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Introduction

Mean reversion:

• Classic case of statistical arbitrage.

• Highlights long-term structural relationships in the data.

• We could replace mean-reversion by momentum throughout the talk.

Sparse portfolios:

• Better interpretability.

• Less transaction costs.
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Mean reversion

• Let Sti be the value at time t of an asset Si for i = 1, . . . , n and t = 1, . . . ,m.

• We form portfolios Pt of these assets with coeffiicients xi, modeled by an
Ornstein-Uhlenbeck process:

dPt = λ(P̄ − Pt)dt + σdZt with Pt =
n
∑

i=1

xiSti

where Zt is a standard Brownian motion.

• Objective: maximize the mean reversion coefficient λ of Pt by adjusting the
coefficients x, while imposing ‖x‖ = 1 and Card(x) ≤ k.
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Canonical decomposition

• In a discrete setting, we assume that the asset prices follow a (stationary)
autoregressive process with:

St = ASt−1 + Zt (1)

where St−1 is the lagged portfolio process, A ∈ Rn×n and Zt is a vector of i.i.d.
Gaussian noise with zero mean and covariance Σ ∈ Sn, independent of St−1.

• Take n = 1 in equation (1):

E[S2
t ] = E[(ASt−1)

2] + E [Z2
t ]

which can be rewritten as σ2
t = σ2

t−1 + Σ.

• Box & Tiao (1977) then measure the predictability of stationary series by:

λ =
σ2

t−1

σ2
t

. (2)
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Canonical decomposition

• Consider a portfolio Pt = xTSt with x ∈ Rn, using (1) we know that

xTSt = xTASt−1 + xTZt,

so its predicability can be measured as:

λx =
xTAΓATx

xTΓx

where Γ = E[SST ].

• The portfolio with maximum (respectively minimum) predictability will be the
eigenvector corresponding to the largest (respectively smallest) eigenvalue of
the matrix:

Γ−1AΓAT . (3)

• We then only need to estimate A. . .
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Canonical decompositions

• The Box-Tiao procedure finds linear combinations of the assets ranked in
order of predictability by computing the eigenvectors of the matrix:

(

STS
)−1

(

ŜT
t Ŝt

)

(4)

where is Ŝt is the least squares estimate computed above.

• The Johansen procedure: following Bewley, Orden, Yang & Fisher (1994), we
rewrite equation (1) as:

∆St = QSt−1 + Zt

where Q = A − I. The basis of cointegrating portfolios is then found by
solving the following generalized eigenvalue problem:

λST
t−1St−1 − ST

t−1∆St(∆ST
t ∆St)

−1∆ST
t St−1 (5)

in the variable λ ∈ R.
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Mean-reversion: canonical decompositions
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Mean-reversion: related works

• Fama & French (1988), Poterba & Summers (1988) model and test for market
predictability in excess returns.

• Cointegration techniques, (see Engle & Granger (1987), and Alexander (1999)
for a survey of applications in finance) are usually used to extract mean
reverting portfolios.

• Several authors focused on the optimal investment problem when expected
returns are mean reverting, with Kim & Omberg (1996) and Campbell &
Viceira (1999) or Wachter (2002) among others, obtaining closed-form
solutions in some particular cases.

• Liu & Longstaff (2004) study the optimal investment problem in the presence
of a “textbook” finite horizon arbitrage opportunity, modeled as a Brownian
bridge. Jurek & Yang (2006) study this same problem when the arbitrage
horizon is indeterminate. Gatev, Goetzmann & Rouwenhorst (2006) also
studied the performance of pairs trading, which are classic examples of
structurally mean-reverting portfolios.

• The LTCM meltdown in 1998 focused a lot of attention on the impact of
leverage limits and liquidity, see Grossman & Vila (1992) or Xiong (2001) for a
discussion.
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Sparse methods

• ℓ1 regularized regression (LASSO): Tibshirani (1996).

• Feature selection: ℓ1 penalized support vector machines.

• Compressed sensing: Candès & Tao (2005), Donoho & Tanner (2005).

• Basis pursuit: Chen, Donoho & Saunders (2001), . . .

• Sparse PCA and covariance selection: d’Aspremont, El Ghaoui, Jordan &
Lanckriet (2007) and d’Aspremont, Banerjee & El Ghaoui (2006).
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Sparse generalized eigenvalue problems

Both canonical decompositions involve solving a generalized eigenvalue

problem of the form:
det(λA − B) = 0 (6)

in the variable λ ∈ R, where A,B ∈ Sn. This is usually solved using a QZ
decomposition. The largest solution of this problem can be written in variational
form as:

λmax = max
x∈Rn

xTAx

xTBx
.

Here however, we seek to maximize (or minimize) that ratio while constraining
the cardinality of the (portfolio) coefficient vector x and solve instead:

maximize xTAx/xTBx
subject to Card(x) ≤ k

‖x‖ = 1,
(7)

where k > 0 is a given constant and Card(x) is the number of nonzero
coefficients in x.
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Sparse generalized eigenvalue problems

• Solving generalized eigenvalue problems is easy: takes O(n3) operations.

• Solving sparse generalized eigenvalue problems is hard: equivalent to subset
selection which is NP-Hard.

Here, we seek good approximate solutions to:

maximize xTAx/xTBx
subject to Card(x) ≤ k

‖x‖ = 1,

using two algorithms:

• Greedy search: Incrementally scan all variables.

• Semidefinite relaxation: form a tractable convex relaxation.
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Greedy Search

• Define:
Ik = {i ∈ [1, n] : xi 6= 0},

• We build approximate solutions recursively in k. When k = 1, we can simply
find I1 as:

I1 = argmax
i∈[1,n]

Aii/Bii.

• Given Ik, we add one variable with index ik+1 to produce the largest increase
in predictability:

max
{x∈Rn

: supp(x)=Ik∪{i}}

xTAx

xTBx
.

• The complexity of computing solutions for all k is in O(n4).
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Semidefinite relaxation

Start from our original problem:

maximize xTAx/xTBx
subject to Card(x) ≤ k

‖x‖ = 1,

with variable x ∈ Rn, and rewrite it in terms of X = xxT ∈ Sn:

maximize Tr(AX)/Tr(BX)
subject to Card(X) ≤ k2

Tr(X) = 1
X � 0, Rank(X) = 1,

in the variable X ∈ Sn. This program is equivalent to the first one.
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Semidefinite relaxation

maximize Tr(AX)/Tr(BX)
subject to Card(X) ≤ k2

Tr(X) = 1
X � 0, Rank(X) = 1,

• Since Card(u) = q implies ‖u‖1 ≤ √
q‖u‖2, we can replace the nonconvex

constraint Card(X) ≤ k2, by a weaker but convex constraint: 1
T |X |1 ≤ k.

• We drop the rank constraint to get the following quasi-convex program:

maximize Tr(AX)/Tr(BX)
subject to 1

T |X |1 ≤ k
Tr(X) = 1
X � 0,

in the variable X ∈ Sn.
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Semidefinite relaxation

Starting from the quasi-convex program:

maximize Tr(AX)/Tr(BX)
subject to 1

T |X |1 ≤ k
Tr(X) = 1
X � 0,

we change variables:

Y =
X

Tr(BX)
, z =

1

Tr(BX)

and solve:
maximize Tr(AY )
subject to 1

T |Y |1− kz ≤ 0
Tr(Y ) − z = 0
Tr(BY ) = 1
Y � 0,

(8)

which is a semidefinite program in the variables Y ∈ Sn and z ∈ R+ and can be
solved using standard SDP solvers such as SDPT3 by Toh, Todd & Tutuncu
(1999).
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Performance

Greedy algorithm:

• The optimal solutions of problem (7) might not have an increasing support set
sequence Ik ⊂ Ik+1.

• However, the cost of this method is relatively low: with each iteration costing
O(k2(n − k)), the complexity of computing solutions for all k is in O(n4).

• This recursive procedure can also be repeated both forward and backward to
improve the quality of the solution.

• Stability issues.

Semidefinite relaxation:

• Higher complexity.

• ℓ1 penalization makes it potentially more stable.
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Estimation and trading

By integrating Pt over a time increment ∆t we get:

Pt = P̄ + e−λ∆t(Pt−∆t − P̄ ) + σ

∫ t

t−∆t

eλ(s−t)dZs,

so we can estimate λ and σ by simply regressing Pt on Pt−∆t and a constant.
We have the following estimators for the parameters of Pt:

µ̂ =
1

N

N
∑

i=0

Pti

λ̂ = − 1

∆t
log

(

∑N
i=1(Pti

− µ̂)(Pti−1
− µ̂)

∑N
i=1(Pti

− µ̂)(Pti
− µ̂)

)

σ̂2 =
2λ

(1 − e−2λ∆t)(N − 2)

N
∑

i=1

(

(Pti
− µ̂) − e−λ∆t(Pti−1

− µ̂)
)2
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Estimation and trading

Trading O.U. processes: two classic strategies.

• Threshold: Invest when the spread |P̄ − Pt| crosses a certain threshold, cf.
Gatev et al. (2006).

• Linear: Under log-utility, the optimum strategy is linear:

N =
λ(P̄ − Pt) − rPt

σ2
Wt

where N is the number of units of portfolio the agent holds and Wt the
investor’s wealth at time t. See Jurek & Yang (2006).

A few remarks:

• None of these results account for transaction costs.

• Jurek & Yang (2006) also find the optimal strategy for CRRA utility defined
over wealth at a finite horizon and Epstein-Zin utility defined over intermediate
cash flows.

• Similar results hold with proportional fund flows, cf. Jurek & Yang (2006).
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Numerical Results

• U.S. swap rate data for maturities 1Y, 2Y, 3Y, 4Y, 5Y, 7Y, 10Y and 30Y from
1998 until 2005.

• Use greedy algorithm to compute optimally mean reverting portfolios of
increasing cardinality for time windows of 200 days and repeat the procedure
every 50 days.

• Update portfolios daily using linear rule.
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Numerical Results
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Numerical Results
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Mean reversion coefficient λ versus portfolio cardinality (number of nonzero
coefficients) using the greedy search (solid line) and the semidefinite relaxation
(dashed line) on U.S. swap rate data.

Alex d’Aspremont Coimbra Workshop on Optimization in Finance, Oct. 2007. 25



Numerical Results
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Left: mean reversion coefficient λ versus portfolio cardinality (number of
nonzero coefficients), in sample (blue circles) and out of sample (black squares)
on U.S. swaps.
Right: out of sample portfolio price range (in basis points) versus cardinality
(number of nonzero coefficients) on U.S. swap rate data. Dashed lines at plus
and minus one standard deviation.
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Numerical Results
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Left: average out of sample sharpe ratio versus portfolio cardinality on U.S.
swaps.
Right: idem, with transaction costs modeled as a Bid-Ask spread of 1bp. The
dashed lines are at plus and minus one standard deviation.
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Covariance Selection

We estimate a sample covariance matrix Σ from empirical data. . .

• Objective: infer dependence relationships between variables.

• We want this information to be as sparse as possible.

• Basic solution: look at the magnitude of the covariance coefficients:

|Σij| > β ⇔ variables i and j are related,

and simply threshold smaller coefficients to zero. (not always psd.)

• Use these dependence relationships to identify small groups of assets which
might be cointegrated.

We can do better. . . Following Dempster (1972), look for zeros in the inverse

covariance matrix.
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Covariance Selection

Conditional independence:

• Suppose X,Y,Z have are jointly normal with covariance matrix Σ, with

Σ =

(

Σ11 Σ12

Σ21 Σ22

)

where Σ11 ∈ R2×2 and Σ22 ∈ R.

• Conditioned on Z, X, Y are still normally distributed with covariance matrix C
satisfying:

C = Σ11 − Σ12Σ
−1
22 Σ21 =

(

Σ−1
)−1

11

• So X and Y are conditionally independent iff
(

Σ−1
)

11
is diagonal, which is

also:
Σ−1

xy = 0
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Covariance Selection

• Suppose we have iid noise ǫi ∼ N (0, 1) and the following linear model:

x = z + ǫ1
y = z + ǫ2
z = ǫ3

• Graphically, this is:

X Y

Z
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Covariance Selection

• The covariance matrix and inverse covariance are given by:

Σ =





2 1 1
1 2 1
1 1 1



 Σ−1 =





1 0 −1
0 1 −1

−1 −1 3





• The inverse covariance matrix has Σ−1
12 clearly showing that the variables x and

y are independent conditioned on z.

• Graphically, this is again:

X Y

Z

versus
X Y

Z
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Covariance Selection

On a slightly larger scale. . .
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Applications & Related Work

• Gene expression data. The sample data is composed of gene expression
vectors and we want to isolate links in the expression of various genes. See
Dobra, Hans, Jones, Nevins, Yao & West (2004), Dobra & West (2004) for
example.

• Speech Recognition. See Bilmes (1999), Bilmes (2000) or Chen & Gopinath
(1999).

• Finance. Covariance estimation. Identifying correlation between idiosyncratic

components of asset returns.

• Related work by Dahl, Roychowdhury & Vandenberghe (2005): interior point
methods for large, sparse MLE.

• See also d’Aspremont et al. (2007) on sparse principal component analysis
(PCA).
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Maximum Likelihood Estimation

• We can estimate Σ by solving the following maximum likelihood problem:

max
X∈Sn

log detX − Tr(SX)

• This problem is convex, has an explicit answer Σ = S−1 if S ≻ 0.

• Problem here: how do we make Σ−1 sparse?

• In other words, how do we efficiently choose I and J?

• Solution: penalize the MLE.
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AIC and BIC

Original solution in Akaike (1973), penalize the likelihood function:

max
X∈Sn

log detX − Tr(SX) − ρCard(X)

where Card(X) is the number of nonzero elements in X .

• Set ρ = 2/(m + 1) for the Akaike Information Criterion (AIC).

• Set ρ = log(m+1)
(m+1) for the Bayesian Information Criterion (BIC).

Of course, this is a hard combinatorial problem. . .
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Convex Relaxation

• We can form a convex relaxation of AIC or BIC penalized MLE

max
X∈Sn

log detX − Tr(SX) − ρCard(X)

replacing Card(X) by ‖X‖1 =
∑

ij |Xij| to solve

max
X∈Sn

log detX − Tr(SX) − ρ‖X‖1

• Classic l1 heuristic: ‖X‖1 is a convex lower bound on Card(X).

• See Fazel, Hindi & Boyd (2001) for related applications.
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l1 relaxation

Assuming |x| ≤ 1, this relaxation replaces:

Card(x) =
n
∑

i=1

1{xi 6=0}

with

‖x‖1 =
n
∑

i=1

|xi|

Graphically, this is:

0 x

1

−1 1

Card(x)

|x|
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Robustness

• This penalized MLE problem can be rewritten:

max
X∈Sn

min
|Uij|≤ρ

log detX − Tr((S + U)X)

• This can be interpreted as a robust MLE problem with componentwise noise
of magnitude ρ on the elements of S.

• The relaxed sparsity requirement is equivalent to a robustification.

• See d’Aspremont et al. (2007) for similar results on sparse PCA.
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Algorithms

• We need to solve:

max
X∈Sn

log detX − Tr(SX) − ρ‖X‖1

• For medium size problems, this can be done using interior point methods.

• In practice, we need to solve very large, dense instances. . .

• The ‖X‖1 penalty implicitly introduces O(n2) linear constraints and makes
interior point methods too expensive.

Alex d’Aspremont Coimbra Workshop on Optimization in Finance, Oct. 2007. 42



Algorithms

Complexity options. . .

O(n) O(n) O(n2)

Memory

Complexity

O(1/ǫ2) O(1/ǫ) O(log(1/ǫ))

First-order Smooth Newton IP
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Algorithms

Here, we can exploit problem structure

• Our problem here has a particular min-max structure:

max
X∈Sn

min
|Uij|≤ρ

log detX − Tr((S + U)X)

• This min-max structure means that we use prox function algorithms by
Nesterov (2005) (see also Nemirovski (2004)) to solve large, dense problem
instances.

• We also detail a “greedy” block-coordinate descent method with good
empirical performance.
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Nesterov’s method

Assuming that a problem can be written according to this min-max model, the
algorithm works as follows. . .

• Regularization. Add strongly convex penalty inside the min-max
representation to produce an ǫ-approximation of f with Lipschitz continuous
gradient (generalized Moreau-Yosida regularization step, see Lemaréchal &
Sagastizábal (1997) for example).

• Optimal first order minimization. Use optimal first order scheme for
Lipschitz continuous functions detailed in Nesterov (1983) to the solve the
regularized problem.

Caveat: Only efficient if the subproblems involved in these steps can be solved
explicitly or very efficiently. . .
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Numerical Examples

Generate random examples:

• Take a sparse, random p.s.d. matrix A ∈ Sn

• We add a uniform noise with magnitude σ to its inverse

We then solve the penalized MLE problem (or the modified one):

max
X∈Sn

log detX − Tr(SX) − ρ‖X‖1

and compare the solution with the original matrix A.
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Numerical Examples

A basic example. . .

   

 

 

 
   

 

 

 
   

 

 

 

Noisy inverse Σ−1Solution for ρ = σOriginal inverse A

The original inverse covariance matrix A, the noisy inverse Σ−1 and the solution.
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Covariance Selection

Forward rates covariance matrix for maturities ranging from 0.5 to 10 years.
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Zoom. . .
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Conclusion

• Tractable solution to sparse canonical decompositions.

• The tradeoff between number of assets in the portfolio and mean reversion is
quite favorable.

• A convex relaxation for sparse covariance selection.

• Robustness interpretation.

• Two algorithms for dense large-scale instances.

• Precision requirements? Thresholding? How do to fix ρ? . . .

If you have financial applications in mind. . .

Network graphs generated using Cytoscape.
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