝐺𝐺 . For example, if 𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, we have de-
fined an integer invariant

𝑐𝑐𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐􏺽􏺽SO𝑐􏺾􏺾𝑐 􏺾 􏺾.

In this case the invariant 𝑐𝑐𝑐𝑐𝑐𝑐 is known as the Toledo in-
variant.

Remark 5.1.—An equivalent definition of the invar-
iant can be given as follows. Given a representation 
𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → 𝐺𝐺, let 𝐸𝐸𝜌𝜌 = Σ̃ ×𝜋𝜋􏺽􏺽􏸼􏸼 𝐺𝐺  be the corresponding 
flat principal 𝐺𝐺-bundle. The invariant is defined to be 
the characteristic class 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐􏺾􏺾𝑐Σ, 𝜋𝜋􏺽􏺽𝐺𝐺𝑐 𝐺 𝜋𝜋􏺽􏺽𝐺𝐺 which 
classifies topological 𝐺𝐺-bundles.

It is clear that isomorphic representations have the same 
Toledo invariant. Hence we can define the subspace of 
the character variety consisting of representations of To-
ledo invariant 𝑑𝑑 𝑑 𝑑 to be

ℛ𝑑𝑑(𝜋𝜋􏺽􏺽Σ, (􏺾􏺾, 􏺾􏺾 􏺾 􏺾􏺾􏺾􏺾􏺾 􏺾 􏺾􏺾(􏺾􏺾􏺾 􏺾 𝑑𝑑􏺾.

6. the MIlnor-Wood InequalIty and   
 goldMan’S theoreM

For the remainder of this article, we shall assume that 
𝑔𝑔 𝑔 𝑔𝑔.
 A classical theorem of Milnor [20] states that not 
all integers are possible values for the Toledo invariant 
𝑐𝑐𝑐𝑐𝑐𝑐 of a representation 𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → SL(􏺾􏺾􏺾􏺾􏺾. To be pre-
cise, the following, usually known as the Milnor-Wood 
inequality, holds

|𝑐𝑐𝑐𝑐𝑐𝑐| 𝑐 𝑐𝑐 𝑐 𝑐𝑐.

It is natural to ask whether there is any connection be-
tween the Toledo invariant of a representation and its 
geometric properties, such as being Fuchsian. The fol-
lowing theorem of Goldman answers this affirmatively.

Theorem 6.1 [Goldman [11,12]].—A representation

𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → SL(􏺾􏺾􏺾􏺾􏺾

is Fuchsian if and only if 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐.

Remark 6.2.—One might ask what is the significance of 
the sign of the Toledo invariant. Define the matrix

𝑇𝑇 𝑇 􏿶􏿶
􏺼􏺼 􏺼􏺼
􏺼􏺼 􏺼􏺼􏿹􏿹 ∈ GL(􏺾􏺾􏺾􏺾􏺾.

Note that |𝑇𝑇| 𝑇 𝑇𝑇𝑇. One can check that conjugation 
takes representations with Toledo invariant 𝑑𝑑 to rep-
resentations with Toledo invariant −𝑑𝑑 , in other words, 
𝑐𝑐𝑐𝑐𝑐−􏺽􏺽) = −𝑐𝑐𝑐𝑐𝑐). Hence there is an identification

ℛ𝑑𝑑(𝜋𝜋􏺽􏺽Σ, SL(􏺾􏺾,􏺾􏺾􏺾 􏺾 ℛ−𝑑𝑑(𝜋𝜋􏺽􏺽Σ, SL(􏺾􏺾,􏺾􏺾􏺾
and, whenever convenient, we can restrict attention to 
𝑑𝑑 𝑑 𝑑𝑑.

Representations 𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → SL(􏺾􏺾􏺾􏺾􏺾  which satisfy 
|𝑐𝑐𝑐𝑐𝑐𝑐| 𝑐 𝑐𝑐 𝑐 𝑐𝑐 are called maximal.
 The question of deformation equivalence of repre-
sentations into SL(􏺾􏺾􏺾􏺾􏺾 was also answered by Goldman.

Theorem 6.3 [Goldman [13]].—For any 𝑑𝑑 with 
|𝑑𝑑| 𝑑 𝑑𝑑 𝑑 𝑑𝑑, the space ℛ𝑑𝑑(𝜋𝜋􏺽􏺽Σ, SL(􏺾􏺾,􏺾􏺾􏺾 is connected. If 

|𝑑𝑑| 𝑑 𝑑𝑑 𝑑 𝑑𝑑, the space ℛ𝑑𝑑(𝜋𝜋􏺽􏺽Σ, SL(􏺾􏺾,􏺾􏺾􏺾 has 􏺾􏺾􏺾􏺾􏺾􏺾 connect-
ed components.

Goldman also proved that each of the 􏺾􏺾􏺾􏺾􏺾􏺾 connected 
components of ℛ𝑔𝑔𝑔𝑔𝑔(𝜋𝜋𝑔𝑔Σ, SL(􏺾􏺾,􏺾􏺾􏺾  project isomorfically 
onto a unique connected component of ℛ(𝜋𝜋􏺽􏺽Σ, PSL(􏺾􏺾,􏺾􏺾􏺾 
under the natural map 

ℛ(𝜋𝜋􏺽􏺽Σ, SL(􏺾􏺾,􏺾􏺾􏺾 􏺾 ℛ(𝜋𝜋􏺽􏺽Σ, PSL(􏺾􏺾,􏺾􏺾􏺾.

Recall that the Teichmüller space 𝒯𝒯  of Σ may be viewed 
as the space of hyperbolic structures.{2} Thus, in the light 
of the discussion in Section 3,

 𝒯𝒯 𝒯 􏿺􏿺𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → PSL(􏺾􏺾􏺾􏺾􏺾
    ∣ 𝜌𝜌 is Fuchsian 􏿽􏿽/PSL(􏺾􏺾􏺾􏺾􏺾,

where PSL(􏺾􏺾􏺾􏺾􏺾 acts by overall conjugation as in (4.1). 
Hence it follows from Goldman’s Theorem that each of 
the components of maximal representations can be iden-
tified with Teichmüller space.

7. repreSentatIonS In the SyMplectIc group

Let (𝑥𝑥􏺽􏺽, 𝑦𝑦􏺽􏺽, … , 𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛)  be coordinates on ℝ􏺾􏺾􏺾􏺾. The real 
symplectic group Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 is the group of linear trans-
formations of ℝ􏺾􏺾􏺾􏺾 which preserve the standard sym-
plectic form

𝜔𝜔 𝜔 𝜔𝜔𝜔𝜔􏺽􏺽 ∧ 𝜔𝜔𝑑𝑑􏺽􏺽 ∧⋯ ∧ 𝜔𝜔𝜔𝜔𝑛𝑛 ∧ 𝜔𝜔𝑑𝑑𝑛𝑛.

In particular, Sp(􏺾􏺾􏺾􏺾􏺾 􏺾 S􏺾(􏺾􏺾􏺾􏺾􏺾 . It turns out that cer-
tain key properties of representations 𝜋𝜋􏺽􏺽Σ → SL(􏺾􏺾􏺾􏺾􏺾 
generalize to representations in Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 . However 
there are also some important differences.
 Note that the maximal compact subgroup of 
Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 is the unitary group U(𝑛𝑛𝑛. Hence the topolog-
ical invariant of representations 𝜋𝜋􏺽􏺽Σ → Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 takes 
values in

𝜋𝜋􏺽􏺽U(𝑛𝑛𝑛 𝑛 𝑛.

There is also a Milnor-Wood type inequality for rep-
resentations in the symplectic group, which states that

|𝑐𝑐𝑐𝑐𝑐𝑐| 𝑐 𝑐𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐𝑐

for any representation 𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 . This ine-
quality—as well as other generalizations—is the result 
of the work of many people, we mention the general re-
sults of Dupont [6] and the result of Turaev [25] which 
gives (7.1) in its sharp form.
 Just as for the case 𝑛𝑛 𝑛 𝑛𝑛, representations of the form 
𝜋𝜋􏺽􏺽Σ → Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 with |𝑐𝑐𝑐𝑐𝑐𝑐| 𝑐 𝑐𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐𝑐 are called maxi-
mal.
 The question of deformation equivalence of repre-
sentations in Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 for general 𝑛𝑛 so far only has a 
complete answer for maximal representations. We have 
the following results.

(7.1)

(4.1)

(5.1)

(6.1)

(6.2)

{1}  In general one may define a representation 𝜌𝜌 to be semisimple if the linear representation obtained by 
composing 𝜌𝜌 with the adjoint representation Ad∶ 𝐺𝐺 𝐺 A𝐺𝐺𝐺𝐺𝐺𝐺 of 𝐺𝐺 on its Lie algebra 𝔤𝔤 is semisimple.
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Theorem 7.1 [[15]].—The character variety 

ℛ􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾𝜋𝜋􏺾􏺾Σ, Sp􏺾􏻀􏻀,􏻀􏺾􏺾

has 􏺿􏺿 􏺿 􏺿􏺿􏺿􏺿􏺾􏺾 + 􏺿􏺿􏺾􏺾 􏺾 􏺾􏺾 connected components.

Theorem 7.2 [[10]].—Assume that 𝑛𝑛 𝑛 𝑛𝑛. Then the char-
acter variety

ℛ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜋𝜋𝑛𝑛Σ, Sp𝑛􏺾􏺾𝑛𝑛,􏺾𝑛𝑛

has 􏺿􏺿 􏺿 􏺿􏺿􏺿􏺿􏺾􏺾 connected components.

One might expect ℛ𝑑𝑑(𝜋𝜋􏺽􏺽Σ, Sp(􏺾􏺾􏺾􏺾,􏺾􏺾􏺾 to be connected for 
|𝑑𝑑| 𝑑 𝑑𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑. However, so far this has only been proved 
for 𝑛𝑛 𝑛 𝑛𝑛, by García-Prada and Mundet [9].
 Some of the components of maximal representations 
are natural generalizations of Teichmüller space which, 
as we have seen, appears as the components of maximal 
representations for 𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. These are known as 
Hitchin components and were first studied by Hitchin 
[18]. To explain this, write 𝕍𝕍 𝕍 𝕍􏺾􏺾 for the standard 2-di-
mensional representation of SL(􏺾􏺾􏺾􏺾􏺾. The 𝑚𝑚-fold sym-
metric power

𝑆𝑆𝑚𝑚𝕍𝕍 𝕍 𝕍𝕍⊗𝑚𝑚

is an irreducible representation of SL(􏺾􏺾􏺾􏺾􏺾 of dimension 
𝑚𝑚 𝑚 𝑚𝑚. The standard symplectic form 𝑑𝑑𝑑𝑑􏺽􏺽 ∧ 𝑑𝑑𝑑𝑑􏺾􏺾 on ℝ􏺾􏺾 in-
duces a non-degenerate bilinear form 𝜔𝜔 on the symmet-
ric power 𝑆𝑆𝑚𝑚𝕍𝕍 which is antisymmetric when 𝑚𝑚 is odd 
(and symmetric when 𝑚𝑚 is even). Hence, for 𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚 , 
𝜔𝜔 is a symplectic form on 𝑆𝑆𝑚𝑚𝕍𝕍 𝕍􏺾􏺾􏺾􏺾 and we have a natu-
ral embedding

𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟.

Definition 7.3.—A representation 𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 
is called a Hitchin representation if it is deformation 
equivalent to a representation of the form 𝑟𝑟 𝑟 𝑟𝑟􏺼􏺼, where 
𝜌𝜌􏺼􏺼 ∶ 𝜋𝜋􏺽􏺽Σ → SL(􏺾􏺾􏺾􏺾􏺾 is Fuchsian.

Hitchin [18] proved that there are exactly 􏺾􏺾􏺾􏺾􏺾􏺾 connect-
ed components of ℛ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜋𝜋𝑛𝑛Σ, Sp𝑛􏺾􏺾𝑛𝑛,􏺾𝑛𝑛 consisting of 
Hitchin representations. In complete analogy with the 
case 𝑛𝑛 𝑛 𝑛𝑛 , these components are all homeomorphic 
to a euclidean space ℝ𝑁𝑁  and projectively equivalent to 
a unique connected component of representations in 
PSp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 . These components are the Hitchin com-
ponents referred to above. However, in contrast to the 
case of 𝑛𝑛 𝑛 𝑛𝑛, non-Hitchin components exist for 𝑛𝑛 𝑛 𝑛𝑛, 
as follows from the result of Hitchin just mentioned and 
Theorems 7.1 and 7.2.
 There are other ways in which maximal represen-
tations in Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾  share properties with representa-
tions in SL(􏺾􏺾􏺾􏺾􏺾. Recall that the mapping class group of 
Σ acts properly discontinuously on Teichmüller space. 

{2}  This identification is a consequence of Riemann’s uniformization Theorem.

Generalizing this fact, it was proved by Labourie [19] 
and Wienhard [26], that the mapping class acts properly 
discontinuously on the whole space ℛ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜋𝜋𝑛𝑛Σ,𝐺𝐺𝑛 of 
maximal representations.

8. hIggS bundleS

In this final section we briefly outline how methods from 
holomorphic and algebraic geometry provide insights 
leading to some of the above mentioned results on sur-
face group representations.
 The first step is to equip the surface Σ with a com-
plex structure, i.e. local coordinate systems taking val-
ues in ℂ with biholomorphic coordinate changes. This 
makes Σ into a Riemann surface which we shall denote 
by 𝑋𝑋.
 We shall assume that the reader is familiar with the 
basic language of complex manifolds and holomorphic 
bundles (see, e.g., Miranda [21] or Griffiths-Harris [7]). 
However, we briefly recall a couple of central notions.
 Let 𝐸𝐸 𝐸 𝐸𝐸  be a rank 𝑛𝑛 holomorphic vector bundle. 
Roughly speaking, this is a holomorphic family of com-
plex vector spaces 𝐸𝐸𝑥𝑥 parametrized by 𝑥𝑥 𝑥 𝑥𝑥 which lo-
cally looks like the trivial product family 𝑋𝑋 𝑋 𝑋𝑚𝑚. The 
rank of 𝐸𝐸, denoted by rk(𝐸𝐸𝐸 is the dimension of the vec-
tor spaces 𝐸𝐸𝑥𝑥. A holomorphic vector bundle of rank one 
is called a line bundle.
 The determinant bundle det(𝐸𝐸𝐸 of a rank 𝑛𝑛 vector 
bundle 𝐸𝐸 𝐸 𝐸𝐸  is a holomorphic line bundle naturally as-
sociated to 𝐸𝐸. It has the property that there is a canonical 
identification of fibres det(𝐸𝐸𝐸𝑥𝑥 ≅ Λ

𝑛𝑛𝐸𝐸𝑥𝑥, where the latter 
denotes the top exterior power of the vector space 𝐸𝐸𝑥𝑥.
 A section of a holomorphic vector bundle 𝐸𝐸 𝐸 𝐸𝐸  is 
a holomorphic map 𝑠𝑠 𝑠 𝑠𝑠 𝑠 𝑠𝑠 such that 𝑠𝑠𝑠𝑠𝑠𝑠 𝑠 𝑠𝑠𝑠𝑠 for all 
𝑥𝑥 𝑥 𝑥𝑥 . We denote by 𝐻𝐻􏺼􏺼(𝑋𝑋𝑋 𝑋𝑋𝑋 the space of sections of 
𝐸𝐸 𝐸 𝐸𝐸 .
 The canonical bundle 𝐾𝐾 𝐾 𝐾𝐾 is by definition the ho-
lomorphic cotangent bundle of 𝑋𝑋. It is a holomorphic 
line bundle. A section of 𝐾𝐾 is nothing but a holomorphic 
one-form on 𝑋𝑋.

Definition 8.1.—A Higgs bundle on 𝑋𝑋 is a pair (𝐸𝐸𝐸𝐸𝐸 , 
where 𝐸𝐸 𝐸 𝐸𝐸  is a holomorphic vector bundle and 

Φ ∈ 𝐻𝐻􏺼􏺼(𝐾𝐾 𝐾 𝐾𝐾𝐾(𝐾𝐾𝐾𝐾

is a holomorphic 1-form on 𝑋𝑋 with values in the bundle 
End(𝐸𝐸𝐸 of endomorphisms of 𝐸𝐸.

We can view the Higgs field Φ as a holomorphic bundle 
map Φ ∶ 𝐸𝐸 𝐸 𝐸𝐸 𝐸 𝐸𝐸. Higgs bundles (𝐸𝐸􏺽􏺽, Φ􏺽􏺽) and (𝐸𝐸􏺾􏺾, Φ􏺾􏺾) 
are isomorphic if there is an isomorphism 𝐸𝐸􏺽􏺽 ≅ 𝐸𝐸􏺾􏺾 inter-
twining the Higgs fields Φ􏺽􏺽 and Φ􏺾􏺾.

 There is an integer invariant, called the degree of 𝐸𝐸 
and denoted by deg(𝐸𝐸𝐸 which topologically classifies the 
vector bundle. It can be identified with the total num-
ber of zeros and poles of any meromorphic section of 
the line bundle det(𝐸𝐸𝐸, taking into account multiplicities. 
The degree has the following useful properties. If

􏺼􏺼 􏺼 􏺼􏺼􏺽􏺽 􏺼 􏺼􏺼 􏺼 􏺼􏺼􏺾􏺾 􏺼 􏺼􏺼

is a short exact sequence of vector bundles, then
deg(𝐸𝐸𝐸 𝐸 deg(𝐸𝐸􏺽􏺽𝐸 + deg(𝐸𝐸􏺾􏺾𝐸. Moreover, if 𝐿𝐿 and 𝑀𝑀 are 
line bundles, then deg(𝐿𝐿 𝐿𝐿𝐿𝐿 𝐿 deg(𝐿𝐿𝐿 𝐿 deg(𝐿𝐿𝐿.
 The notion of degree of a vector bundle is required 
for defining the following notion of polystability of a 
Higgs bundle, which is central for the link with repre-
sentations of surface groups.

Definition 8.2.—A Higgs bundle (𝐸𝐸𝐸𝐸𝐸 with 𝐸𝐸 of de-
gree zero is polystable if every holomorphic subbundle 
𝐹𝐹 𝐹 𝐹𝐹 such that Φ(𝐹𝐹𝐹 𝐹 𝐹𝐹 𝐹 𝐹𝐹  satisfies deg(𝐹𝐹𝐹 𝐹 𝐹𝐹 and, 
moreover, if such an 𝐹𝐹 satisfies deg(𝐹𝐹𝐹 𝐹 𝐹𝐹, then there 
is a another holomorphic subbundle 𝐹𝐹⟂ ⊂ 𝐸𝐸 such that 
𝐸𝐸 𝐸 𝐸𝐸 𝐸 𝐸𝐸⟂ and Φ(𝐹𝐹⟂) ⊂ 𝐹𝐹⟂ ⊗ 𝐾𝐾.

The fundamental result linking surface group represen-
tations with Higgs bundles is the following, known as 
non-abelian Hodge Theorem. It was proved by Hitchin 
[17] and Donaldson [5] and (for more general bundles 
and also higher dimensional base varieties) by Corlette 
[4] and Simpson [23].

Theorem 8.3.—There is a bijective correspondence be-
tween isomorphism classes of reductive representations 
of 𝜋𝜋􏺽􏺽𝑋𝑋 in GL(𝑛𝑛𝑛 𝑛𝑛 and isomorphism classes of polysta-
ble Higgs bundles of rank 𝑛𝑛 and degree 0.

In order to apply these ideas to representations of 𝜋𝜋􏺽􏺽𝑋𝑋 
in Lie groups 𝐺𝐺 beyond the case of 𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺𝐺𝐺 𝐺𝐺, a more 
elaborate theory of 𝐺𝐺-Higgs bundles is required, as was 
already realized by Hitchin [17,18]. We shall not go into 
the full details of this theory here (the interested reader 
may consult, for example, [2,8].) In the case of represen-
tations of 𝜋𝜋􏺽􏺽𝑋𝑋 in the symplectic group, the relevant no-
tion is the following.
Definition 8.4.—An Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾-Higgs bundle on 𝑋𝑋 is 
a triple (𝑉𝑉𝑉 𝑉𝑉𝑉 𝑉𝑉𝑉, where 𝑉𝑉 𝑉 𝑉𝑉  is a rank 𝑛𝑛 holomorphic 
vector bundle,

 𝛽𝛽 𝛽 𝛽𝛽􏺼􏺼(𝑋𝑋𝑋 𝑋𝑋 𝑋 𝑋𝑋􏺾􏺾𝑉𝑉𝑉  and
 𝛾𝛾 𝛾 𝛾𝛾􏺼􏺼(𝑋𝑋𝑋 𝑋𝑋 𝑋 𝑋𝑋􏺾􏺾𝑉𝑉∗).

There is an obvious notion of isomorphism of 
Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 -Higgs bundles. Note also that we can view 𝛽𝛽 
and 𝛾𝛾 as holomorphic bundle maps

 𝛽𝛽𝛽 𝛽𝛽∗ → 𝛽𝛽 𝑉 𝑉𝑉 ,
 𝛾𝛾𝛾 𝛾𝛾 𝛾 𝛾𝛾∗ ⊗ 𝐾𝐾,

which are  symmetric. Hence we can associate in a natu-
ral way a Higgs vector bundle (i.e. a Higgs bundle in the  
sense of Definition 8.2) of rank 􏺾􏺾􏺾􏺾 and degree 0 by letting

𝐸𝐸 𝐸 𝐸𝐸 𝐸 𝐸𝐸∗,     Φ = 􏿶􏿶
􏺼􏺼 􏺼􏺼
𝛾𝛾 􏺼􏺼􏿹􏿹.

The non-abelian Hodge Theorem takes the following 
form in the case of representations in Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾.

Theorem 8.5.—There is a bijective correspondence be-
tween isomorphism classes of reductive representations 
of 𝜋𝜋􏺽􏺽𝑋𝑋 in Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 of Toledo invariant 𝑑𝑑 𝑑 𝑑 and iso-
morphism classes of polystable Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾-Higgs bundles 
with rk(𝑉𝑉𝑉 𝑉 𝑉𝑉 and deg(𝑉𝑉𝑉 𝑉 𝑉𝑉.

We now illustrate the power of Higgs bundle theory by 
outlining a simple proof of the Milnor-Wood inequality 
(7.1). Let (𝑉𝑉𝑉 𝑉𝑉𝑉 𝑉𝑉𝑉 be a polystable Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾-Higgs bun-
dle with deg(𝑉𝑉𝑉 𝑉 𝑉𝑉 𝑉 𝑉𝑉. By polystability of the Higgs 
bundle (𝐸𝐸𝐸𝐸𝐸 defined in (8.1), the map 𝛾𝛾 𝛾 𝛾𝛾 𝛾 𝛾𝛾 𝛾 𝛾𝛾∗ 
must be non-zero. Let 𝑁𝑁 𝑁 𝑁𝑁  and ̃𝐼𝐼 𝐼 𝐼𝐼 𝐼 𝐼𝐼∗ be the sub-
bundles associated to the kernel and image of 𝛾𝛾 respec-
tively. Let 𝐼𝐼 𝐼 ̃𝐼𝐼 𝐼 𝐼𝐼−􏺽􏺽 ⊂ 𝑉𝑉∗. Then 𝛾𝛾 induces a non-zero 
holomorphic section �̃�𝛾 of the line bundle

det((𝑉𝑉𝑉𝑉𝑉𝑉∗ ⊗ 𝐼𝐼 ⊗ 𝐼𝐼𝑉.

which therefore has positive degree:

deg(𝑁𝑁𝑁 𝑁 deg(𝑁𝑁𝑁 𝑁 deg(𝑁𝑁𝑁 𝑁 𝑁𝑁(𝑁𝑁𝑁(𝑁𝑁𝑁𝑁 𝑁 𝑁𝑁𝑁 𝑁 𝑁𝑁.

Moreover, the subbundles 𝑁𝑁 𝑁 𝑁𝑁 and 𝑉𝑉 𝑉 𝑉𝑉 𝑉 𝑉𝑉 are both  
preserved by Φ and hence polystability gives

 deg(𝑁𝑁𝑁 𝑁 𝑁𝑁,
 deg(𝑉𝑉𝑉 𝑉 deg(𝑉𝑉𝑉 𝑉 𝑉𝑉.

Combining (8.2), (8.3) and (8.4) we obtain

deg(𝑉𝑉𝑉 𝑉 𝑉𝑉(𝑉𝑉𝑉(𝑉𝑉 𝑉 𝑉𝑉𝑉.

From this the Milnor-Wood inequality (7.1) is immedi-
ate. But a further important consequence can be drawn: 
if equality holds in (7.1) we must have rank(𝐼𝐼𝐼 𝐼 𝐼𝐼 and 
equality in (8.2). It follows that we have an isomorphism

𝛾𝛾 𝛾 𝛾𝛾 ≅−→ 𝛾𝛾∗ ⊗ 𝐾𝐾 .

In other words, 𝛾𝛾 induces a non-degenerate 𝐾𝐾-valued 
quadratic form on 𝑉𝑉! This can be used to induce a struc-
ture of orthogonal bundle on 𝑉𝑉 𝑉 𝑉𝑉−􏺽􏺽􏺽􏺽􏺽 (for any choice 
of square root of 𝐾𝐾). This gives us new invariants of rep-
resentations of surface groups in Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾, namely the 
Stiefel-Whitney classes of the orthogonal bundle.{3} This 
explains the appearance of more connected components 

{3}  A different point of view on these invariants was provided by Guichard-Wienhard [16]

(8.1)

(8.2)

(8.3)
(8.4)
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of ℛ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜋𝜋𝑛𝑛Σ, Sp𝑛􏺾􏺾𝑛𝑛,􏺾𝑛𝑛 in Theorems 7.1 and 7.2. For 
more information, in particular on the rather delicate is-
sue of the exact count of the connected components, we 
refer to [15,10].
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When did you realize your interest for mathematics?
My mother remembers worrying that I was late home 
from primary school one day aged 4 or 5 and she found 
me in the garden counting crocuses! I used to do a lot 
of calculating.

You did Part III Maths at Cambridge, the oldest and 
most famous mathematics examination in the world. 
What did you think about the Cambridge experience, 
in particular your mathematical education? 
I received a good education in Cambridge. Mathematics 
in Cambridge includes a lot of physics, which suited me 
well, as I’d originally intended to study Physics. So I 
learnt a lot about mechanics, waves, electromagnetism, 
fluid dynamics, and quantum mechanics, as well 
as an initiation into analysis, linear algebra, groups, 
probability, ODEs, PDEs, numerical analysis and so on.
Was there anyone who you recall as being a  major 
influence on your future choices and views?
I was particularly influenced by James Lighthill and 
Michael McIntyre, notably on the theory of waves, and 
wrote essays on solitons and on waves in stratified 
atmospheres. My director of studies John Hinch 
pointed me in good directions, like to read Hirsch and 
Smale on dynamical systems. During my final year 
Nigel Weiss and Mike Proctor welcomed me into their 
Astrophysics research seminars, which I appreciated as 
an opportunity to see what research is like.

After Cambridge you went to Princeton for a PhD. 
Why did you choose the Plasma Physics Lab?
I wanted to work on a problem of potential social value 
that was nevertheless mathematically challenging. So I 
chose plasma physics, with a view to realising controlled 
nuclear fusion energy. I wanted also to see something 
different from Cambridge: wonderful as it had been I 
was sure the world had other good things to offer. Nigel 
Weiss and Mike Proctor recommended I should go to 
Princeton Plasma Physics Laboratory.  

Who influenced you most at Princeton?
The main influences on me at Princeton were my PhD 
supervisor John Greene who gave me good problems 
to work on; John Mather whose course I attended for 
two and a half years non-stop; and fellow students 
like Rafael de la Llave with whom we met regularly to 
go through papers and books and to bring talks and 
conferences to each other’s notice.

How did you develop an interest for dynamical 
systems? 
My father copied Robert May’s 1976 Nature paper on 

chaos in population dynamics for me while I was an 
undergraduate, my director of studies recommended 
Hirsch and Smale’s book as summer reading, and 
Alistair Mees offered a Pt III project on “Period three 
implies chaos”. All these struck me as fun but not 
serious enough mathematics, so I did a Pt III project 
on wave propagation in inhomogeneous atmospheres 
instead. But in Princeton the plasma physics 
programme included an introduction to dynamical 
systems theory and I got together with a bunch of 
students mainly from the Physics department to read 
papers and books and educate each other on the topic. 
We started going to John Mather’s course, who treated 
various topics in dynamical systems theory, culminating 
in what is now called Aubry-Mather theory. We made 
day trips to a conference on Nonlinear Dynamics in 
New York in 1979 and I think that is when I decided 
nonlinear dynamics was what I wanted to do.  When 
John Greene gave a seminar three months later about 
his 1979 J Math Phys paper I asked if he could suggest 
anything similar to do and he put me on to numerical 
investigation of period doubling in area-preserving maps 
and I was hooked.

You are very much interested in the interactions 
between dynamical systems theory and concrete 
problems arising in several different areas of 
knowledge. How do you manage to talk to people 
outside mathematics?
It takes a lot of time to understand differences in use 
of language, the unstated assumptions and world-view, 
and the often huge literature, and then to formulate 
worthwhile mathematical versions of their problems. I 
do not feel particularly good at it.
Is it too hard for a mathematician to read their 
literature? 
For some topics there are good reviews or collections of 
papers setting out the subject. That is the easiest way 
in. There are also some good books, but they tend to be 
too much one author’s view or to miss the state of the 
art.

Do you share the view that there is not a clear 
distinction between pure and applied mathematics, just 
good or bad mathematics?
The usage of the terminology is unhelpful. What is 
called “applied mathematics” is often not applied to 
anything, and some “pure mathematics” is applied 
to many areas. The distinction is sometimes more 
between attention to rigour which for the purposes 
of applications can limit one’s analysis so much that 
the result is irrelevant for the original problem versus 

making approximations and plausible assumptions in 
order to get at least some form of relevant answer. Both 
approaches have their place and indeed a good analysis 
of a problem may involve moving between the two 
extremes in an iterative process that builds an answer 
that is both rigorous and relevant. The important thing 
is to be clear about what one is claiming. The other 
distinction is one of motivation: is your mathematical 
work driven by scientific problems or pure mathematical 
curiosity? Again there is a place for both.

What different cultures do you find within 
mathematics? 
Apart from the pure v. applied culture difference, there 
is the algebra v. geometry difference. Some prefer 
symbol manipulation, others pictures. I’m more on the 
geometry side but I like explicit formulae when they are 
available.

Some of your research has been strongly motivated 
by scientific problems from physics, biology and 
social sciences. Do you find any fundamental relation 
between problems in those areas?
I tend to think laterally, which can be fruitful though 
I recognise that it is also limited, as it won’t provide 
major paradigm shifts. Thus, for example, I hit on 
the idea in 1994 that the way the cochlea frequency-
analyses sound may be mode-conversion rather than 
critical layer absorption. Mode conversion seemed to be 
unknown to the physiologists and the fluid mechanics 
working in this area, though in retrospect it is what 
Andrew Huxley was proposing in 1969; but I knew 
about it from my training in plasma physics. I think it 
is the right explanation, though have not persuaded a 
suitable journal to publish my paper yet. I’m currently in 
the process, with colleague Nick Chater in the Business 
School, of trying to formulate a thermodynamics of 
economics, aided by the abstract framework of Lieb and 
Yngvason, but there is a long history of such attempts 
and it may be a mistake to force economics into a 
physics mould.

Could you describe your work trajectory, from 
renormalisation of area-preserving maps to complexity 
science and emergence phenomena? How did your 
choice of problems evolve from the previous ones?
I went to Princeton to do research in plasma physics, 
but found that basic problems like the magnetic field 
line flow in a tokamak were not understood, except in 
the axisymmetric case, for which there is a foliation 
by invariant tori. To study the question of invariant tori 
for non-symmetric perturbations, I considered area-

preserving maps. Following numerical observations of 
Kadanoff and Shenker I formulated a renormalisation 
theory for the breakup of invariant circles and verified it 
numerically. It was subsequently proved with computer-
assisted estimates by Koch, following a direction that 
I proposed in 1994 going back to the continuous-
time problem. Anyway, that led me into understanding 
the transport through the gaps of broken tori, where I 
interpreted Mather’s action difference as a flux across 
a cantorus.  I also developed a sufficient condition 
for non-existence of invariant tori that is easy to 
implement and with enough work is exhaustive. At 
IHES, Charles Tresser invited me to join a project on 
the boundary of chaos for circle maps, in which we 
proved that the boundary of complicated dynamics is 
itself complicated. At Warwick I pursued a number of 
further themes in Hamiltonian and non-Hamiltonian 
dynamics. One was stimulated by numerics presented 
at a conference by Philip Saffman on stability of 
periodic water waves, where using Hamiltonian theory 
I was able to explain his results; I followed that theme 
to also explain the diagram for instability of Karman’s 
vortex street. Another came as a by-product from a 
visit of Philip Boyland in which he introduced me to 
the topological behaviour of dynamics on surfaces: 
this led me to some nice results for example about the 
rotation set and toroidal chaos for homeomorphisms 
of the torus. Another was stimulated by breakfast with 
Serge Aubry at a workshop in Minnesota, when he 
explained his anti-integrable limit to me and I realised 
I could use the idea to prove all sorts of results about 
area-preserving maps, and also improve his results 
for some quantum-mechanical models of solid-state 
physics. Also at this time I realised I could extend my 
renormalisation theory for area-preserving maps to 
the statistical mechanics of some classical models of 
solid-state physics. Perhaps my first attempts to tackle 
complex systems came when I took over from David 
Rand management of a grant with Dave Broomhead 
on Dynamics of large-scale networks. We didn’t really 
achieve much on the subject, but it laid the seeds. 
Instead we developed an approach to extract topological 
information from time series; this was a precursor of 
what is now the very popular domain of computational 
topology. An important event was on a visit to Aubry 
he returned from a conference very excited about 
discrete breathers: spatially localised time-periodic 
solutions of networks of oscillators that physicists saw 
in numerics. He asked if we could prove their existence 
using the anti-integrable limit and I said yes and did. 
This initiated a series of results on their stability and 
interaction. In parallel I pursued a number of ideas in 
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topological dynamics, the best of which was prompted 
by happening to read Thurston and Weeks’ Scientific 
American article on Three-manifolds. I was struck by 
the example they gave of a two-manifold, namely the 
configuration space of a triple linkage, which they 
showed has genus 3. I asked myself whether the free 
dynamics of the linkage might be Anosov and following 
numerics by a PhD student Tim Hunt in Cambridge, 
managed to prove this in a certain parameter regime. In 
Cambridge I was also invited to help steer a project on 
spatially extended dynamics. I tried out an idea I had 
for responding to Sinai and Bunimovich’s challenge to 
make a coupled map lattice with non-unique phase on 
the group. One of the postdocs Guy Gielis explained to 
me some interesting stochastic systems that showed 
similar effects and I realised we could simulate them 
using coupled map lattices. This was probably my real 
entry into complex systems. Using the understanding 
gained, I proposed a mathematical formulation of the 
trendy concept of “emergence”. Actually I did this first 
in response to a new PhD student David Sanders in 
2000 when I’d just returned to Warwick, who wanted 
a project on emergence. More recently I went through 
Dobrushin’s proof of ergodicity for weakly dependent 
probabilistic cellular automata and realised it could 
be expressed more nicely in terms of a metric on 
spaces of multivariate probabilities, which I have found 
useful in talking about the amount of emergence and 
the dependence on parameters. This is just a sample 
of things I’ve worked on and how I got into them. It 
is mostly serendipitous: just happening to pick up 
something where I could see I could do something, 
putting together things I’d already understood, 
interacting with interesting people.
Is stochastic dynamics closer to real systems than 
deterministic dynamics? Do you think that that is a 
fruitful direction for future work?
My view of stochastic dynamics is that the random 
terms represent aspects of the system that we choose 
not to attempt to model more accurately. In the absence 
of further knowledge or analytical ability this can be a 
sensible approach.  Nevertheless, there are examples 
where the effect of some deterministic dynamics 
is rigorously equivalent to some noise process, the 
randomness being with respect to initial conditions, 
and then it makes sense to use the stochastic model. 
For example, a Langevin equation is widely used for the 
dynamics of slow degrees of freedom in a Hamiltonian 
system whose fast degrees of freedom are mixing. 
Anosov an I have scketched a derivation of this.

In the last few decades the number of active researchers 
and the quality of the mathematical work produced in 
Portugal has grown considerably. In your professional 
life have you ever had this perception?
It has been my privilege to interact with the dynamical 
systems group from Porto for at least 20 years and to 
supervise three PhD students from Portugal. And I’ve 
just taken on another one.

In contrast to older times, today mathematics is 
very much a collaborative effort. Do you have any 
preference between working alone or in teams? Is the 
challenge different?
There is still plenty of room in mathematics for 
single author research. But there are advantages to 
collaborations: broader perspective, shared work, wider 
dissemination.

Who is your favourite mathematician? Why?
I have many heroes, for example Moser, Arnol’d, Anosov 
and Sinai. I like what they have written and I like them 
as people (though unfortunately Arnol’d and Moser are 
no longer alive). Moser made many important advances 
in Hamiltonian dynamics; he was particularly nice 
to me, accepting me early in my career even though 
my approach was very non-standard mathematically 
and suggesting fruitful lines of research. Arnol’d was 
brilliant in a wide range of directions; he could be 
famously caustic but he was always nice to me and 
willing to answer my questions in considerable detail. 
Anosov I feel is a greatly under-rated mathematician: 
the insights he had in the 1960s about the Holder 
continuity of the foliations of hyperbolic dynamical 
systems and its implications for their measure theory 
are profound; I enjoyed making his acquaintance and 
showing him my mechanical Anosov system. Sinai I feel 
is the main architect of the theory of how deterministic 
dynamical systems can behave stochastically: he 
showed that the Markov partitions that had been 
constructed for special systems are a general feature 
of hyperbolic dynamical systems and that they give a 
correspondence of the dynamics to a generalisation of 
Markov processes called Gibbsian processes (which 
allow infinite-range but decaying memory). He has a 
very warm character and has been very supportive of 
my work. Going further back in time, I’d say Poincaré 
is my biggest hero: he developed so much interesting 
mathematics and presented it in such a readable way. 
And before him there was Newton, who was so creative, 
but apparently an awful character.

1. IntroductIon

Neurons are Nature’s solution to the problem of infor-
mation processing and information storage. Nervous sys-
tems have been engineered by evolution to sense informa-
tion from the environment, process this information and 
store experiences for the purpose of improving future 
decisions. Ubiquitous in all these stages is the necessity 
of information buffers. In the case of mammals, there are 
different mechanisms providing storage in a wide range 
of time scales: from the ephemeral facilitation of a syn-
apse to the life-long memories of childhood. As expected, 
neuronal dynamics are an extremely rich subject from a 
mathematically point of view. In this paper we focus on a 
model for a short-term memory mechanism called work-
ing memory. Regions of the mammal brain engaged in 
providing this functional resource are capable of retain-
ing neuronal spatial patterns of activity for the duration 
of a few seconds. Basically, working memory provides 
a temporary buffer where information is held for short-
time, while it is being actively used in cognitive tasks; 
this information can then be passed on to longer-term 
storage mechanisms or be simply discarded and forgot-
ten. We humans use our working memory system when 

Detailed mathematical models in 
neurobiology—Storing information in 
membrane conductances dynamics
by Eduardo Conde-Sousa* and Paulo Aguiar**

* Faculdade de Ciências da Universidade do Porto
** Centro de Matemática da Universidade do Porto

we temporarily retain a phone number or a name, when 
we mentally perform an arithmetic calculation, or when 
our wives tell us by phone the grocery list.
 Our goal in this article is to give a glimpse into some 
of the methodologies used in theoretical neuroscience 
targeting a particular problem: to describe a mathemati-
cal model, closely fitted into the biophysical constrains of 
the nervous system, that helps understanding how work-
ing memory can be produced in a network of neurons. 
Our approach is different from other working memory 
models [1] in the sense that it does not rely on synaptic 
plasticity{1} nor connectivity structure to store informa-
tion. In our model we store information in the dynamical 
states of the neuron’s membrane conductances. An im-
portant feature in working memory systems is that it is 
possible to retain complex activity patterns after a single 
exposure to the stimuli. This constrain is better support-
ed by the time scales found in conductances dynamics, 
than by synaptic plasticity temporal properties, even if 
we take into account short-term plasticity mechanisms.
 In a population of 𝑁𝑁  interconnected neurons en-
gaged in working memory, we define as information con-
tent the particular subset of neurons that are co-activated 

{1}   Synapses are the structures that mediate most of the communication and transfer of signals between 
neurons. A strong synapse produces a large signal in the target neuron while a weak synapse will produce a 
small response. By modulating the synaptic strengths it is possible to both store information and to change 
the computational/functional capabilities of populations of neurons. The present dogma in neuroscience is 
that information is stored in the efficacy, or strength, of synapses.
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at a given time. We assume that different sensory/per-
ceptual configurations produce in this population differ-
ent patterns of active units. In the neuronal population, 
the units not belonging to the memory pattern have low 
frequency stochastic activity (0.5Hz) while the units be-
longing to the pattern have a higher frequency activity 
(20Hz). The sizes of these patterns, i.e. the number of ac-
tive units in any pattern, is considered to be roughly the 
same, which is in accordance with the notion of activity 
level control in neuronal circuits. The population can act 
as a working memory system if, after a short-period of a 
few hundred milliseconds where a subset of neurons is 
consistently co-activated (the duration of a “one-shot’’ 
stimuli, such as hearing a number a single time), this spa-
tial pattern of activity is auto-preserved after the stim-
uli has been removed, for a duration of several seconds. 
In addition to this core property, our working memory 
model has to satisfy the following conditions:

•	 stochastic	activations	of	spurious	neurons	
should not be stored nor should affect the 
stored pattern

•	 the	retained	activity	pattern	should	be	stable	
for several seconds

•	 an	inhibitory	input	within	physiological	values	
should be able to clear the memory pattern and 
restore the network to its basal, low frequency, 
stochastic firing

•	 deactivation	of	isolated	neurons	in	the	pattern	
should not compromise the rest of the pattern’s 
integrity

This article is organized in the following way. First we 
describe in detail the mathematical model used to set 
the dynamics for each neuron individually, which pa-
rameters are used and how the numerical simulations 
are performed. The following section describes how the 
neuronal population is assembled, what network archi-
tecture is used and the properties of the synaptic con-
nectivity. The following two sections describe results of 
the model: first we present results regarding the single 
neuron model, after that we present the results regard-
ing the collective behavior of the neuronal population 
as a working memory system. We conclude with some 
final remarks. 

2. SIngle neuron Model

The neuronal dynamics are set using the Hodgkin-Hux-
ley (HH) formalism in order to produce biophysically 
accurate descriptions of all neuronal conductances. Neu-
rons are modeled as a single cylindrical compartment 
of length 𝐿𝐿 𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and diameter diam = 􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾. That 

is, given the context and the questions being addressed, 
there are no a priori reasons to assume a special role to 
be taken by the spatial properties of the neuron. There-
fore, the complex neuronal tree topology is collapsed 
and pointwise neurons are considered—hence the main 
variable is time only. Together with the leakage current 
and synaptic currents, a set of four ionic currents are 
considered in the membrane potential model. In addi-
tion to the canonical delayed rectifier potassium current 
and transient sodium current present in the HH equa-
tion, our model adds two more currents: a calcium cur-
rent, 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶, which produces an influx of calcium when-
ever the membrane potential is becoming depolarized, 
and a nonspecific cationic current which is dependent on 
the intracellular calcium concentration, 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶 . Together, 
these two currents can act synergetically to prolong de-
polarization in the membrane potential. These are cur-
rents that are known to exist in many neuronal types in 
the nervous system [2]. All ionic current dynamics are 
taken from Senselab [3] database. The time evolution of 
the membrane potential is described by the equation:

𝐶𝐶𝑚𝑚�̇�𝑉 𝑉 𝑉𝑉𝑉𝐿𝐿 𝑉 𝑉𝑉𝑁𝑁𝑁𝑁 𝑉 𝑉𝑉𝐾𝐾𝐾𝐾𝐾𝐾 𝑉 𝑉𝑉𝐶𝐶𝑁𝑁𝐶𝐿𝐿 𝑉 𝑉𝑉𝐶𝐶𝐶𝐶𝑁𝑁 𝑉 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠
where 𝐶𝐶𝑚𝑚 = 􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽𝑚𝑚􏺾􏺾 is the membrane capacitance; 𝑉𝑉 rep-
resents the membrane potential in 𝑚𝑚𝑚𝑚; 𝐼𝐼𝐿𝐿 = 𝑔𝑔𝐿𝐿 × (𝑉𝑉 𝑉 𝑉𝑉𝐿𝐿)
is the leakage current, where 𝑔𝑔𝐿𝐿 = 􏻀􏻀􏻀􏻀􏻀 􏻀 􏻀􏻀􏻀􏻀

−􏻁􏻁𝑆𝑆𝑆𝑆𝑆𝑆𝑆􏻀􏻀 is the 
leakage conductance and 𝐸𝐸𝐿𝐿 = −􏻂􏻂􏻂􏻂􏻂􏻂 is the leakage re-
versal potential; 𝐼𝐼𝑁𝑁𝑁𝑁 and 𝐼𝐼𝐾𝐾𝐾𝐾𝐾𝐾 are the transient 𝑁𝑁𝑁𝑁+ and 
𝐾𝐾+ currents responsible for action potentials; 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the 
high-threshold 𝐶𝐶𝐶𝐶􏺾􏺾􏺾 current and 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶  is the intracellular 
calcium concentration nonspecific cation current men-
tioned earlier; finally, 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 is the sum of all synaptic cur-
rents impinging on the neuron.
 All numerical analysis/simulations were preformed 
in the simulation environment NEURON [4].

2.1. Sodium and Potassium currents (𝐼𝐼𝑁𝑁𝑁𝑁 and 𝐼𝐼𝐾𝐾𝐾𝐾𝐾𝐾)
The fast 𝑁𝑁𝑁𝑁+ and 𝐾𝐾+ currents are modeled according to 
the canonical Hodgkin-Huxley kinetics [5] with small 
modifications proposed by Traub and Miles to model 
hippocampal pyramidal cells [6]. The key parameters are: 
maximal sodium conductance 𝑔𝑔𝑁𝑁𝑁𝑁 = 􏻄􏻄􏻄􏻄􏻄􏻄􏻄􏻄􏻄

􏺾􏺾, maximal 
potassium conductance 𝑔𝑔𝐾𝐾 = 􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾

􏺾􏺾, sodium reversal 
potential 𝐸𝐸𝑁𝑁𝑁𝑁 = 􏻁􏻁􏻁􏻁􏻁􏻁 and potassium reversal potential 
𝐸𝐸𝐾𝐾 = −􏻃􏻃􏻃􏻃􏻃􏻃.
 The model for these currents consists of:

 𝐼𝐼𝑁𝑁𝑁𝑁 = 𝑔𝑔𝑁𝑁𝑁𝑁 × 𝑚𝑚
􏺿􏺿 × ℎ × (𝑉𝑉 𝑉 𝑉𝑉𝑁𝑁𝑁𝑁)

 𝐼𝐼𝐾𝐾𝐾𝐾𝐾𝐾 = 𝑔𝑔𝐾𝐾 × 𝑛𝑛􏻀􏻀 × (𝑉𝑉 𝑉 𝑉𝑉𝑅𝑅).

The kinetic equation for the gating variables is

�̇�𝑦 𝑦 𝑦
𝑦𝑦 𝑦 𝑦𝑦∞ (𝑉𝑉)
𝜏𝜏𝑦𝑦 (𝑉𝑉)

.

where

 𝑦𝑦∞ =
𝛼𝛼𝑦𝑦

𝛼𝛼𝑦𝑦 + 𝛽𝛽𝑦𝑦
,

 𝜏𝜏𝑦𝑦 =
􏺽􏺽

𝛼𝛼𝑦𝑦 + 𝛽𝛽𝑦𝑦
.

and 𝑦𝑦 𝑦 {𝑚𝑚𝑚 𝑚𝑚 𝑚𝑚}.
 The activation and inactivation gate  functions are:

 𝛼𝛼𝑚𝑚 =
􏺼􏺼􏺼􏺼􏺼􏺼􏺼 􏺼 (􏻃􏻃􏺼􏺼 􏻃 􏻃􏻃)

exp 􏿵􏿵􏻃􏻃􏺼􏺼􏻃􏻃􏻃􏻀􏻀 􏿸􏿸 􏻃 􏺽􏺽
.

 𝛽𝛽𝑚𝑚 =
􏺼􏺼􏺼􏺼􏺼􏺼􏺼 􏺼 (𝑉𝑉 𝑉 𝑉𝑉􏺼􏺼􏺼􏺼)

exp 􏿵􏿵𝑉𝑉𝑉𝑉𝑉􏺼􏺼􏺼􏺼􏻁􏻁 􏿸􏿸 𝑉 𝑉𝑉

 𝛼𝛼ℎ = 􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼 􏺼 􏺼􏺼􏺼 􏿶􏿶
􏻃􏻃􏺼􏺼 􏻃 􏻃􏻃
􏺼􏺼􏺼􏺼 􏿹􏿹

 𝛽𝛽ℎ =
􏻀􏻀

􏺽􏺽 􏺽 􏺽􏺽􏺽 􏿵􏿵􏻅􏻅􏻅􏻅􏻅􏻅􏻅􏻅􏻅 􏿸􏿸

 𝛼𝛼𝑛𝑛 =
􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼 􏺼 (􏻃􏻃􏻃􏻃 􏻃 􏻃􏻃)

exp 􏿵􏿵􏻃􏻃􏻃􏻃􏻃􏻃􏻃􏻃􏻃 􏿸􏿸 􏻃 􏺽􏺽

 𝛽𝛽𝑛𝑛 = 􏺼􏺼􏺼􏺼􏺼 􏺼 􏺼􏺼􏺼 􏿶􏿶
􏻃􏻃􏺼􏺼 􏻃 􏻃􏻃
􏻀􏻀􏺼􏺼 􏿹􏿹.

2.2. High-threshold 𝐶𝐶𝐶𝐶􏺾􏺾􏺾 current(𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶)
The high-threshold 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶 current is modeled according 
to the equation [7]:

𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝑚𝑚􏺾􏺾 × GHK (𝑉𝑉𝐶 𝑉𝑉𝐶𝐶𝑉𝑉𝐶 𝑉𝑉𝐶𝐶𝑉𝑉).

were 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼 is the 𝐶𝐶𝐶𝐶􏺾􏺾􏺾 membrane permeability, 
𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑐𝑐𝑐𝑐𝑐𝑐 are respectively the intracellular and extracel-
lular calcium concentration, and GHK is the Goldman-
Hodgkin-Katz equation.
 The kinetic equation for the activation variable is

�̇�𝑚 𝑚 𝑚𝑚𝑚 𝑚 𝑚𝑚∞ (𝑉𝑉)
𝜏𝜏𝑚𝑚 (𝑉𝑉)

where

 𝑚𝑚∞ = 􏺽􏺽
􏺽􏺽 􏺽 􏺽􏺽􏺽􏺽􏺽􏺽􏺽𝑉𝑉􏺽􏺽􏺽𝑉𝑉−􏺽􏺽𝑉𝑉 )

 𝜏𝜏𝑚𝑚 =
􏺽􏺽

𝛼𝛼𝑚𝑚 + 𝛽𝛽𝑚𝑚

 𝛼𝛼𝑚𝑚 =
􏺽􏺽􏺽􏺽􏺽

􏺽􏺽 􏺽 􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽 􏺽 􏺽􏺽􏺽 􏺽 􏺽􏺽􏺽􏺽

 𝛽𝛽𝑚𝑚 = 􏺼􏺼􏺼􏺼􏺼􏺼􏺼 􏺼
􏺽􏺽􏺼􏺽􏺽􏺽􏺽 􏺽 􏺽􏺽

􏺽􏺽 􏺽 􏺽􏺽􏺽􏺽􏺽􏺽 􏿵􏿵􏺽􏺽􏺽􏺽􏺽􏺼􏺽􏺽􏺽􏺽􏻁􏻁􏺼􏺽􏺽􏻁􏻁 􏿸􏿸
.

2.3 Intracellular calcium dynamics
The dynamics of the intracellular calcium concentration, 

denoted as 𝑐𝑐𝑐𝑐𝑐𝑐, are modeled by a fast removal process due 
to an active pump, and by calcium entry which is due to 
the current 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶, as described in [8].
 The used parameters are: 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑐𝑐𝑐𝑐𝑐𝑐𝜏𝜏 = 􏺽􏺽􏺽􏺽

 𝑐𝑐𝑐𝑐𝑐𝑐∞ = 􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁mM

2.4. 𝐶𝐶𝐶𝐶􏺾􏺾􏺾 dependent nonspecific cation current (𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶)

The adopted model for 𝐶𝐶𝐶𝐶􏺾􏺾􏺾-dependent nonspecific cat-
ion current [9] is described as:

𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶 × 𝑚𝑚
􏺾􏺾 × (𝑉𝑉 𝑉 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶)

with parameters 𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶 = 􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺾􏺾 and 𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 = 􏺼􏺼􏺼􏺼 . 
For our version of the model we modified the middle 
point of the activation function to 􏺼􏺼􏺼􏺼􏺼 􏺼 􏺼􏺼􏺼􏺼−􏺿􏺿 (before 
was 􏺽􏺽􏺽􏺽􏺽 􏺽 􏺽􏺽􏺽􏺽−􏺿􏺿). This change allowed a small increase in 
the sensibility of this current to lower concentrations of 
intracellular calcium.

2.5 Synaptic Current
The synaptic current is modeled by the sum:

𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 = ∑𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 × 􏿴􏿴𝑉𝑉 𝑉 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖􏿷􏿷
where 𝑖𝑖 runs over the set of pre-synaptic neurons. In 
other words, the term 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 aggregates the currents from 
all synapses established with a particular neuron. All 
synapses in the model are excitatory, and their dynamics 
are modeled according to the biological NMDA synapse 
type. The core synaptic conductance profile is modeled 
by a dual exponential function:

𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡) = 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ 𝑎𝑎 􏿰􏿰𝑒𝑒
− 𝑡𝑡
𝜏𝜏𝑑𝑑𝑒𝑒𝑑𝑑𝑎𝑎𝑠𝑠 − 𝑒𝑒−

𝑡𝑡
𝜏𝜏𝑟𝑟𝑟𝑟𝑠𝑠𝑒𝑒 􏿳􏿳

where 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑡 represents the synaptic conductance after 
𝑡𝑡 milliseconds of the synaptic activation and 𝑎𝑎 is cho-
sen so that the maximum value of 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 matches 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠, the 
maximum synaptic conductance. The values for the ris-
ing time constant 𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, the decay time constant 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  and 
the synaptic reversal potential 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 are: 𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 􏻁􏻁􏻁􏻁􏻁 􏻁􏻁􏻁􏻁, 
𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 􏻃􏻃􏻃􏻃􏻃􏻃􏻃 􏻃􏻃􏻃􏻃 and 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 = 􏺼􏺼􏺼􏺼􏺼 􏺼􏺼􏺼􏺼.
 The NMDA synaptic current has the property of 
depending on the post-synaptic membrane potential: 
independently of the synaptic activation by the pre-
synaptic neuron, an effective synaptic current will only 
be elicited if the post-synaptic membrane is sufficiently 
depolarized. In other words, this type of synapses act as 
an “AND’’ operator and has strong functional implica-
tions in the dynamics of neuronal networks. We follow 
a well established model and represent the NMDA syn-
aptic conductance multiplying the dual exponential con-
ductance profile by a factor representing the magnesium 
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block which characterize the post-synaptic dependence 
[10]. The NMDA model also accounts for the ratio of 
calcium current to total current [11] flowing through 
these channels as they introduce a relevant contribution 
to the increase of the intracellular calcium concentration.

3. netWork topology

Working memory is a emergent property of the collective 
behavior of specific populations of neurons. The commu-
nication between neurons is determined by the connectiv-
ity matrix and in this model we use random connections 
to set the network architecture. Given two neurons, 𝑖𝑖 and 
𝑗𝑗, the probability of a synapse from pre-synaptic neu-
ron 𝑖𝑖 to post-synaptic neuron 𝑗𝑗 is 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 
where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  represents the predefined connectivity 
rate of the model. The highest values in the mammalian 
brain are close to 30%, in regions with dense recurrent 
connections such as area CA3 in the hippocampus. As 
a central goal in this model is to store new information 
without involving synaptic changes, all peak conduct-
ances are taken from a common distribution and are then 
fixed for all numerical simulations.
 While not plastic, the absolute values of the synap-

tic conductances are crucial in setting the activity level 
of the network. Two constraints are used to quantify the 
synaptic peak conductances, and therefore constraint all 
connections in the network:

1. one neuron must be able to fire stochastically, 
without entering a state of persistent activity 
due to interactions with active neurons;

2. when consistently excited, one neuron must 
be able to sustain activity for a period of tens 
of seconds as a result of the interactions with 
other active neurons.

By “consistently excited’’ we mean a series of coher-
ent excitations in a small time window. The size of time 
window has to be balanced between small enough to be 
compatible with the notion of “one-shot learning’’ and 
big enough to make the probability of stochastic acti-
vations producing such an excitation profile virtually 
zero. A length of 􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾 is chosen for the stimulation 
time window.

4. reSultS

For clarity purposes the results are separated into sin-

gle neuron dynamics and population’s collective behav-
ior, where the emergence of a working memory system 
is analyzed.

4.1 Single neuron firing properties
In the absence of stimulation currents and stochastic 
noise, the neuron’s membrane potential rests in the stable 
equilibrium point of about −􏻂􏻂􏻂􏻂􏻂􏻂 . Conversely, when a 
current of amplitude 􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼 is injected for a period of 
􏻀􏻀􏻀􏻀􏻀􏻀 to an isolated neuron an action potential (AP) is 
produced. Higher current amplitudes naturally lead to 
more APs in the same time period (see Fig. 1).
 Each AP, or simply spike, results from the fast, but 
transient, 𝑁𝑁𝑁𝑁+ current and from the delayed rectifier 𝐾𝐾+ 
current. Every time a spike is generated, the high-thresh-
old calcium current activates and the intracellular calci-
um concentration rises. However, for short stimulation 
intervals like this one of 􏻀􏻀􏻀􏻀􏻀􏻀, the slowly adapting 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶  
activation variable (long time constant) suffers little or 
no variation, leading to a negligible change in the 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶  
current. Thus, the dynamics of the neuron’s membrane 
potential can be seen mainly as a result of the well know 
and well studied interaction between 𝐼𝐼𝑁𝑁𝑁𝑁 and 𝐼𝐼𝐾𝐾𝐾𝐾𝐾𝐾 cur-

rents. This is the situation where the neuron fires due to 
stochastic network activations or to very short, isolated 
and non-consistent external stimulation.
 On the other hand, longer, consistent activations 
leading to several spikes with short latency give rise to 
a different behavior in the neuron’s currents dynamics. 
The consecutive activation of the high-threshold calci-
um current generates a progressive increase in the 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶  
activation variable. The long time constant of the 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶  
activation variable enables a coarse integration leading to 
values close to 1.0. For a stimulation period of 􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽, the 
𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶  activation variable reaches values in 𝑚𝑚 𝑚 􏿮􏿮􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼 􏺼􏺼􏺼􏺼􏺼􏿱􏿱 
which are enough to sustain the activity for a period of 
several hundred milliseconds (see Fig. 2). A consistent 
stimulation in a time window of 􏺽􏺽􏺽􏺽􏺽􏺽 􏺽 􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽 is compat-
ible with the “one-shot learning’’ paradigm.
 The synergy between 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶  and 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶 can be better 
appreciated in a phase graph (Fig. 3), where the axis are 
the neuron’s membrane potential, the 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶 ’s activation 
variable 𝑚𝑚 and the calcium’s intracellular concentration  
which is heavily modulated by 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶.
 It is important to emphasize that in order to con-
sistently excite one neuron, the variable 𝑚𝑚𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶 must rise 

Figure 1.—Membrane potential response (in blue) to 40ms 
constant current stimuli of different amplitudes (in black).

Figure 2.—Two electrode currents are injected in the neuron with 
amplitude of 0.02nA. The stimulus have a duration of 50ms (left) 
and 150ms (right). With a 150ms current injection the neuron 
sustain activity for a period of 900ms, after the end of the current 
injection.  When the current injection is shorter, this period of 
sustained activity is non existing.

Figure 3.—An electrode current is injected in the neuron with duration 150ms and amplitude 0.02nA. The upper panel 
contains the phase space with variables mICAN

 (activation variable of CAN current), cai (intracellular calcium concentration 
[mM]) and membrane potential [mV]. The middle panel contains the membrane potential time evolution and the lower 
trace corresponds to the electrode current injected. For every new action potential, the activation variable mICAN

 increases 
(red trace). After the end of the current injection, the ICAN activation variable slowly decreases to mICAN

≈ 0.7 (blue trace) 
and during a considerable amount of time, acting synergetically with the ICa,L current, it is sufficient to sustain activity in 
the neuron. After this period, the depolarization induced by ICAN is not sufficient to generate new action potentials and the 
membrane potential converges to the -65mV equilibrium potential (green trace).
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enough (above 0.7). This 𝐶𝐶𝐶𝐶𝐶𝐶  current is only activated 
by rising the internal concentration of calcium, which in 
turn depends on the existence of APs. Thus, the stimulus 
current must be sufficient to trigger a sequence of APs 
during a period between 100 and 􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾, depending on 
the achieved firing rate. Lower firing rates require long-
er periods of consistent stimulation. For example, with a 
􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽 and 􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼 amplitude current injection, the neu-
ron fires five times over a period of approximately 􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽 
(corresponding to an average firing rate of 􏺿􏺿􏺿􏺿􏺿􏺿) which 
is sufficient to sustain the activity for a few hundreds of 
milliseconds after the stimulation finishes. However, if 
a small residual current is provided after the stimulus 
ends, the neuron can retain its activity for much longer 
periods of time (Fig. 4). This property is of considerable 
importance as it sets the conditions in which a working 
memory system can work.

4.2 Network behavior
Unless otherwise stated, all presented network results 
refer to simulations with a population of 1000 neurons, 
with a recurrent connectivity rate of 25%. The stimula-
tion protocol consists of exciting 100 neurons (10% of 
the population), creating the so called memory pattern 
of activity. The stimulation lasts for 􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾 and generates 

5 spikes on each neuron (individual firing rate of 􏺾􏺾􏺾􏺾􏺾􏺾 ). 
All induced spikes are not completely synchronized: a 
uniform random jitter of ±􏺽􏺽􏺽􏺽􏺽􏺽 is introduced to em-
phasize the robustness of the system to small amounts 
of noise. This robustness comes mainly from the long-
lasting NMDA conductance profiles and from the fact 
that the passive properties of neuron membrane act as 
a low-pass filter with a time constant, in the case of this 
model’s parameters, of ≈ 􏺾􏺾􏺾􏺾􏺾􏺾 (obtained from 𝐶𝐶𝑚𝑚/𝑔𝑔𝐿𝐿). 
These two mechanisms significantly enlarge the integra-
tion time scale for the synaptic inputs.
 In addition to the spike jitter in the memory pat-
tern activation, noise is constantly provided to all neu-
rons, belonging or not to the memory pattern. Noise is 
introduced as stochastic activations following a Poisson 
process with an average interspike interval of 􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾  
(􏺼􏺼􏺼􏺼􏺼􏺼􏺼), in agreement with cortical neurons experimen-
tal data.
 In the connected population, the residual stimulation 
required to sustain the memory pattern is provided by 
the recurrent connections. The NMDA’s synaptic peak 
conductances are therefore of noteworthy importance. 
The calculated range of values which satisfy the two con-
straints mentioned in section 3, given all neuronal model 
parameters, is [􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁, 􏺾􏺾􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁]μS (see Fig. 5). These 

values correspond to the total NMDA synaptic conduct-
ance required to drive the target neuron in this safe zone 
and are therefore independent of the population size; in 
other words, they represent the target value for the sum 
of all synaptic conductances and are obtained consid-
ering a complete synchrony in the synaptic activations. 
This is a strong assumption but, again, the long-lasting 
NMDA conductance profiles and the long membrane’s 
time constant produces a synchronicity time window in 
the order of a few tenths of milliseconds. This interval 
encapsulates the variability in the memory pattern ac-
tivations and renders irrelevant the need for complete, 
sub-millisecond, synaptic synchronization. The calcu-
lated values for the total synaptic conductance under the 
synchrony assumption are then safely used as estimators 
for the total synaptic conductance under less stringent 
synchronicity constraints.
 While the required total synaptic conductance is a 
function of the neuron’s parameters and independent 
of the population size, the individual NMDA synaptic 
conductances depend on the number of synaptic inputs 
each neuron receives. This number follows a binomial 
distribution with parameters 𝑁𝑁 , the population size, and 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , the connectivity rate.
 The working memory behavior of the system can be 

visualized in a raster plot, where the spikes of all neurons 
are represented as dots (Fig. 6). The consistent but short 
activation of a constellation of neurons in the popula-
tion forms a memory activity pattern which sustains for 
several seconds due to the synergy between the 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 
𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶  currents, and the stabilizing current provided by 
the recurrent connections. Two relevant points worth-
while mentioning is that both the activity pattern firing 
frequency (in the range of 􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽) as well as the mag-
nitude of the inhibitory conductance necessary to reset 
the memory pattern (in the range of 􏺼􏺼􏺼􏺼􏺼􏺼􏺼 for a duration 
of 􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾—compatible with 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) are in accordance 
with neurobiological data [2].

4.3 Model scaling
The simulation results shown use a population of 1000 
neurons. It is interesting to notice that as the number 
of neurons rises, our working memory model becomes 
more robust to variability in the NMDA’s peak con-
ductances. 
 Given the synaptic constraints (see Fig. 5), we can 
conclude that a neuron belonging to the activity pattern 
must receive a total synaptic conductance of, at least, 
􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁μS from the other neurons belonging to the pat-
tern. Therefore, if 𝑚𝑚 is the minimum number of connec-

Figure 6.—Working memory in action. A sub-population of 100 
neurons is activated and is capable of sustaining its activity for 
a long period of time without becoming corrupted (by loosing or 
adding elements).

Figure 5.—Parametrization of the NMDA peak conductances w. Two neurons connected through a single NMDA synapse are used to assess 
the proper synaptic conductance values. A synaptic value of w=4.0×10-5μS is insufficient to provide enough recurrent excitation to sustain 
activity after the short period of stimulation on a small fraction of the population; the membrane potential traces for the two neurons 
connected through such w are shown in panel (a). Above w=5.0×10-5μS, the recurrent connections are already sufficient to preserve the 
activity pattern; again the membrane potential traces for the neurons connected through the new w are shown in panel (b). This proper 
functional behavior is maintained up to w=20.0×10-5μS; the activity in the neuron belonging to the memory pattern does not propagate to 
other neuron even if they are subject to stochastic activations—panel (c). Higher synaptic conductance values, such as w=22.0×10-5μS, 
start to invoke spurious activations and instability on the activity pattern; the activity in the neuron belonging to the memory pattern is 
now capable of recruiting additional neurons, thus corrupting the working memory—panel (d).

Figure 4.— A residual current injection of 0.001nA only produces 
a small depolarization in the membranes potential and is 
incapable of eliciting APs (upper traces). On the other hand, if this 
residual current follows a 150ms, 0.01nA amplitude core stimulus, 
the other way vanishing activity now becomes persistent (lower 
traces).
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tions each neuron in the pattern receives from other neu-
rons in the pattern, the average synaptic efficacy must be 
≥ 􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁/𝑚𝑚. On the other hand, a neuron outside the ac-
tivity pattern must not be activated by the neurons in the 
pattern; i.e. it must not receive more than a total synaptic 
conductance of 􏺾􏺾􏺾􏺾 􏺾 􏺾􏺾􏺾􏺾−􏻁􏻁μS. If 𝑀𝑀 is the maximum num-
ber of connections each exterior neuron receives from 
neurons belonging the pattern, than the average synaptic 
efficacy must be ≤ 􏺾􏺾􏺾􏺾 􏺾 􏺾􏺾􏺾􏺾−􏻁􏻁/𝑀𝑀. Thus, the average synap-
tic efficacy must be between 􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁/𝑚𝑚 and 􏺾􏺾􏺾􏺾 􏺾 􏺾􏺾􏺾􏺾−􏻁􏻁/𝑀𝑀 
which is only possible if 􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁/𝑚𝑚 𝑚 𝑚𝑚􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁/𝑀𝑀. This 
means that 𝑀𝑀𝑀𝑀𝑀 𝑀 𝑀𝑀.
 As the population size grows, the fluctuations in 
the number of input synapses each neuron receives be-
comes less relevant (scales with 􏺽􏺽􏺽√𝑁𝑁) and the excitation 
reaching neurons inside the memory pattern, and outside, 
becomes more homogeneous. Less variability in the to-
tal synaptic conductances means that corruption of the 
memory activity pattern becomes less probable. A com-
parison of the population sizes required to obtain highly 
robust working memory systems, as a function of the 
pattern size and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , is shown in Fig. 7.

5. fInal reMarkS

We have shown how detailed biophysical models and 
their numerical analysis can be used to shed light to com-
plex problems in neurobiology. These type of models are 
not simply a mathematical challenge: their proximity to 
biology makes them ideal to construct new hypothesis, 
produce predictions, catalyze new experiments and ul-
timately improve our understanding of how our brains 
can process and store information.
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Figure 7.—Larger population sizes produce more robust working 
memory systems. Each graph represents the value of M/m obtained 
for randomly generated connectivity matrices as a function of 
the total number of neurons in the population (between 500 and 
25000), the percentage neurons belonging the activity pattern (5% 
in (a) and (b), and 10% in (c) and (d)), and the connectivity rate 
(10% in (a) and (c), and 20% in (b) and (d)). For each population 
size, 500 samples are drawn. The dashed line marks the value
M/m=4 below which the variability in the synaptic conductances 
becomes better contained within the calculated bounds.

Modeling and simulation of the human
cardiovascular system

by Alexandra Bugalho de Moura* and Adélia Sequeira**

abStract.—The use of mathematical modeling and 
numerical simulation to study blood circulation and 
related pathologies is an active interdiciplinary field of 
research. It has a great social and economical impact 
mainly due to cardiovascular diseases, that represent 
one of the leading causes of death and morbidity in 
industrialized countries.
 Due to the complexity of the human cardiovascular 
system, the use of computational models to study blood 
flow in healthy and pathological situations is a challenge 
to mathematicians and engineers. Nevertheless, it consti-
tutes nowadays a reliable tool which is increasingly used 
in clinical applications, such as the placement of stents in 
arteries with atherosclerotic plaques, or the understand-
ing of aneuerysm growth and rupture.
 In this article some of the fundamental aspects of 
mathematical modeling and numerical simulation of 
blood circulation will be described, highlighting in par-
ticular the pathological case of cerebral aneurysms. 

1. SIMulatIng blood cIrculatIon: 
 a challenge to MatheMatIcIanS

Over the last years, the development and application of 
mathematical models, seconded by the use of efficient 
and accurate numerical algorithms, has allowed for im-
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pressive progresses in the understanding of the human 
cardiovascular system, in both healthy and pathological 
situations [5,12,9]. The developments in scientific com-
putation techniques and computers capacity have also 
contributed to patient-specific studies, providing valu-
able clinical information in the perspective of diagnosis, 
treatment or surgical planning [5,15,12,9,13,14]. Indeed, 
the increasing demand from the medical community 
for scientifically rigorous investigations of cardiovas-
cular diseases has been a major impulse to the progress 
in this field. However, modeling and simulating the hu-
man circulation still remains a very difficult and chal-
lenging task. The geometrical structure of the vascular 
tree and the heterogeneous composition of blood, the 
mechanical and biochemical interactions between blood 
and the vessel walls, the pulsatile nature of blood flow, 
together with auto-regulation processes and the link be-
tween global and local circulation, are extremely complex 
physiological phenomena. Therefore, it is impossible to 
construct a three-dimensional (3D) mathematical model 
of the circulatory system including all those character-
istics, and therefore simplifications are mandatory. On 
the other hand, it is recognized that cardiovascular pa-
thologies, like atherosclerosis or aneurysms, are closely 
related with local hemodynamics, such as areas of flow 
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reversal or low and oscillatory wall shear stress [5,7,2,12]. 
The progress in the power of modern computers along 
with the progress in imaging, visualization and geometry 
reconstruction techniques, as well as the improvement 
of sophisticated numerical algorithms, allow for the de-
velopment and analysis of highly complex models. The 
final goal is to set up patient-specific models and simula-
tions incorporating data and measurements taken from 
each single patient, that will be able to predict the results 
of medical diagnosis and therapeutic planning with rea-
sonable accuracy and using non-invasive means. This is 
a highly multidisciplinary field of research, requiring the 
collaboration between mathematicians, bio-engineers 
and medical doctors. 

2. MatheMatIcal ModelS for the   
 cardIovaScular SySteM

It is known that cardiovascular diseases are associated to 
local hemodynamics [7,5,2], that is, to local blood flow 
dynamics in specific regions of the cardiovascular tree. 
Strictly speaking, blood is not a fluid, but a suspension 
of particles in a fluid named plasma [8]. However, in 
medium to large sized vessels, blood can be considered 
as an incompressible continuum fluid described by the 
incompressible Navier-Stokes equations, accounting for 
the conservation of momentum and mass (1).

2.1. The fluid equations
Given Ω ⊂ ℝ􏺿􏺿 an open and bounded domain of interest, 
usually a portion of a vessel, and 𝐼𝐼 𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼 the time inter-
val, the continuity and momentum equations for incom-
pressible and isothermal fluids are given by:

⎧⎪
⎨⎪⎩

𝜌𝜌 􏿶􏿶
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜕𝜕 𝐮 𝐮𝜕𝜕􏿹􏿹 − div 𝝈𝝈𝝈𝜕𝜕𝝈 𝝈𝝈𝝈 𝝈 𝝈𝝈𝝈 in Ω𝝈∀𝜕𝜕 𝑡 𝑡𝑡𝝈

div 𝜕𝜕 𝝈 𝝈𝝈𝝈 in Ω𝝈∀𝜕𝜕 𝑡 𝑡𝑡𝝈

where 𝜌𝜌 is the density of blood, assumed constant since 
the fluid is considered incompressible, and 𝐮𝐮 and 𝑃𝑃 are 
the unknown velocity and pressure fields, respectively. 
The fluid flow is interily known if the velocity vector and 
the pressure at each spacial point and instant of time are 
known. 𝝈𝝈𝝈𝝈𝝈𝝈 𝝈𝝈𝝈 is the so called Cauchy stress tensor, de-
fining the internal forces of the fluid, hence its rheology 
[8]. Blood is often considered to be a Newtonian fluid in 
large to medium sized vessels, meaning that it flows like 
water: the internal tangential forces are proportional to 
the velocity gradient, with the constant of proportion-
ality being the fluid viscosity,

𝝈𝝈𝝈𝝈𝝈𝝈 𝝈𝝈𝝈 𝝈 𝝈𝝈𝝈𝝈𝝈 𝝈 𝝈𝝈𝝈𝝈𝝈𝝈𝝈𝝈𝝈𝝈,

where 𝜇𝜇 is the constant viscosity, and 𝐃𝐃 is the strain rate 

tensor given by 

𝐃𝐃𝐃𝐃𝐃𝐃 𝐃
􏺽􏺽
􏺾􏺾
􏿴􏿴∇𝐃𝐃 𝐮 ∇𝐃𝐃𝑇𝑇􏿷􏿷.

However, blood exhibits non-Newtonian properties, 
mainly due to the mechanical characteristics of red blood 
cells [8,9]. The shear-thinning behavior of blood is one 
of its main non-Newtonian properties, characterized by 
the decrease of the apparent viscosity with increasing 
shear rate. In this case, the viscosity is not constant and 
depends on the shear rate:

�̇�𝛾 𝛾
􏽰􏽰
􏺽􏺽
􏺾􏺾𝐃𝐃𝐃𝐃𝐃𝐃 𝐃 𝐃𝐃𝐃𝐃𝐃𝐃

.

To account for this property of blood, a generalized New-
tonian rheological model can be considered [8,9,13,14] 
with the Cauchy stress tensor given by:

𝝈𝝈𝝈𝝈𝝈𝝈 𝝈𝝈𝝈 𝝈 𝝈𝝈𝝈𝝈𝝈 𝝈 𝝈𝝈𝝈𝝈𝝈�̇�𝛾𝝈𝛾𝛾𝝈𝝈𝝈𝝈.

Different viscosity functions 𝜇𝜇𝜇�̇�𝛾𝛾 define different gener-
alized Newtonian models that can be of shear-thinning, 
shear-thickening, or yield stress type, according to the 
behavior of the apparent viscosity with respect to the 
shear rate. One of the most used shear-thinning general-
ized Newtonian models for blood is the Carreau model, 
for which the viscosity function is given by: 

𝜇𝜇𝜇�̇�𝛾𝛾 𝛾 𝜇𝜇∞ + 􏿴􏿴𝜇𝜇􏺼􏺼 − 𝜇𝜇∞􏿷􏿷𝜇􏺽􏺽 + 𝜇􏺽􏺽�̇�𝛾𝛾
􏺾􏺾𝛾

𝑛𝑛−􏺽􏺽
􏺾􏺾 ,

where 𝜆𝜆 𝜆 𝜆𝜆, and 𝑛𝑛 𝑛 𝑛  are constants, and the coeffi-
cients 𝜇𝜇􏺼􏺼 and 𝜇𝜇∞ are the asymptotic viscosity values at low 
and high shear rates, respectively. In this case, since the 
blood is shear-thinning, we have 𝜇𝜇􏺼􏺼 > 𝜇𝜇∞ > 􏺼􏺼. All these 
parameters should be obtained from curve fitting to ex-
perimental data. In particular, in several works [9,13,14] 
the parameter values of the viscosity function were es-
timated from experimental viscosity data obtained for 
normal human blood: 𝜇𝜇􏺼􏺼 = 􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼 􏺼􏺼􏺼, 𝜇𝜇∞ = 􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼 􏺼􏺼􏺼, 
𝜆𝜆 𝜆 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 𝜆, and 𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. Different experimental data 
will give rise to different parameter values.

2.2 Initial and boundary conditions
In order to be well-posed, i.e., to have a unique solution 
that depends continuously on the data, equations (1) and 
(3) must be endowed with initial and boundary condi-
tions. The initial condition is given by 𝐮𝐮 𝐮 𝐮𝐮􏺼􏺼 , for 𝑡𝑡 𝑡 𝑡𝑡, 
in Ω. Due to the lack of in vivo data usually 𝐮𝐮􏺼􏺼 = 0. This 
means that the simulation starts with a zero solution and 
it is necessary to compute the solution for several time 
instants in order to have clinically relevant solutions.
 Regarding the boundary conditions, two types of 
boundaries should be considered (see Fig. 1): the physi-
cal artery wall, and the artificial boundaries resulting 
from the truncation of the domain. Indeed, due to the 

geometrical complexity of the cardiovascular system, the 
computational cost of 3D simulations, and the fact that 
3D detailed information is usually needed only in spe-
cific regions of interest, the portion of the artery at study 
should be truncated.
 On the physical boundary, that we denote by Γ𝑤𝑤, 
boundary conditions are prescribed using physical ar-
guments. If the movements of the vessel wall due to the 
blood flow load are not considered, i.e., if the artery wall 
is assumed to be rigid, then at that boundary the velocity 
is zero 𝐮𝐮 𝐮 𝐮𝐮, describing the total adherence of the fluid 
to the wall (no-slip condition). This simplifying hypoth-
esis is assumed very often [2,9,12,13,14,15].

2.3 Compliance of the artery wall: fluid-structure 
interaction (FSI)
If the compliance of the wall is taken into account, the 
velocity of the fluid on the wall should be the same as the 
velocity of the moving wall: 𝐮𝐮 𝐮 𝐮𝐮, where 𝐠𝐠 is the wall 
velocity given by a mathematical model that describes its 
motion [10,4]. The vascular wall is a very complex soft 
tissue, composed of several different layers, and it is very 
difficult to devise appropriate and accurate models de-
scribing their dynamical behavior. This is still a subject 
of active research and, for that reason, the simplest 3D 
linear hyperelastic model is often applied (see [10,4,11] 
and references therein):

𝜌𝜌𝑤𝑤
𝜕𝜕􏺾􏺾𝜼𝜼
𝜕𝜕𝜕𝜕􏺾􏺾 − div􏺼􏺼 (𝐏𝐏) = 𝟎𝟎𝟎 on Ω􏺼􏺼

𝑠𝑠,

where Ω􏺼􏺼
𝑠𝑠  is the computational domain of the struc-

ture artery wall in the reference configuration{1}, 𝜼𝜼 is 
the displacement vector with respect to the reference 
configuration Γ􏺼􏺼𝑤𝑤, 𝜌𝜌𝑤𝑤 is the wall density, div􏺼􏺼 stands for 
the divergence operator with respect to the Lagrangian 
coordinates and 𝐏𝐏 𝐏 𝐏𝐏𝐏𝐏𝐏𝐏 𝐏 𝐏𝐏𝐏𝐏  is the first Piola-Kirch-
hoff tensor (see [10,4]), with 𝐒𝐒 𝐒 𝐒𝐒𝐒𝐒𝐒𝐒 the second Piola-
Kirchhoff tensor and 𝐅𝐅 𝐅 𝐅𝐅𝐅𝐅𝐅𝐅 𝐅 𝐅𝐅 𝐅 𝐅𝐅􏺼􏺼𝐅𝐅  the deforma-
tion gradient tensor.
 To have a description of the bood-vessel interaction 
problem, the fluid equations (1) and (3) are coupled with 
the structural equations (5). That is achieved by imposing 
the following matching conditions on Γ𝑡𝑡𝑤𝑤,{2} for all 𝑡𝑡 𝑡 𝑡𝑡:

⎧⎪
⎨⎪⎩

𝐮𝐮 𝐮 �̇�𝜼𝜼
−(𝝈𝝈(𝐮𝐮𝜼 𝝈𝝈𝝈 𝝈 𝝈𝝈𝑒𝑒𝑒𝑒𝑒𝑒𝐈𝐈𝝈 𝐈 𝐈𝐈 𝐮 𝐈𝐈 𝐈 𝐈𝐈

where 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒  is a given external pressure which, without 
loss of generality, is considered to be zero, 𝚽𝚽 is the stress 
exerted by the structure on the fluid and 𝐧𝐧 is the out-
ward unit vector to Γ𝑡𝑡𝑤𝑤. In (6) the first equality is the no-
slip condition that guarantees the total adherence of the 
fluid to the structure (�̇�𝜼 is the wall movement velocity), 
while the second equality establishes the continuity of 
the normal stresses.

Figure 1.—The 3D computational domain of interest (blood vessel with 
an aneurysm), showing the physical boundary formed by the artery wall 
and the inflow and outflow artificial sections due to the truncation of 
the domain.

{1}  As it is customary in solid mechanics, the structure equations are written in the reference configuration 
(Lagrangian frame), while the fluid equations are set up in the current configuration (Eulerian frame), see 
for instance [10].

{2}  Notice that now the fluid domain changes in time, due to the wall motion: Ω = Ω𝑡𝑡, and Γ𝑤𝑤 = Γ
𝑡𝑡
𝑤𝑤.

(1)

(2)

(3)

(4)

(5)

(6)
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 It is necessary to provide appropriate initial condi-
tions to the structure, compatible with the FSI problem. 
The dependence of the fluid domain on the structure 
equations solution makes it very difficult to guarantee 
the well-posedness of the FSI problem, which is still an 
open problem [10,4].

2.4 Artificial boundaries: the geometrical multiscale 
approach
The prescription of boundary conditions on the artificial 
sections constitutes a great challenge, since they cannot 
be deduced from physical arguments, and in vivo data 
on the flow rate or pressure are very difficult to obtain. 
The artificial sections can be divided into two types, the 
inflow sections, closer to the heart and also called up-
stream sections (usually the computational domain only 
has one inflow section), and the outflow sections, closer 
to the systemic circulation and also called downstream 
sections (it is common to have more than one in the 
computational domain). Very often standard boundary 
conditions, such as Neumann homogeneous conditions 
at outflow sections, are imposed: 𝜎𝜎𝜎𝜎𝜎𝜎 𝜎𝜎𝜎 𝜎 𝜎𝜎 𝜎 𝜎𝜎. How-
ever, these conditions do not account for the remaining 
parts of the cardiovascular system. The computational 
solution is highly dependent on the choice of the bound-
ary conditions on the artificial sections, so that such so-
lutions can become not reliable and their use in clinical 
applications are compromised. Indeed, the cardiovascu-
lar system is closed, and the local hemodynamics greatly 
depends on the systemic circulation (see e. g. [12]). For 
that reason, the global behavior of blood flow should 
be taken into account in local 3D simulations. In order 
to do that, models of different geometrical scales, with 
different levels of accuracy and computational cost are 
considered, according to the level of detail required. This 
approach leads to the so called Geometrical Multiscale 
Modeling of the cardiovascular system [6,10].
 In regions where detailed information is necessary, 
3D models are applied. These are the most computation-
ally costly and can only be applied to small regions of 
the vasculature.
 If the purpose is to simulate large arterial trees, 1D 
simplified models should be used [3,6,10,4,11,1]. These 
models are obtained from the 3D FSI problem by aver-
aging and assuming cylindrical geometry of the vessels. 
The 1D models are less accurate, providing only average 
quantities such as flow rate and mean pressure, yet they 

are much less expensive from the computational view 
point and describe very well the wave propagation na-
ture of blood flow in arteries [10,4,11]. Indeed, the 1D 
model for blood flowing in arteries is given by an hy-
perbolic system of equations, that in physiological situ-
ations is under a sub-critical flow regime.
 Simpler lumped parameter models can be derived 
from the 1D models by further averaging in space, re-
sulting in a system of ordinary differential equations 
(ODEs) [3,6,12]. Since lumped parameter models do not 
depend on space, they are also named 0D models. They 
describe the variation in time of the averaged pressure 
and flow rate in a specific region of the circulatory sys-
tem, such as the venous bed, the pulmonary circulation, 
or the heart. There is a strong analogy between lumped 
parameter models and electric networks. Indeed the flow 
rate can be seen as the electric current and the mean pres-
sure as the voltage. Furthermore, the lumped parameters 
are precisely the resistance, related with the blood vis-
cosity, the inductance, related with the blood inertia, and 
the capacitance, related with the wall compliance.
 Coupling together models of the three different lev-
els gives rise to the geometrical multiscale modeling of 
the cardiovascular system. The couplings are achieved 
by imposing the continuity of mean pressure and flow 
rate [6,10,4]. In this manner, reduced 1D or 0D models 
can be coupled to the artificial sections of the 3D mod-
el in order to provide proper boundary conditions, ac-

counting for the remaining parts of the cardiovascular 
system [10,4,11,12]. This procedure allows to perform 
reliable computational simulations of local blood flow 
with clinical impact. Fig. 2 illustrates the coupling of all 
the three hierarchical models. The region of interest is 
the carotid bifurcation, which often undergoes athero-
sclerotic plaques.
 In Fig. 3, the numerical solution of the coupling of a 
3D FSI model of the carotid bifurcation with a 1D model 
of the circle of Willis is represented (taken from [10,11]). 
The 1D description of the circle of Willis properly ac-
counts for the absortion and propagation of pressure 
waves, so that the 3D simulation on the carotid bifurca-
tion is reliable.
 Although they are less detailed, the reduced 1D and 
0D models provide very useful simulations at very low 
computational cost, and are often applied as stand alone 
models, not necessarily coupled with 3D models. For 
instance in [1], 1D models are used to study anatomic 
variations of the circle of Willis, and in [3], 1D models 
and a 0D model for the heart are applied to study the 
circulation effects of amputating one leg.
 In [13,14] the sensitivity of the numerical fluid so-
lution in cerebral aneurysms to changes on the outflow 
conditions is studied, including the use of reduced mod-
els. In [12] the geometrical multiscale approach is used to 
obtain reliable results with clinical applications in heart 
paediatric surgery.

3. nuMerIcal SIMulatIon of heModynaMIcS 
 In cerebral aneurySMS

Cerebral aneurysms are pathological dilations of the 
cerebral vascular wall, which induce modifications in 
the mechanical properties of the artery wall, including 
its weakning that may lead to rupture. The rupture of 
cerebral aneurysms causes sudden death in 50% of the 
patients, and provokes permanent disabilities in a great 
number of the remaining cases. It is a silent pathology, 
without any symptomatology until rupture, except for a 
very small number of cases. It is therefore a devastating 
disease that is believed to affect approximately 5% of the 
population. The causes for initiation, growth and rup-
ture of cerebral aneurysms are still unknown, although 
it is accepted that there is a correlation between aneu-
rysm progression or genetic and hemodynamic factors 
[2,5,15]. In what concerns the hemodynamic factors, the 
numerical simulations play a very important and unique 
role in the comprehension of this disease, allowing in 
particular to obtain patient-specific reliable results and 
their visualization in a non-invasive way [9,13,14,15]. 
Through computational simulations it is also possible 
to easily compute hemodynamic indicators, such as the 
wall shear stress (WSS), that are very difficult to meas-
ure in vivo or in vitro. Precisely, the WSS and other re-
lated quantities, such as the WSS gradient, are known 
to be determinant in the initiation, growth and rupture 
of aneurysms [2,15]. Thus, numerical simulations have 

Figure 2.—Schematic of the coupling of a 3D model of the 
carotid bifurcation with a 1D arterial network, and with 0D 
models at its extremities to take into account the capillaries 
resistance.

Figure 3.—Realistic 3D carotid bifurcation coupled to the circle of Willis. Left: scheme of the coupling between the 3D carotid 
bifurcation and 1D reduced models. The internal carotid downstream section is coupled to a 1D network of the circle of Willis, while 
the external carotid downstream section is coupled to a single 1D tube. Center: pressure [dyn/cm2] and velocity [cm/s] solution in the 
3D carotid bifurcation. Right: the values of the flow rate [cm3/s] in the circle of Willis [10,11].
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nowadays an increasing impact in the clinical practice of 
patients with cerebral aneurysms. They lead to a better 
understanding of the disease and try to predict its natu-
ral progression, namely its rupture and consequent po-
tential letal bleeding, contributing also to its treatment. 
Therefore, computer simulations constitute a tool to sup-
port medical and clinical decision, both in the analysis 
and diagnosis of anatomic and physiological results, as 
well as in the prediction of surgical outcomes and post 
surgical complications. The results may also contribute 
to improve treatment and surgical techniques, such as 
endovascular surgery.
 As already mentioned, the hemodynamics highly 
depends on the morphology of the blood vessels, that is, 
on its geometry, being thus specific of each patient. In 
particular, for the study of cerebral aneurysms, reliable 
simulations depend not only on the choice of appropriate 
mathematical models and accurate numerical algorithms, 

but also on their application in patient-specific compu-
tational geometries, obtained from medical acquisition, 
as for instance computational tomography (CT). In or-
der to have patient-specific computational domains, it is 
necessary to reconstruct the medical images, which con-
sists essentially in three steps [9,13,14]:

(1) Segmentation: identification of the region of 
interest in the grey scale medical image. In 
this case it is important to distinguish between 
lumen and artery wall;

(2) Surface reconstruction: mathematical definition 
of the 3D surface, usually performed by means 
of the marching tetrahedra algorithm (see 
[9,13,14] and references therein);

(3) Smoothing: the 3D reconstructed surface has 
non physiological irregularities related with 
the medical image quality, which has noise 

due to its acquision, that should be eliminated 
through a smoothing process usually carried 
out by a bi-Laplacian algorithm [9,13,14].

Once one has the reconstructed medical image (see Fig. 
4, left) [13], it is necessary to define the computational 
region of interest, where to perform the 3D numerical 
simulations (see Fig. 4, right) [9,13,14]. Afterwards, it 
is necessary to define a computational 3D mesh, by de-
composition into simpler geometrical figures, usually tet-
rahedra, in which the numerical algorithms are applied. 
In order to attain accurate solutions in patient-specific 
simulations, it is essential to have a large number of very 
small elements, usually in the order of millions.
 From the simulation results of the velocity and pres-
sure fields, it is possible to compute the hemodynamic 
indicators associated to aneurysm risk of growth and 
rupture, such as the WSS and its variations. In Fig. 5 are 
depicted the numerical results of the simulation per-

formed in the geometry of Fig. 4, taken from [13]. It is 
possible to observe that the region of higher WSS is the 
neck of the aneurysm, precisely where the flux of the 
main vessel occurs, as it can be seen by the pathlines, 
while the lower values of WSS are found within the an-
eurysm sac.
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Please summarize your academic/professional 
trajectory (just a short bio).
I am a hematologist and treat patients with various 
types of blood malignancies. My research initially 
focused on the generation of trackable, replication 
competent viruses to treat cancer. It became clear very 
early on that the interactions between oncolytic viruses, 
the tumor cell population and the immune system are 
quite complex with various outcomes. Understanding 
these dynamics required mathematics and as a result, 
while in graduate school, I enrolled in various classes to 
learn more mathematics. I got hooked and decided to 
spend more time in mathematical biology after finishing 
my training in hematology. I was fortunate enough to 
spend 2 years at the Program for Evolutionary Dynamics 
[PED] at Harvard University working with Professor 
Martin Nowak and his group. There, I established 
strong collaborations that continue to this day. As a 
result, now I devote a considerable amount of my time 
on mathematical modeling of various hematologic 
disorders. However, my laboratory still continues 
to work on the use of viruses to treat cancer and a 
considerable part of my modeling is still centered on 
tumor virotherapy.

How do you assess the importance of mathematics to 
your research?
It is not possible to understand dynamic systems 
without mathematics. Whenever we are dealing 
with a process that changes in time, we have to use 
mathematics for a meaningful understanding of the 
process. For example, with tumor virotherapy we need to 
know how the virus spreads in the tumor, the kinetics of 
the process, the rate of virus generation, cell killing etc 
and then try to design viruses with “optimal properties” 
for cancer therapy. Mathematical models are a great 
asset also by providing an in silico testing ground for 
innumerable therapeutic scenarios that can be explored 
rapidly and cheaply. The in vivo experiments that are 
time consuming and expensive can be used to test the 
most interesting scenarios predicted by such modeling.

How do you assess the importance of mathematics to 
medical practice?
The physician of the future must have a good basis 
in mathematics. Advances in technology mean that 
nowadays,  acquisition of data is not the limiting 
factor. One can see what has happened with the ‘omics’ 
revolution. However, we’re still far away from being 
able to understand the data being generated. Such an 
understanding will require new theory that can only 
come from mathematics, just as physics moved forward 

when calculus was discovered (or invented). Similarly, 
one can obtain multiparameter data in real time on 
patients in the intensive care unit. One can imagine 
scenarios where modeling of such data will enable 
understanding of the trajectory of the illness and plan 
therapeutic interventions of the right magnitude and 
at the right time to move the patient away from the 
ultimate stable equilibrium (death) and back to a state 
of health.

In your research, you work with physicists, 
mathematicians, etc. Was it easy to start this 
collaboration? Did you have to start by building a 

“common language”?
One of the most enriching aspects of my research has 
been this interaction with physicists, mathematicians 
and computer scientists. I was fortunate that the PED is 
a melting pot for scientists from different disciplines to 
meet and discuss science. We all come from different 
backgrounds and training of a physicist is quite 
different from that of a physician. However, it was not 
difficult to find common ground and start collaborating.  
Such interactions are mutually rewarding in the sense 
that if I had to explain the detailed molecular biology of 
a process to my colleagues, I had to understand it well 
myself and then strip it down to the bare bones. This 
is an essential exercise that helped me identify gaps in 
my knowledge of the subject but also enabled me to ask 
relevant questions for the field that ultimately translated 
into many joint publications. This exercise serves to 
establish the “common language” that you mention. 
However, the main issue is one of “synchronization of 
thinking”—a physicist looks at a problem differently 
from a physician. For them, cells and balls are very 
similar, and tumor growth is similar to nucleation of a 
crystal etc.

You have long-term scientific collaborations with 
researchers in Portugal. How did it start?
I met Professor Jorge M. Pacheco at the PED in the 
summer of 2005. We started almost simultaneously 
there and not only did we come from different 
backgrounds, but we also went to PED for different 
purposes—Jorge was working on evolutionary game 
theory while I wanted to study tumor virotherapy. 
One afternoon, we went for a walk along the Charles 
River and started talking about blood disorders, stem 
cell and bone marrow transplantation. A few incisive 
questions from Jorge on that fateful day established 
that collaboration that has been going ever since and 
resulted in various trips to Portugal and Jorge also 
visited me at Mayo Clinic. Since those initial days, the 

collaboration has expanded to include Dr Francisco 
Santos and Professor Fabio Chalub where we have 
applied principles from EGT to cancer.
 
You said once that the reward from the clinical practice 
is essentially immediate, while the one from research 
takes a long time. How do you compare the pleasure 
of these two facets of your work?
I enjoy meeting patients, trying to understand their 
illness, how it affects them and then personalize 
therapy for them. Often it is possible to help patients 
quickly with pain control, improved quality of life and 
then long term therapy, usually for their hematopoietic 
tumor. I come to know not only the patient but their 
family, their hobbies, interests, travel etc. In this way, 
each patient is unique and there is no redundancy. The 
frustrating part is when I reach the limit of therapy that 
is available…one always wants safer, more effective 
therapies and ultimately the cure. Research provides a 
different form of gratification—the intellectual musings, 
hypothesis generation, the critical experiments, writing 
code (and debugging), running simulations, etc. all 
take time. What I enjoy the most is the creativity, the 
imagination, and in some way, even the “shortcuts” that 
we sometimes take in our modeling efforts, all with the 
aim of getting some results, the first glimpse of the 
output.

Do you believe Summer Schools like the one in Évora 
are a good starting point for students wishing to work 
in math-biology?
Years ago, I attended a two week summer school on 

“mathematics and computers in medicine” organized by 
the late Professor Lee Segel at the Santa Fe Institute. 
During those two weeks I learned not only mathematics 
but more importantly how to apply mathematics to 
various medical problems—from virology to cancer, the 
immune response etc. The summer school in Evora was 
fantastic—the depth and breadth of topics explored was 
immense and the students had an opportunity to see 
how the immense power of mathematics can be used to 
address problems in ecology, cancer, evolution, imaging, 
population dynamics etc. Once students understand 
how to apply their skills to biological problems, they 
are only limited by their imagination. Such schools are 
essential for training of tomorrow’s scientists.

Finally, do you have any practical advice for students 
willing to start an interdisciplinary work?
The best way to learn about interdisciplinary research is 
to find a biological problem of interest and read about it 
as much as you can. One cannot model what one does 

not understand—once the student is well aware of what 
is known about the problem, then it often becomes 
clear what questions can be posed in a mathematical 
framework for the problem at hand. Finding a mentor 
with a track record of research and publications 
in the field and who has a string of prior graduate 
students that have been with her/him, will increase the 
probability of success in the field.

Well, David, thanks a lot for this interview.
We are looking forward to seeing you again in Portugal 
soon!
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