A Generalized Approach to Portfolio Optimization: Improving Performance By Constraining Portfolio Norms

Victor DeMiguel Assistant Professor of Decision Sciences London Business School

Lorenzo Garlappi	Francisco J. Nogales	Raman Uppal
U. of Texas at Austin	U. Carlos III de Madrid	London Business School

Follow-up Workshop on Optimization in Finance Centro Internacional de Matematica, Coimbra

Portfolio Selection with the Penalty and Conjugate Gradient Methods

Victor DeMiguel Assistant Professor of Decision Sciences London Business School

Lorenzo Garlappi	Francisco J. Nogales	Raman Uppal
U. of Texas at Austin	U. Carlos III de Madrid	London Business School

Follow-up Workshop on Optimization in Finance Centro Internacional de Matematica, Coimbra

Outline

Introduction

- 2 Existing Approaches: Shrinking the Sample Covariance Matrix
- 3 A Generalized Approach: Constraining the Portfolio Norms
- Out-of-Sample Evaluation of the Proposed Portfolios
- 5 Conclusion

• Markowitz: Investor concerned only about mean and variance of returns chooses portfolio on efficient frontier.

- Challenge:
 - Sample estimates of mean and covariance matrix.
 - Unstable portfolios: Extreme weights that fluctuate a lot over time.
 - "The Markowitz Optimization Enigma: Is Optimized Optimal?" Michaud (1989)

- Minimum-variance portfolios perform at least as good as any efficient portfolio out of sample; Jorion (1985, 1986, 1991).
 - Estimation error in mean larger than in variance; Merton (1980)
 - Jagannathan and Ma (2003): "estimation error in the sample mean is so large that nothing much is lost in ignoring the mean altogether".

- Minimum-variance portfolios perform at least as good as any efficient portfolio out of sample; Jorion (1985, 1986, 1991).
 - Estimation error in mean larger than in variance; Merton (1980)
 - Jagannathan and Ma (2003): "estimation error in the sample mean is so large that nothing much is lost in ignoring the mean altogether".

 Ignore estimates of means and focus only on covariances; that is, on minimum-variance portfolios
 Minimum-variance portfolio usually performs better out of sample than mean-variance portfolios—even when performance measure depends on variance and mean Jorion (1985, 1986), Jagannathan-Ma (2003), DeMiguel, Garlappi, Uppal (2007)

 Ignore estimates of means and focus only on covariances; that is, on minimum-variance portfolios
 Minimum-variance portfolio usually performs better out of sample than mean-variance portfolios—even when performance measure depends on variance and mean
 Jorion (1985, 1986), Jagannathan-Ma (2003), DeMiguel, Garlappi, Uppal (2007)

• Impose short-sale constraints

Jagannathan-Ma: "sample covariance matrix [with shortsale constraints] performs almost as well as those constructed using factor models, shrinkage estimators or daily returns." Green-Hollifield (1992): "When will Mean-Variance Efficient Portfolios Be Well Diversified?"

- Ignore estimates of means and focus only on covariances; that is, on minimum-variance portfolios
 Minimum-variance portfolio usually performs better out of sample than mean-variance portfolios—even when performance measure depends on variance and mean
 Jorion (1985, 1986), Jagannathan-Ma (2003), DeMiguel, Garlappi, Uppal (2007)
- Impose short-sale constraints Jagannathan-Ma: "sample covariance matrix [with shortsale constraints] performs almost as well as those constructed using factor models, shrinkage estimators or daily returns." Green-Hollifield (1992): "When will Mean-Variance Efficient Portfolios Be Well Diversified?"
- Use weighted average of the sample covariance matrix and the identity matrix—Ledoit and Wolf (2004)

- Ignore estimates of means and focus only on covariances; that is, on minimum-variance portfolios
 Minimum-variance portfolio usually performs better out of sample than mean-variance portfolios—even when performance measure depends on variance and mean
 Jorion (1985, 1986), Jagannathan-Ma (2003), DeMiguel, Garlappi, Uppal (2007)
- Impose short-sale constraints Jagannathan-Ma: "sample covariance matrix [with shortsale constraints] performs almost as well as those constructed using factor models, shrinkage estimators or daily returns." Green-Hollifield (1992): "When will Mean-Variance Efficient Portfolios Be Well Diversified?"
- Use weighted average of the sample covariance matrix and the identity matrix—Ledoit and Wolf (2004)
- Use the 1/N portfolio—DeMiguel, Garlappi and Uppal (2007)

Our contribution

Develop a general framework for portfolio selection

- Based on constraining the portfolio norm
- Related to ridge regression and lasso for regression analysis
- Show that this nests Jagannathan and Ma, Ledoit and Wolf, and 1/N
- Extend existing and develop new portfolios: 1-norm, 2-norm, and partial (conjugate gradient) minimum-variance portfolios
- Provide Bayesian and moment-shrinkage interpretations for norm-constrained portfolios

Our contribution

Develop a general framework for portfolio selection

- Based on constraining the portfolio norm
- Related to ridge regression and lasso for regression analysis
- Show that this nests Jagannathan and Ma, Ledoit and Wolf, and 1/N
- Extend existing and develop new portfolios: 1-norm, 2-norm, and partial (conjugate gradient) minimum-variance portfolios
- Provide Bayesian and moment-shrinkage interpretations for norm-constrained portfolios

② Demonstrate how general framework can be used to calibrate model

- By minimizing portfolio variance
- By maximizing last period portfolio return

Our contribution

Develop a general framework for portfolio selection

- Based on constraining the portfolio norm
- Related to ridge regression and lasso for regression analysis
- Show that this nests Jagannathan and Ma, Ledoit and Wolf, and 1/N
- Extend existing and develop new portfolios: 1-norm, 2-norm, and partial (conjugate gradient) minimum-variance portfolios
- Provide Bayesian and moment-shrinkage interpretations for norm-constrained portfolios

2 Demonstrate how general framework can be used to calibrate model

- By minimizing portfolio variance
- By maximizing last period portfolio return

Compare empirically out-of-sample performance of norm-constrained portfolios to 9 strategies in the existing literature for 5 datasets.

Outline

1 Introduction

Existing Approaches: Shrinking the Sample Covariance Matrix

3 A Generalized Approach: Constraining the Portfolio Norms

Out-of-Sample Evaluation of the Proposed Portfolios

5 Conclusion

Shortsale unconstrained minimum-variance portfolio

No shortsale constraints – solution denoted by w_{MINU}

$$egin{array}{ccc} \mathsf{min} & \mathsf{w}^{ op} \hat{\Sigma} \mathsf{w} & \mathsf{w} & \mathsf{s.t.} & \mathsf{w}^{ op} e = 1 & \mathsf{s.t.} & \mathsf{w}^$$

- Sample covariance matrix may be inaccurate:
 - Requires estimating $(N^2 + N)/2$ variances and covariances.
- DeMiguel, Garlappi and Uppal (2007) show that 1/N often outperforms the shortsale-unconstrained minimum-variance portfolio.

Shortsale-constrained minimum-variance portfolio

Jagannathan and Ma (2003) study the effect of imposing shortsale constraints on the minimum-variance portfolio.

Shortsales constrained – solution denoted by w_{MINC}

n

$$\min_{\mathbf{w}} \quad \mathbf{w}^{ op} \hat{\mathbf{\Sigma}} \mathbf{w} \$$
 s.t. $\mathbf{w}^{ op} e = 1 \ \mathbf{w} \geq \mathbf{0} \$

Solution coincides with unconstrained minimum-variance portfolio if the sample covariance matrix $\hat{\Sigma}$ is replaced by

$$\hat{\Sigma}_{JM} = \hat{\Sigma} - \lambda e^{ op} - e \lambda^{ op},$$

where $\lambda \in \mathcal{R}^N$ is vector of Lagrange multipliers for the constraint w ≥ 0 .

"Honey, I have shrunk the sample covariance matrix" Ledoit and Wolf (2004)

Ledoit and Wolf (2004)

Replace sample covariance matrix $\hat{\Sigma}$ by

$$\hat{\Sigma}_{LW} = \hat{\Sigma} + \nu I,$$

where $\nu \in \mathcal{R}$ is a positive constant and $I \in \mathcal{R}^{N \times N}$ is identity matrix.

They interpret this method as shrinking the sample covariance matrix toward the identity matrix.

Shrinkage estimators

Outline

Introduction

2 Existing Approaches: Shrinking the Sample Covariance Matrix

3 A Generalized Approach: Constraining the Portfolio Norms

- Out-of-Sample Evaluation of the Proposed Portfolios
- 5 Conclusion

General norm-constrained minimum-variance portfolio

Solve minimum-variance problem subject to additional constraint that norm of portfolio-weight vector is smaller than a threshold δ :

General norm-constrained portfolio – solution denoted by w_{NC}

n

$$egin{aligned} & \mathsf{w}^{ op} \hat{\Sigma} \mathsf{w} \ \mathsf{w} \ \mathsf{s.t.} & \mathsf{w}^{ op} e = 1 \ & \| \mathsf{w} \| \leq \delta \end{aligned}$$

• We consider the 1-norm and the 2-norm.

• Shrink the portfolio weight vector.

First Particular Case: The 1-Norm-Constrained Minimum-Variance Portfolios

• Nest shortsale-constrained portfolios

Proposition 1

Solution to 1-norm-constrained problem with $\delta = 1$ coincides with solution to shortsale-constrained problem (Jagannathan-Ma).

- Shortsale-constrained minimum-variance portfolio can be interpreted as shrinking the portfolio weights.
- 1-norm constraint generalizes shortsale constraint—implies a shortsale budget:

$$\|\mathbf{w}\|_{1} \leq \delta \iff 1 - 2\sum_{i \in \mathcal{N}(\mathbf{w})} \mathbf{w}_{i} \leq \delta \iff -\sum_{i \in \mathcal{N}(\mathbf{w})} \mathbf{w}_{i} < \frac{\delta - 1}{2}$$

Second Particular Case: The 2-norm-constrained portfolios

The 2-norm constraint can be reformulated equivalently as:

$$\sum_{i=1}^{N} \mathsf{w}_i^2 \leq \delta \iff \sum_{i=1}^{N} \left(\mathsf{w}_i - \frac{1}{N} \right)^2 \leq \left(\delta - \frac{1}{N} \right)$$

Thus, 1/N portfolio is special case of 2-norm-constrained portfolio if $\delta = 1/N$.

Proposition 2

For each $\nu \ge 0$, there exists a δ , such that the Ledoit-Wolf portfolio with shrinkage ν coincides with the 2-norm-constrained portfolio with threshold parameter δ .

Thus, Ledoit-Wolf strategy can be interpreted as shrinking portfolio weights

Third Particular Case: Partial Min-Var Portfolios

- Apply conjugate-gradient method to solve the minimum-variance problem:
 - Obtain N 1 portfolios that join 1/N portfolio and shortsale-unconstrained minimum-variance portfolio.
- Relation to 2-norm-constrained portfolios:
 - We show that, like the 2-norm-constrained portfolios, the partial minimum-variance portfolios shrink the 2-norm of the shortsale-unconstrained minimum-variance portfolio-weight vector.
 - We show that the partial minimum-variance portfolios can be viewed as a discrete first-order approximation to the 2-norm-constrained portfolios.

Proposition 3

1-norm-constrained portfolio maximizes the posterior likelihood if prior belief for each shortsale-unconstrained minimum-variance portfolio weights are IID distributed as a **double-exponential** distribution:

$$\pi(\mathsf{w}_i) = \frac{\nu}{2} e^{-\nu |\mathsf{w}_i|}.$$

Proposition 4

2-norm-constrained portfolio maximizes the posterior likelihood if prior belief for each shortsale-unconstrained minimum-variance portfolio weights are IID distributed as a normal distribution:

$$\pi(\mathbf{w}_i) = \sqrt{\nu/\pi} e^{-\nu \mathbf{w}_i^2}.$$

Proposition 5

The 1-norm-constrained portfolio is shortsale-unconstrained minimum-variance problem if sample covariance matrix, $\hat{\Sigma}$, is replaced by

 $\hat{\boldsymbol{\Sigma}}_{\textit{NC1}} = \hat{\boldsymbol{\Sigma}} - \boldsymbol{\nu}\textit{ne}^{\top} - \boldsymbol{\nu}\textit{en}^{\top},$

where $\nu \in \mathcal{R}$ is Lagrange multiplier of 1-norm constraint and $n \in \mathcal{R}^N$ is a vector whose i^{th} component is one if the weight on the i^{th} asset is negative and zero otherwise.

Proposition 6

The 2-norm-constrained portfolios are obtained with

$$\Sigma_{NC2} = \left(\frac{1}{1+\nu}\right)\hat{\Sigma} + \left(\frac{\nu}{1+\nu}\right)I.$$

Geometric interpretation: shortsale-constrained portfolios

Generalized Portfolio Optimization

Geometric interpretation: Ledoit-Wolf portfolios

Geometric interpretation: 1-norm-constrained portfolios

Geometric interpretation: 2-norm-constrained portfolios

w2

Partial minimum-variance portfolios

Geometric interpretation: norm-constrained portfolios

1-norm-constrained

2-norm-constrained

Outline

1 Introduction

- 2 Existing Approaches: Shrinking the Sample Covariance Matrix
- 3 A Generalized Approach: Constraining the Portfolio Norms
- Out-of-Sample Evaluation of the Proposed Portfolios
 - 5 Conclusion

- ullet For 1- and 2-norm constrained portfolios, need to choose ullet
- For partial minimum-variance portfolios, need to choose *k*
- Could set these exogenously
- But, can also choose them to achieve a particular objective or exploit some features of the data

Minimize portfolio variance – we do this using cross validation

How To Calibrate Norm-Constrained Portfolios: Cross Validation

- Given $\tau = 120$ sample returns, for $t = 1 : \tau$:
 - Remove t^{th} return from sample
 - Ompute sample covariance matrix from other returns
 - Ompute corresponding portfolio
 - Compute "out-of-sample" return using tth sample return
- Estimate variance as variance of 119 returns generated
- Choose parameter to minimize estimate of "out-of-sample" variance

How To Calibrate Norm-Constrained Portfolios

- ullet For 1- and 2-norm constrained portfolios, need to choose ullet
- For partial minimum-variance portfolios, need to choose *k*
- Could set these exogenously
- But, can also choose them to achieve a particular objective or exploit some features of the data
 - Minimize portfolio variance we do this using cross validation
 - Maximize last period portfolio return to exploit momentum in portfolio returns—Campbell, Lo, and MacKinley (1997)—as opposed to momentum in individual securities returns

Table 1: List of Portfolios Considered

#	Model	Abbreviation
Pane	el A: Portfolio strategies developed in this paper	
1	1-norm-constrained minimum-variance portfolio	
	$ullet$ With δ calibrated using cross-validation over portfolio variance	NC1V
	$ullet$ With δ calibrated by maximizing portfolio return in previous period	NC1R
2	2-norm-constrained minimum-variance portfolio	
	$ullet$ With δ calibrated using cross-validation over portfolio variance	NC2V
	$ullet$ With δ calibrated by maximizing portfolio return in previous period	NC2R
3	Partial minimum-variance portfolios	
	 With k calibrated using cross-validation over portfolio variance 	PARV
	• With k calibrated by maximizing the portfolio variance in the previous period	PARR

Panel B: Portfolio strategies from the existing literature used for comparison

These are given on the next slide

Table 1: List of Portfolios Considered

	Panel B: Portfolio strategies from the existing literature used for comparison	
Sin	mle henchmarks	
1	Equilibrium $(1/N)$ portfolio	1 / N
2	Value-weighted (market) nortfolio	1/ N
-	value weighted (marker) portfolio	
Po	tfolios that use mean returns	
3	Mean-variance portfolio with shortsales unconstrained	MEAN
4	Bayesian mean-variance portfolio using the approach in Jorion (1985, 1986)	BAYE
Mi	nimum-variance portfolios that ignore mean returns	
5	Minimum-variance portfolio with shortsales unconstrained	MINU
6	Minimum-variance portfolio with shortsales constrained	MINC
7	Minimum-variance portfolio with covariance matrix as in Ledoit and Wolf (2004b)	MINL
Po	tfolios based on a factor model and parametric portfolios	
8	Minimum-variance portfolio with the market as the single factor	FAC1
9	Brandt, Santa-Clara, and Valkanov (2005) strategy with a risk-aversion parameter of	BSV
	$\gamma = 5$ using the factors Size, Book-to-Market, and Momentum	

Table 2: List of Datasets Considered

#	Dat aset	Abbreviation	Ν	Time Period	Source
1	Ten industry portfolios	10 In d	10	07/1963-12/2004	K. French
2	Forty eight industry portfolios	48 ln d	48	07/1963-12/2004	K. French
3	6 Fama and French portfolios	6FF	6	07/1963-12/2004	K. French
4	25 Fama and French portfolios	25 FF	25	07/1963-12/2004	K. French
5	500 randomized stocks from CRSP balanced monthly	500CRSP	500	04/1968-04/2005	CRSP

Three criteria to evaluate performance

- Out-of-sample portfolio variance
- Out-of-sample portfolio Sharpe ratio
- Ortfolio turnover

$$\begin{split} \mathsf{Mean} &= \hat{\mu}^{k} = \frac{1}{T - \tau} \sum_{t=\tau}^{T-1} \mathsf{w}_{t}^{k^{\top}} r_{t+1}, \\ \mathsf{Variance} &= (\hat{\sigma}^{k})^{2} = \frac{1}{T - \tau - 1} \sum_{t=\tau}^{T-1} \left(\mathsf{w}_{t}^{k^{\top}} r_{t+1} - \hat{\mu}^{k} \right)^{2}, \\ \mathsf{Sharpe Ratio} &= \frac{\hat{\mu}_{k}}{\hat{\sigma}_{k}}, \\ \mathsf{Turnover} &= \frac{1}{T - \tau - 1} \sum_{t=\tau}^{T-1} \sum_{j=1}^{N} \left(\left| \mathsf{w}_{j,t+1}^{k} - \mathsf{w}_{j,t^{+}}^{k} \right| \right). \end{split}$$

"Rolling-horizon" procedure

- **()** Choose window over which to do the estimation: au = 120 months
- ② Compute the various portfolios using return data over au
- Repeat this for the next period, by including data for the new month and dropping data for the earliest month
- Ontinue doing this until end of the dataset is reached
- At the end, we have $T \tau$ portfolio-weight vectors for each strategy
- **o** Compute out-of-sample return over the next month
- Use the time series of $T \tau$ excess returns, r_t^k , to compute the out-of-sample variance, Sharpe ratio, and turnover.
- Ompute P-values

Strategy	10 nd	48Ind	6 F F	25FF	500CRSP			
Pa	nel A: Port	folio policie	s developea	in this pap	er			
Norm-co	Norm-constrained portfolio policies							
NC1V	0.00134	0.00126	0.00156	0.00135	0.00074			
	(0.18)	(0.00)	(0.98)	(0.28)	(0.00)			
NC2V	0.00134 (0.14)	0.00137 (0.00)	0.00156 (0.79)	0.00130 (0.00)	0.00066 (0.00)			
PARV	0.00138 (0.71)	0.00141 (0.00)	0.00159 (0.21)	0.00133 (0.07)	0.00065 (0.00)			
Panel B: Portfolio policies from existing literature								

Strategy	10 nd	48Ind	6FF	25FF	500CRSP
Pa	nel A: Portf	olio policie	s developed	in this pap	er
Norm-co	nstrained po	ortfolio poli	cies		
NC1V	0.00134 (0.18)	0.00126	0.00156	0.00135	0.00074
NC2V	0.00134 (0.14)	0.00137 (0.00)	0.00156 (0.79)	0.00130 (0.00)	0.00066 (0.00)
PARV	0.00138 (0.71)	0.00141 (0.00)	0.00159 (0.21)	0.00133 (0.07)	0.00065 (0.00)
Pa	nel B: Portf	olio policie	s from exis	ting literatu	re
Simple	<mark>benchmarks</mark>				
1/N	0.00179 (0.00)	0.00221 (0.15)	0.00230 (0.00)	0.00249 (0.00)	0.00169 (0.00)
VW	0.00158 (0.05)	0.00190 (0.90)	0.00191 (0.00)	0.00186 (0.00)	0.00157 (0.00)

Strategy	10 nd	48Ind	6FF	25FF	500CRSP		
Pa	nel A: Port	folio policie	s developed	in this pap	er		
Norm-co	nstrained p	ortfolio poli	icies				
NC1V	0.00134	0.00126	0.00156	0.00135	0.00074		
	(0.18)	(0.00)	(0.98)	(0.28)	(0.00)		
NC2V	0.00134	0.00137	0.00156	0.00130	0.00066		
	(0.14)	(0.00)	(0.79)	(0.00)	(0.00)		
PARV	0.00138	0.00141	0.00159	0.00133	0.00065		
	(0.71)	(0.00)	(0.21)	(0.07)	(0.00)		
Pa	nel B: Port	folio policie	s from exis	ting literatu	re		
Portfolio	Portfolios that use mean returns						
MEAN	0.01090	0.38107	0.00353	0.00942	0.00626		
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)		
BAYE	0.00264	0.06793	0.00221	0.00400	0.00066		
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)		

Table 3:	Portfolio	Variances
----------	-----------	-----------

Strategy	10 nd	48Ind	6FF	25FF	500CRSP
Pa	nel A: Port	folio policie	s developed	in this pap	er
Norm-co	istrained p	ortfolio poli	cies		
NC1V	0.00134	0.00126	0.00156	0.00135	0.00074
	(0.18)	(0.00)	(0.98)	(0.28)	(0.00)
NC2V	0.00134	0.00137	0.00156	0.00130	0.00066
	(0.14)	(0.00)	(0.79)	(0.00)	(0.00)
PARV	0.00138	0.00141	0.00159	0.00133	0.00065
	(0.71)	(0.00)	(0.21)	(0.07)	(0.00)
Pa	nel B: Port	folio policie	s from exist	ting literatu	re
Minimu	n-variance	portfolio p	olicies		
MINU	0.00138	0.00186	0.00156	0.00143	0.00104
	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)
MINC	0.00134	0.00133	0.00186	0.00176	0.00087
	(0.46)	(0.00)	(0.00)	(0.01)	(0.02)
MINL	0.00138	0.00185	0.00156	0.00143	0.00066
	(0.00)	(0.00)	(0.51)	(0.00)	(0.00)

Strategy	10 nd	48Ind	6FF	25FF	500CRSP				
Pa	nel A: Port	folio policie	s developea	l in this pap	er				
Norm-co	Norm-constrained portfolio policies								
NC1V	0.00134	0.00126	0.00156	0.00135	0.00074				
	(0.18)	(0.00)	(0.98)	(0.28)	(0.00)				
NC2V	0.00134	0.00137	0.00156	0.00130	0.00066				
	(0.14)	(0.00)	(0.79)	(0.00)	(0.00)				
PARV	0.00138	0.00141	0.00159	0.00133	0.00065				
	(0.71)	(0.00)	(0.21)	(0.07)	(0.00)				
Pa	nel B: Port	folio policie	s from exis	ting literatu	re				
Portfolic	os based on	factor mo	del and par	ametric po	rtfolios				
FAC1	0.00145	0.00159	0.00201	0.00240	0.00075				
	(0.33)	(0.04)	(0.00)	(0.00)	(0.01)				
BSV	0.00602	0.00392	0.00306	0.00344	0.00574				
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)				

Strategy	10 nd	48Ind	6 FF	25FF	500CRSP
Pa	nel A: Port	folio policie	es developed	d in this pap	o er
Norm-co	istrained p	ortfolio po	licies		
NC1R	0.2890	0.2831	0.3374	0.3553	0.3706
	(0.78)	(0.02)	(0.17)	(0.03)	(0.85)
	. ,	. ,	. ,	. ,	. ,
NCOD	0 2102	0.0001	0 2022	0 4 0 7 0	0 4670
NCZR	0.3193	0.2891	0.3922	0.4278	0.4072
	(0.21)	(0.02)	(0.31)	(0.73)	(0.01)
PARR	0 3293	0 3166	0 3912	0 4 4 0 3	0 4 7 6 8
1741414	(0.1.0)	(0.00)	(0.00)	(0.40)	(0.01)
	(0.10)	(0.00)	(0.29)	(0.48)	(U.UI)

Panel B: Portfolio policies from existing literature

We will see these on the next few slides

_	Strategy	10Ind	48Ind	6FF	25FF	500CRSP
	_					
	Pa	nel A: Port	folio policie	s developed	d in this pap	o er
	Norm-cor	istrained p	ortfolio po	licies		
	NC1R	0.2890	0.2831	0.3374	0.3553	0.3706
		(0.78)	(0.02)	(0.17)	(0.03)	(0.85)
		()	. ,	. ,	. ,	. ,
	NCOR	0 2102	0.0001	0 2022	0 4 3 7 9	0 4670
	NC2R	0.3193	0.2091	0.3922	0.4270	0.4072
		(0.21)	(0.02)	(0.31)	(0.73)	(0.01)
	PARR	0 3293	0.3166	0 3912	0 4 4 0 3	0 4 7 6 8
		(0 1 0)	(0.00)	(0.20)	(0.48)	(0.01)
		(0.10)	(0.00)	(0.29)	(0.+0)	(0.01)

Simple	e benchmarks				
1/N	0.2541	0.2508	0.2563	0.2565	0.3326
	(0.42)	(0.50)	(0.01)	(0.00)	(0.16)
VW	0.2619	0.2698	0.2437	0.2558	0.2748
	(0.49)	(0.24)	(0.00)	(0.00)	(0.01)

_	Strategy	10Ind	48Ind	6FF	25FF	500CRSP
	_					
	Pa	nel A: Port	folio policie	s developed	d in this pap	o er
	Norm-cor	istrained p	ortfolio po	licies		
	NC1R	0.2890	0.2831	0.3374	0.3553	0.3706
		(0.78)	(0.02)	(0.17)	(0.03)	(0.85)
		()	. ,	. ,	. ,	. ,
	NCOR	0 2102	0.0001	0 2022	0 4 3 7 9	0 4670
	NC2R	0.3193	0.2091	0.3922	0.4270	0.4072
		(0.21)	(0.02)	(0.31)	(0.73)	(0.01)
	PARR	0 3293	0.3166	0 3912	0 4 4 0 3	0 4 7 6 8
		(0 1 0)	(0.00)	(0.20)	(0.48)	(0.01)
		(0.10)	(0.00)	(0.29)	(0.+0)	(0.01)

Portfolio	os that use	e mean retu	rns		
MEAN	0.0499	0334	0.3214	0.2253	0.0723
	(0.00)	(0.01)	(0.37)	(0.01)	(0.00)
BAYES	0.1685	0121	0.3666	0.3151	0.4018
	(0.00)	(0.04)	(0.99)	(0.12)	(0.63)

10Ind	48Ind	6FF	25FF	500CRSP
anel A: Por	τοπο ροπειέ	es develope	d in this pap	o er
onstrained p	portfolio po	licies		
0.2890	0.2831	0.3374	0.3553	0.3706
(0.78)	(0.02)	(0.17)	(0.03)	(0.85)
. ,	. ,	. ,	. ,	. ,
0 3193	0.2891	0 3922	0 4 2 7 8	0 4 6 7 2
(0.01)	(0.02)	(0.21)	(0.72)	(0.01)
(0.21)	(0.02)	(0.51)	(0.75)	(0.01)
0.3293	0.3166	0.3912	0.4403	0.4768
(0.10)	(0.00)	(0.29)	(0.48)	(0.01)
	10Ind anel A: Pori nistrained p 0.2890 (0.78) 0.3193 (0.21) 0.3293 (0.10)	10Ind 48Ind anel A: Portfolio policio policio instrained portfolio pol 0.2890 0.2831 (0.78) (0.02) 0.3193 0.2891 (0.22) 0.3293 0.3166 (0.10) (0.00)	10Ind 48Ind 6FF anel A: Portfolio policies developed 0.2890 0.2831 0.3374 (0.78) (0.02) (0.17) 0.3193 0.2891 0.3922 (0.21) (0.02) (0.31) 0.3293 0.3166 0.3912 (0.10) (0.00) (0.29)	10Ind 48Ind 6FF 25FF anel A: Portfolio policies developed in this pay 0.2890 0.2831 0.3374 0.3553 0.778 (0.02) (0.17) (0.03) 0.3193 0.2891 0.3922 0.4278 (0.21) (0.02) (0.31) (0.73) 0.3293 0.3166 0.3912 0.4403 (0.10) (0.00) (0.29) (0.48)

Minimu	um-variance	portfolio p	olicies		
MINU	0.2865	0.2222	0.3640	0.4199	0.3820
	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)
MINC	0.2852	0.2914	0.2629	0.2720	0.3985
	(0.94)	(0.04)	(0.00)	(0.00)	(0.67)
MINL	0.2865	0.2224	0.3640	0.4200	0.4028
	(0.23)	(0.36)	(0.31)	(0.76)	(0.59)

_	Strategy	10Ind	48Ind	6FF	25FF	500CRSP
	_					
	Pa	nel A: Port	folio policie	s developed	d in this pap	o er
	Norm-cor	istrained p	ortfolio po	licies		
	NC1R	0.2890	0.2831	0.3374	0.3553	0.3706
		(0.78)	(0.02)	(0.17)	(0.03)	(0.85)
		()	. ,	. ,	. ,	. ,
	NCOR	0 2102	0.0001	0 2022	0 4 3 7 9	0 4670
	NC2R	0.3193	0.2091	0.3922	0.4270	0.4072
		(0.21)	(0.02)	(0.31)	(0.73)	(0.01)
	PARR	0 3293	0.3166	0 3912	0 4 4 0 3	0 4 7 6 8
		(0 1 0)	(0.00)	(0.20)	(0.48)	(0.01)
		(0.10)	(0.00)	(0.29)	(0.+0)	(0.01)

Portfoli	os based or	n factor mo	del and pa	rametric po	ortfolios 🛛
FAC1	0.3060	0.2674	0.2485	0.2486	0.4166
	(0.31)	(0.18)	(0.00)	(0.00)	(0.53)
BSV	0.1157	0.3314	0.3908	0.4047	0.2674
	(0.00)	(0.06)	(0.57)	(0.81)	(0.38)

Strategy	10Ind	48Ind	6FF	25FF	500CRSP
Pa	nel A: Por	tfolio policie	s develope	d in this pap	o er
Norm-co	nstrained p	ortfolio po	licies		
NC1V	0.1494	0.2680	0.1729	0.2407	0.6141
NC2V	0.1448	0.3266	0.1946	0.4570	0.5808
PARV	0.1689	0.3838	0.2600	0.4628	0.5743
NC1R	0.6013	0.8232	1.0064	0.9767	0.9753
NC2R	1.0177	2.7556	1.6594	3.6275	1.0443
PARR	1.0414	2.4846	1.6407	3.5657	1.0984

Table 5: Portfolio Turnovers

Table 5: Portfolio Turnovers

Strategy	10 nd	481nd	6FF	25FF	500CRSP				
Pa	Panel A: Portfolio policies developed in this paper								
Norm-co	Norm-constrained portfolio policies								
NC1V	0.1494	0.2680	0.1729	0.2407	0.6141				
NC2V	0.1448	0.3266	0.1946	0.4570	0.5808				
PARV	0.1689	0.3838	0.2600	0.4628	0.5743				
NC1R	0.6013	0.8232	1.0064	0.9767	0.9753				
NC2R	1.0177	2.7556	1.6594	3.6275	1.0443				
PARR	1.0414	2.4846	1.6407	3.5657	1.0984				
Da	Presel D. De (Gelles, ell'elles Carton de la Verante el								
- Classic la la	nel D. For	nono poncies		ting interati					
Simple D	enchmarks	0.0211	0.0155	0.0174	0.0505				
1/1	0.0232	0.0311	0.0155	0.0174	0.0595				
Portfolios	sthat use	mean return	s						
MEAN	1.0135	105.6126	0.7987	4.2495	3.0014				
BAYES	0.3565	6.6314	0.5388	2.1264	0.6191				
Martin									
Minimum	-variance		Icles	0 7050	0 77 60				
MINU	0.1050	0.8286	0.2223	0.7953	0.7769				
MINC	0.0552	0.0741	0.0461	0.0841	0.4222				
MINL	0.1656	0.8207	0.2222	0.7935	0.6111				
Factor m	odel portfo	olio							
FAC1	0.0935	0 2047	0 1 1 5 2	0 2398	0 3650				
BSV	0.4685	0.9066	0.5381	0.5564	2.1926				

Outline

1 Introduction

- 2 Existing Approaches: Shrinking the Sample Covariance Matrix
- 3 A Generalized Approach: Constraining the Portfolio Norms
- Out-of-Sample Evaluation of the Proposed Portfolios

5 Conclusion

Conclusion: Main Contributions

Provide general framework for portfolio selection

- Based on constraining the norm of the portfolio weight vector
- Nests Jagannathan and Ma (2003), Ledoit and Wolf (2004), 1/N.
- Interpretation: Bayesian, moment-shrinking, regression analysis
- Show how to calibrate norm-constrained portfolios
- Compare out-of-sample performance of the norm-constrained polices to 9 strategies across 5 datasets.
 - Norm-constrained portfolios outperform the ones studied in Jagannathan and Ma (2003), Ledoit and Wolf (2004), and 1/N.
 - Perform similar to Brandt, Santa-Clara and Valkanov (2005) without relying on firm-specific characteristics.

Thank you

A Generalized Approach to Portfolio Optimization: Improving Performance By Constraining Portfolio Norms Victor DeMiguel

Paper available at http://www.london.edu/avmiguel/