A contribution to duality theory, applied to the measurement of risk aversion

J.E. Martínez-Legaz Universitat Autònoma de Barcelona

> John K.H. Quah University of Oxford

Iberian Conference in Optimization Coimbra, 16-18 November, 2006

R^n_+ the commodity space

u concave

 $u: R^n_+ \to R$ Bernoulli utility function: $u\left(t \bullet x' \oplus (1-t) \bullet x''\right) = tu\left(x'\right) + (1-t)u\left(x''\right)$

An agent is risk averse in consumption space if she prefers the sure bundle tx' + (1-t)x'' to the lottery $t \bullet x' \oplus (1-t) \bullet x''$

Risk aversion in commodity space: u concave

quasiconcave, u.s.c., has no local maximum u

$$\begin{aligned} v : R_{++}^n \times R_+ &\to R \\ v (p, y) &= \max \left\{ u (x) \mid p \cdot x \leq y \right\} \\ v (p, t \bullet y' \oplus (1 - t) \bullet y'') &= t v (p, y') + (1 - t) v (p, y'') \\ \text{Risk aversion in income:} \quad v (p, \cdot) \text{ concave} \\ u \text{ concave} \quad \Leftrightarrow \quad v (p, \cdot) \text{ concave} \quad \forall \ p \in R_{++}^n \end{aligned}$$

CHARACTERIZING RISK AVERSION OVER INCOME

I open interval of the real line R

 $f, g: I \rightarrow R$ g increasing

f is more concave than $g \Leftrightarrow f \circ g^{-1}$ is concave.

If f and g are C^2 with positive first derivatives and $\mathcal{A}_f(y) \equiv -\frac{f''(y)}{f'(y)},$ f is more concave than $g \Leftrightarrow \mathcal{A}_f(y) \ge \mathcal{A}_g(y) \quad \forall y \in I$

 $\overline{g} : I \to R$ is a support function of f at $y^* \Leftrightarrow \overline{g}(y^*) = f(y^*)$ and $\overline{g}(y) \ge f(y) \quad \forall \ y \in I$

 $g: I \to R$ is a capping function of $f \Leftrightarrow \forall y^* \in I, \exists r, r' \in R$ such that rg + r' is a support function of f at y^* .

THEOREM. Let f and g be two real-valued and continuous functions defined on an open interval I, with g increasing. Then the following are equivalent: i. f is more concave than g; ii. g is a capping function of f; iii. the function f has the representation

 $f(y) = \min_{r \in U} \left\{ \phi(r) + rg(y) \right\},$

where $U \subset R$ and $\phi : U \to R$.

$$f(y) \le f(y^*) + \frac{f'(y^*)}{g'(y^*)} (g(y) - g(y^*)) \quad \forall y^*, y \in R$$

$$\sigma > 0, \ y \geq 0, t \in [0,1]$$

 $z', z'' \in (0, e^{\sigma y})$ such that $tz' + (1-t)z'' = 1$

 $L_A(\sigma, y, t, z') \text{ the lottery}$ $t \bullet \left(y - \frac{1}{\sigma} \ln z'\right) \oplus (1 - t) \bullet \left(y - \frac{1}{\sigma} \ln z''\right)$ Mean income $y - \frac{t \ln z' + (1 - t) \ln z''}{\sigma}$

 $v: R_{++} \to R$ nondecreasing Bernoulli utility function $v\left(L_A(\sigma, y, t, z')\right) = tv(y - \frac{1}{\sigma} \ln z') + (1-t)v(y - \frac{1}{\sigma} \ln z'')$

v is said to be of *type* A_{σ} if

$$v(y) \ge tv(y - \frac{1}{\sigma}\ln z') + (1-t)v(y - \frac{1}{\sigma}\ln z'')$$

LEMMA. Suppose $\sigma > \overline{\sigma}$. Then for every lottery $L_A(\overline{\sigma}, y, t, \overline{z}')$ with $\overline{z}' \neq 1$, there is a lottery $L_A(\sigma, y, t, z')$ such that

$$egin{array}{ll} y-rac{1}{\sigma}\ln z' &> y-rac{1}{\sigma}\ln ar z', \ y-rac{1}{\sigma}\ln z'' &> y-rac{1}{\sigma}\ln ar z''. \end{array}$$

PROPOSITION. v is of type A_{σ} if and only if it is of type $A_{\bar{\sigma}}$ for all $\bar{\sigma} \leq \sigma$.

PROPOSITION. Suppose that v is C^2 with v' > 0. Then

 $\mathcal{A}_v \geq \sigma$ for all $y > 0 \qquad \Longleftrightarrow \qquad v$ is of type A_{σ} .

PROPOSITION. Suppose that v is C^2 with v' > 0. Then $\mathcal{A}_v(y^*) = \sigma$ if and only if the following holds: (a) for each $\tilde{\sigma} > \sigma$, there is a neighborhood of 1 such that whenever z' and z'' are in that neighborhood, $v(y^*) \ge v(L_A(\tilde{\sigma}, t, y^*, z'))$. (b) for each $\tilde{\sigma} < \sigma$, there is a neighborhood of 1 such that whenever z' and z'' are in that neighborhood, $v(L_A(\tilde{\sigma}, t, y^*, z')) \ge v(y^*)$.

PROPOSITION. For a nondecreasing utility function v, the following are equivalent:

i. v *is of type* A_{σ} *,*

ii. the function g_{σ} given by $g_{\sigma}(y) = -e^{-\sigma y}$ is a capping function of v,

iii. v has the representation $v(y) = \min_{r \in U} \left\{ \phi(r) - re^{-\sigma y} \right\}$, where $U \subset R$ and $\phi: U \to R$.

$$heta\geq$$
 0, $heta
eq$ 1, $y\geq$ 0, $t\in$ [0, 1] $z', z''>$ 0 such that $tz'+(1-t)z''=$ 1

 $L_R(heta, y, t, z')$ the lottery $t \bullet z'^{1/(1- heta)}y \oplus (1-t) \bullet z''^{1/(1- heta)}y,$ $L_R(1, y, t, z')$ the lottery $t \bullet e^{z'}y \oplus (1-t) \bullet e^{z''}y,$ with z', z'' > 0 such that tz' + (1-t)z'' = 0

v is said to be of type R_{θ} if

$$v(y) \ge v\left(L_R(\theta, y, t, z')\right)$$

Coefficient of *relative* risk aversion at y:

$$\mathcal{R}_v(y) = -rac{yv''(y)}{v'(y)}.$$

PROPOSITION. Suppose that v is C^2 with v' > 0. Then

 $\mathcal{R}_v(y) \geq \theta$ for all y > 0 if and only if v is of type R_{θ} .

PROPOSITION. Suppose that v is C^2 with v' > 0. Then $\mathcal{R}_v(y^*) = \theta$ if and only if, for an agent with utility v, the following holds:

(a) for each $\tilde{\theta} > \theta$, there is a neighborhood of 1 such whenever z' and z'' are in that neighborhood, $v\left(L_R(\tilde{\theta}, y^*, t, z')\right) \ge v(y^*).$

(b) for each $\tilde{\theta} < \theta$, there is a neighborhood of 1 such whenever z' and z'' are in that neighborhood, $v(y^*) \ge v(L_R(\tilde{\theta}, y^*, t, z')).$

PROPOSITION. A nondecreasing utility function v is of type R_{θ} if and only if it is of type $R_{\overline{\theta}}$ for all $\overline{\theta} \leq \theta$. PROPOSITION. For a nondecreasing function v, v is of type $R_{\theta} \iff v$ has the representation $v(y) = \min_{r \in U} \{\phi(r) + r\hat{g}_{\theta}(y)\}, \text{ where } U \subset R \text{ and}$ $\phi: U \to R$

RELATING RISK AVERSION OVER INCOME AND RISK AVERSION OVER COMMODITIES

$$p \in R^n_{++}, y > 0$$

The *budget set* at (p, y) :

$$B(p,y) = \{x \in \mathbb{R}^n_{++} : p \cdot x \le y\}$$

The demand at (p, y): $\bar{x}(p, y) = \operatorname{argmax}_{x \in B(p, y)} u(x)$

u is well behaved if: (a) $\bar{x}(p, y) \neq \emptyset \quad \forall (p, y) \in R_{++}^n \times R_{++} \text{ and } p \cdot x' = y$ for x' in $\bar{x}(p, y)$ (b) $\forall x \in R_{++}^n$, $\exists p$ such that $x \in \bar{x}(p, 1)$. u is very well behaved if, in addition to (a) and (b), the demand set $\bar{x}(p, y)$ is a singleton at all (p, y) and the function \bar{x} is continuous.

u is *regular* if it is increasing, continuous, quasiconcave, and $\{x \in R_{++}^n : u(x) \ge \overline{u}\}$ is a closed set in R^n for any \overline{u} .

 \boldsymbol{u} is very regular if it is regular and strictly quasiconcave

For $\omega \in \mathbb{R}^n_+ \setminus \{0\}$, the *normalized price set*:

$$Q^{\omega} = \{ p \in \mathbb{R}^n_{++} : p \cdot \omega = 1 \}$$

$$\omega \in R^n_+ \setminus \{0\}, \ \sigma > 0.$$

$$u: R_{++}^{n} \to R \text{ is of type } A_{\sigma}^{\omega} \text{ if}$$

$$u(tx' + (1-t)x'') \geq$$

$$u\left(t \bullet \left(\frac{1}{\alpha'}x' - \frac{\ln \alpha'}{\sigma}\omega\right) \oplus (1-t) \bullet \left(\frac{1}{\alpha''}x'' - \frac{\ln \alpha''}{\sigma}\omega\right)\right)$$

$$\forall t \in [0,1], \forall \alpha', \alpha'' > 0 \text{ such that } t\alpha' + (1-t)\alpha'' = 1,$$

$$\forall x', x'' \in R^{n} \text{ such that}$$

$$\frac{1}{\alpha'} x' - \frac{\ln \alpha'}{\sigma} \omega, \frac{1}{\alpha''} x'' - \frac{\ln \alpha''}{\sigma} \omega \in \mathbb{R}^n_{++}$$

THEOREM. Suppose $u : R_{++}^n \to R$ is very well behaved and generates the indirect utility function $v : R_{++}^n \times R_{++} \to R$. Then the following are equivalent:

a. $v(p, \cdot)$ is of type A_{σ} for all p in the normalized price set Q^{ω} ;

b. u has the representation

$$u(x) = \min_{(q,r)\in \overline{U}} \left\{ \phi(q,r) - re^{-\sigma(q\cdot x)} \right\},\,$$

where $\overline{U} \subset Q^{\omega} \times R$ and $\phi : \overline{U} \to R$; c. u is of type A^{ω}_{σ} . Suppose that $u: \mathbb{R}^n_{++} \to \mathbb{R}$ is well behaved

 $heta\geq$ 0, heta
eq 1

$$u ext{ is of type } R_{ heta} ext{ if } u (tx' + (1 - t)x'') \ge u (t ullet (lpha'^{(\theta/(1 - heta)}x') \oplus (1 - t) ullet (lpha''^{(\theta/(1 - heta)}x''))) \ orall t \in [0, 1] orall lpha', lpha'' > 0 ext{ such that } t lpha' + (1 - t) lpha'' = 1, \ orall x', x'' \in R^n_{++}$$

 $u \text{ is of type } R_1 \text{ if}$ $u\left(tx' + (1-t)x''\right) \ge u\left(t \bullet \left(e^{lpha'}x'\right) \oplus (1-t) \bullet \left(e^{lpha''}x''\right)\right)$ $\forall t \in [0,1], \forall lpha', lpha'' > 0 \text{ such that } tlpha' + (1-t)lpha'' = 0,$ $\forall x', x'' \in R_{++}^n$

THEOREM. Suppose $u : R_{++}^n \to R$ is well behaved and generates the indirect utility function $v : R_{++}^n \times R_{++} \to R$. Then

 $v(p, \cdot)$ is of type R_{θ} for all $p \in R_{++}^n \iff u$ is of type R_{θ}

<u>*θ***-CONCAVE FUNCTIONS OF ONE REAL VARIABLE**</u>

Let $\theta \in R \setminus [0, 1)$.

A nondecreasing function $F : R_+ \to R$ is θ -concave if $R_{++} \ni y \longmapsto F(y^{\theta})$ is concave.

PROPOSITION. If $F : R_+ \to R$ is θ -concave then it is α -concave for all $\alpha \in R \setminus [0, 1)$ such that $\frac{1}{\alpha} \geq \frac{1}{\theta}$ (that is, for $1 \leq \alpha \leq \theta$ if $\theta \geq 1$ and for all $\alpha \leq \theta$ and all $\alpha \geq 1$ if $\theta < 0$).

In particular, every θ -concave function is concave.

PROPOSITION. Suppose $F : R_+ \to R$ is a nondecreasing function and let $\theta \in R \setminus [0, 1)$. Then the following statements are equivalent:

(i) The function F is θ -concave.

(ii) There exists a set $U \subseteq R_{++}$ and a map $g: U \to R$ such that, for any $x \in R_{++}$,

$$F(x) = \min_{r \in U} \left\{ g(r) + s(\theta)(rx)^{\frac{1}{\theta}} \right\}, \text{ where } s(\theta) = \frac{\theta}{|\theta|}.$$

(iii) For any $t \in [0, 1]$ and $x', x'' \in R_{++},$ we have

$$F\left(tx' + (1-t)x''\right) \geq tF\left(\frac{x'^{\theta}}{(tx' + (1-t)x'')^{\theta-1}}\right) + (1-t)F\left(\frac{x''^{\theta}}{(tx' + (1-t)x'')^{\theta-1}}\right)$$

PROPOSITION. Suppose $F : R_+ \to R$ is a nondecreasing function and let $\theta \in R \setminus [0, 1)$. If F is θ concave and differentiable at $x \in R_{++}$ then

$$F(y) \le F(x) + \theta F'(x) \left(\left(x^{\theta - 1} y \right)^{\frac{1}{\theta}} - x \right)$$
 (1)

for all $y \in R_{++}$.

Conversely, if F is differentiable on R_{++} and satisfies (1) for all $x, y \in R_{++}$ then it is θ -concave.

PROPOSITION. Suppose $F : R_+ \to R$ is increasing, C^2 on R_{++} and satisfies F'(y) > 0 for all $y \in R_{++}$ and let $\theta \in R \setminus [0, 1)$. Then F is θ -concave if and only if the function $K_F : R_{++} \to R$ given by

$$K_F\left(y
ight)=-rac{yF''\left(y
ight)}{F'\left(y
ight)}$$
 satisfies $K_F\left(y
ight)\geq 1-rac{1}{ heta}$ for all $y\in R_{++}$

<u>*θ***-CONCAVE UTILITY FUNCTIONS</u>**</u>

A function $u : R^l_+ \to R$ is called a *utility function* if it has the following properties:

(i) u is nondecreasing along rays, i.e., $u(\lambda x) \ge u(x)$ for any scalar $\lambda \ge 1$ and $x \in R^l_+$;

(ii) u is locally non-satiated, i.e., for any x, there is x' arbitrarily close to x such that u(x') > u(x);

(iii) for any (p, y) in $R_{++}^l \times R_+$, there is $\overline{x} \in R_+^l$ that maximizes u(x) in $B(p, y) = \{x \in R_+^l : p \cdot x \leq y\}$.

 $f(p,y) = \left\{ \bar{x} \in R_{+}^{l} \mid \bar{x} \text{maximizes } u(x) \text{ in } B(p,y) \right\}$

$$\begin{split} u: R_+^l &\to R \text{ is } \theta\text{-concave at } p \in R_{++}^l \text{ if} \\ u(x) &\geq tu((p \cdot x')^{\theta-1}x') + (1-t)u((p \cdot x'')^{\theta-1}x''), \\ \text{whenever } x \in f(p,1), \ 0 \leq t \leq 1, \ x', x'' \in R_+^l \setminus \{0\}, \\ \text{and } p \cdot (tx' + (1-t)x'') = 1. \end{split}$$

PROPOSITION. Suppose $F : R_+ \to R$ is an increasing function and let $\theta \in R \setminus [0, 1)$. Then F is θ -concave if and only if it is θ -concave at p for all $p \in R_{++}$.

PROPOSITION. If a utility function $u : R_+^l \to R$ is θ -concave at p then it is α -concave at p for all $\alpha \in R \setminus [0, 1)$ such that $\frac{1}{\alpha} \ge \frac{1}{\theta}$ (that is, for $1 \le \alpha \le \theta$ if $\theta \ge 1$ and for all $\alpha \le \theta$ and all $\alpha \ge 1$ if $\theta < 0$).

In particular, every θ -concave function is concave.

 $v(p, \cdot)$ is θ -concave $\iff u$ is θ -concave at $\lambda p \ \forall \lambda > 0$

 $u : R_+^l \to R$ has the supporting price property if at every $x \in R_+^l \setminus \{0\}$, there is $p \in R_{++}^l$ such that $x \in f(p, 1)$. THEOREM. Suppose $u : R_+^l \to R$ is a utility function with the supporting price property and let $\theta \in R \setminus [0, 1)$. Then the following statements are equivalent:

(i) The function u is θ -concave at all prices.

(ii) There exist a set $U \subseteq R_{++}^l$ and a map $g: U \to R$ such that, for any $x \in R_+^l \setminus \{0\}$,

$$u(x) = \min_{r \in U} \{g(r) + s(\theta)(r \cdot x)^{\frac{1}{\theta}}\}, \text{ where } s(\theta) = \frac{\theta}{|\theta|}.$$

(iii) For any $p \in R_{++}^l$, $t \in [0, 1]$ and $x', x'' \in R_+^l \setminus \{0\}$ satisfying $p \cdot (tx' + (1 - t)x'') = 1$, we have

$$u(tx' + (1-t)x'') \geq tu((p \cdot x')^{\theta-1}x') + (1-t)u((p \cdot x'')^{\theta-1}x'').$$

(iv) For any $p \in R_{++}^l$, $t \in [0, 1]$ and $x', x'' \in R_+^l \setminus \{0\}$, we have

$$u(tx' + (1-t)x'') \geq tu((\frac{p \cdot x'}{tp \cdot x' + (1-t)p \cdot x''})^{\theta - 1}x') + (1-t)u((\frac{p \cdot x''}{tp \cdot x' + (1-t)p \cdot x''})^{\theta - 1}x'').$$

(v) For any $p \in R_{++}^l$, $t \in [0,1]$, $x', x'' \in R_+^l \setminus \{0\}$ and $\alpha, \beta \in R_{++}$ satisfying $t\alpha + (1-t)\beta = 1$ and $\alpha x'' - \beta x' \notin \left(R_+^l \cup \left(-R_+^l\right)\right) \setminus \{0\}$, we have $u(tx' + (1-t)x'') \ge tu(\alpha^{\theta-1}x') + (1-t)u(\beta^{\theta-1}x'').$ PROPOSITION. If $u : R_+^l \to R$ is a θ -concave utility function, with $\theta \in R \setminus [0, 1)$, satisfying the supporting price property and being differentiable at $x \in R_{++}^l$ then

$$\begin{split} u(y) &\leq u(x) + \theta \left(\left(\left(\nabla u(x) \cdot x \right)^{\theta - 1} \nabla u(x) \cdot y \right)^{\frac{1}{\theta}} - \nabla u(x) \cdot x \right) \\ & (2) \end{split}$$
for all $y \in R_+^l \setminus \{0\}$.

Conversely, if $u : R_{++}^l \to R$ is differentiable and satisfies $\nabla u(x) \in R_{++}^l$ and (2) for all $x, y \in R_{++}^l$ then it admits an extension as a θ -concave utility function on R_{+}^l . PROPOSITION. If $u : R_+^l \to R$ is a θ -concave utility function, with $\theta \in R \setminus [0, 1)$, having the supporting price property and being C^2 on R_{++}^l then the function $K_u : R_{++}^l \to R$ given by

$$K_{u}(x) = \begin{cases} -\frac{\nabla u(x) \cdot x}{\nabla u(x) \cdot (\nabla^{2} u(x))^{-1} \nabla u(x)} \\ \text{if } \nabla^{2} u(x) \text{ is nonsingular} \\ 0 & \text{otherwise} \end{cases}$$

satisfies $K_u(x) \ge 1 - \frac{1}{\theta}$ for all $x \in R_{++}^l$.

Conversely, if $u : R_{++}^l \to R$ is a C^2 concave function satisfying $\nabla u(x) \in R_{++}^l$ and $K_u(x) \ge 1 - \frac{1}{\theta} \ge 0$, with $\theta \in R \setminus [0, 1)$, for all $x \in R_{++}^l$ then it admits an extension as a θ -concave utility function on R_{+}^l .