A contribution to duality theory, applied to the

 measurement of risk aversionJ.E. Martínez-Legaz

Universitat Autònoma de Barcelona
John K.H. Quah
University of Oxford

Iberian Conference in Optimization
Coimbra, 16-18 November, 2006
R_{+}^{n} the commodity space
$u: R_{+}^{n} \rightarrow R \quad$ Bernoulli utility function:
$u\left(t \bullet x^{\prime} \oplus(1-t) \bullet x^{\prime \prime}\right)=t u\left(x^{\prime}\right)+(1-t) u\left(x^{\prime \prime}\right)$

An agent is risk averse in consumption space if she prefers the sure bundle $t x^{\prime}+(1-t) x^{\prime \prime}$ to the lottery $t \bullet x^{\prime} \oplus(1-t) \bullet x^{\prime \prime}$

Risk aversion in commodity space: u concave
u quasiconcave, u.s.c., has no local maximum
$v: R_{++}^{n} \times R_{+} \rightarrow R$
$v(p, y)=\max \{u(x) \mid p \cdot x \leq y\}$
$v\left(p, t \bullet y^{\prime} \oplus(1-t) \bullet y^{\prime \prime}\right)=t v\left(p, y^{\prime}\right)+(1-t) v\left(p, y^{\prime \prime}\right)$

Risk aversion in income: $\quad v(p, \cdot)$ concave
u concave $\quad \Leftrightarrow \quad v(p, \cdot)$ concave $\quad \forall p \in R_{++}^{n}$

CHARACTERIZING RISK AVERSION OVER INCOME

I open interval of the real line R
$f, g: I \rightarrow R \quad g$ increasing
f is more concave than $g \Leftrightarrow f \circ g^{-1}$ is concave.

If f and g are C^{2} with positive first derivatives and $\mathcal{A}_{f}(y) \equiv-\frac{f^{\prime \prime}(y)}{f^{\prime}(y)}$,
f is more concave than $g \Leftrightarrow \mathcal{A}_{f}(y) \geq \mathcal{A}_{g}(y) \quad \forall y \in I$
$\bar{g}: I \rightarrow R$ is a support function of f at $y^{*} \Leftrightarrow$ $\bar{g}\left(y^{*}\right)=f\left(y^{*}\right)$ and $\bar{g}(y) \geq f(y) \quad \forall y \in I$
$g: I \rightarrow R$ is a capping function of f \Leftrightarrow $\forall y^{*} \in I, \exists r, r^{\prime} \in R$ such that $r g+r^{\prime}$ is a support function of f at y^{*}.

THEOREM. Let f and g be two real-valued and continuous functions defined on an open interval I, with g increasing. Then the following are equivalent:
i. f is more concave than g;
ii. g is a capping function of f;
iii. the function f has the representation

$$
f(y)=\min _{r \in U}\{\phi(r)+r g(y)\},
$$

where $U \subset R$ and $\phi: U \rightarrow R$.

$$
\begin{aligned}
& f(y) \leq f\left(y^{*}\right)+\frac{f^{\prime}\left(y^{*}\right)}{g^{\prime}\left(y^{*}\right)}\left(g(y)-g\left(y^{*}\right)\right) \quad \forall y^{*}, y \in R \\
& \sigma>0, y \geq 0, t \in[0,1] \\
& z^{\prime}, z^{\prime \prime} \in\left(0, e^{\sigma y}\right) \text { such that } t z^{\prime}+(1-t) z^{\prime \prime}=1
\end{aligned}
$$

$L_{A}\left(\sigma, y, t, z^{\prime}\right)$ the lottery

$$
t \bullet\left(y-\frac{1}{\sigma} \ln z^{\prime}\right) \oplus(1-t) \bullet\left(y-\frac{1}{\sigma} \ln z^{\prime \prime}\right)
$$

Mean income

$$
y-\frac{t \ln z^{\prime}+(1-t) \ln z^{\prime \prime}}{\sigma}
$$

$v: R_{++} \rightarrow R$ nondecreasing Bernoulli utility function
$v\left(L_{A}\left(\sigma, y, t, z^{\prime}\right)\right)=t v\left(y-\frac{1}{\sigma} \ln z^{\prime}\right)+(1-t) v\left(y-\frac{1}{\sigma} \ln z^{\prime \prime}\right)$
v is said to be of type A_{σ} if

$$
v(y) \geq t v\left(y-\frac{1}{\sigma} \ln z^{\prime}\right)+(1-t) v\left(y-\frac{1}{\sigma} \ln z^{\prime \prime}\right)
$$

LEMMA. Suppose $\sigma>\bar{\sigma}$. Then for every lottery $L_{A}\left(\bar{\sigma}, y, t, \bar{z}^{\prime}\right)$ with $\bar{z}^{\prime} \neq 1$, there is a lottery $L_{A}\left(\sigma, y, t, z^{\prime}\right)$ such that

$$
\begin{aligned}
& y-\frac{1}{\sigma} \ln z^{\prime}>y-\frac{1}{\sigma} \ln \bar{z}^{\prime} \\
& y-\frac{1}{\sigma} \ln z^{\prime \prime}>y-\frac{1}{\sigma} \ln \bar{z}^{\prime \prime}
\end{aligned}
$$

PROPOSITION. v is of type A_{σ} if and only if it is of type $A_{\bar{\sigma}}$ for all $\bar{\sigma} \leq \sigma$.

PROPOSITION. Suppose that v is C^{2} with $v^{\prime}>0$. Then
$\mathcal{A}_{v} \geq \sigma$ for all $y>0 \quad \Longleftrightarrow \quad v$ is of type A_{σ}.

PROPOSITION. Suppose that v is C^{2} with $v^{\prime}>0$. Then $\mathcal{A}_{v}\left(y^{*}\right)=\sigma$ if and only if the following holds:
(a) for each $\tilde{\sigma}>\sigma$, there is a neighborhood of 1 such that whenever z^{\prime} and $z^{\prime \prime}$ are in that neighborhood, $v\left(y^{*}\right) \geq v\left(L_{A}\left(\widetilde{\sigma}, t, y^{*}, z^{\prime}\right)\right)$.
(b) for each $\tilde{\sigma}<\sigma$, there is a neighborhood of 1 such that whenever z^{\prime} and $z^{\prime \prime}$ are in that neighborhood, $v\left(L_{A}\left(\widetilde{\sigma}, t, y^{*}, z^{\prime}\right)\right) \geq v\left(y^{*}\right)$.

PROPOSITION. For a nondecreasing utility function v, the following are equivalent:
i. v is of type A_{σ},
ii. the function g_{σ} given by $g_{\sigma}(y)=-e^{-\sigma y}$ is a capping function of v,
iii. v has the representation $v(y)=\min _{r \in U}\left\{\phi(r)-r e^{-\sigma y}\right\}$, where $U \subset R$ and $\phi: U \rightarrow R$.
$\theta \geq 0, \theta \neq 1, y \geq 0, t \in[0,1]$
$z^{\prime}, z^{\prime \prime}>0$ such that $t z^{\prime}+(1-t) z^{\prime \prime}=1$
$L_{R}\left(\theta, y, t, z^{\prime}\right)$ the lottery

$$
t \bullet z^{1 /(1-\theta)} y \oplus(1-t) \bullet z^{\prime \prime 1 /(1-\theta)} y
$$

$L_{R}\left(1, y, t, z^{\prime}\right)$ the lottery

$$
t \bullet e^{z^{\prime}} y \oplus(1-t) \bullet e^{z^{\prime \prime}} y,
$$

with $z^{\prime}, z^{\prime \prime}>0$ such that $t z^{\prime}+(1-t) z^{\prime \prime}=0$
v is said to be of type R_{θ} if

$$
v(y) \geq v\left(L_{R}\left(\theta, y, t, z^{\prime}\right)\right)
$$

Coefficient of relative risk aversion at y :

$$
\mathcal{R}_{v}(y)=-\frac{y v^{\prime \prime}(y)}{v^{\prime}(y)} .
$$

PROPOSITION. Suppose that v is C^{2} with $v^{\prime}>0$.
Then
$\mathcal{R}_{v}(y) \geq \theta$ for all $y>0$ if and only if v is of type R_{θ}.

PROPOSITION. Suppose that v is C^{2} with $v^{\prime}>0$.
Then $\mathcal{R}_{v}\left(y^{*}\right)=\theta$ if and only if, for an agent with utility v, the following holds:
(a) for each $\tilde{\theta}>\theta$, there is a neighborhood of 1 such whenever z^{\prime} and $z^{\prime \prime}$ are in that neighborhood, $v\left(L_{R}\left(\widetilde{\theta}, y^{*}, t, z^{\prime}\right)\right) \geq v\left(y^{*}\right)$.
(b) for each $\tilde{\theta}<\theta$, there is a neighborhood of 1 such whenever z^{\prime} and $z^{\prime \prime}$ are in that neighborhood, $v\left(y^{*}\right) \geq v\left(L_{R}\left(\widetilde{\theta}, y^{*}, t, z^{\prime}\right)\right)$.

PROPOSITION. A nondecreasing utility function v is of type R_{θ} if and only if it is of type $R_{\bar{\theta}}$ for all $\bar{\theta} \leq \theta$.

PROPOSITION. For a nondecreasing function v, v is of type $R_{\theta} \quad \Longleftrightarrow \quad v$ has the representation $v(y)=\min _{r \in U}\left\{\phi(r)+r \hat{g}_{\theta}(y)\right\}$, where $U \subset R$ and $\phi: U \rightarrow R$

RELATING RISK AVERSION OVER INCOME AND RISK AVERSION OVER COMMODITIES

$p \in R_{++}^{n}, y>0$
The budget set at (p, y) :

$$
B(p, y)=\left\{x \in R_{++}^{n}: p \cdot x \leq y\right\}
$$

The demand at $(p, y): \quad \bar{x}(p, y)=\operatorname{argmax}_{x \in B(p, y)} u(x)$
u is well behaved if:
(a) $\bar{x}(p, y) \neq \emptyset \quad \forall(p, y) \in R_{++}^{n} \times R_{++}$and $p \cdot x^{\prime}=y$ for x^{\prime} in $\bar{x}(p, y)$
(b) $\forall x \in R_{++}^{n}, \exists p$ such that $x \in \bar{x}(p, 1)$.
u is very well behaved if, in addition to (a) and (b), the demand set $\bar{x}(p, y)$ is a singleton at all (p, y) and the function \bar{x} is continuous.
u is regular if it is increasing, continuous, quasiconcave, and $\left\{x \in R_{++}^{n}: u(x) \geq \bar{u}\right\}$ is a closed set in R^{n} for any \bar{u}.
u is very regular if it is regular and strictly quasiconcave

For $\omega \in R_{+}^{n} \backslash\{0\}$, the normalized price set:

$$
Q^{\omega}=\left\{p \in R_{++}^{n}: p \cdot \omega=1\right\}
$$

$\omega \in R_{+}^{n} \backslash\{0\}, \sigma>0$.
$u: R_{++}^{n} \rightarrow R$ is of type A_{σ}^{ω} if
$u\left(t x^{\prime}+(1-t) x^{\prime \prime}\right) \geq$
$u\left(t \bullet\left(\frac{1}{\alpha^{\prime}} x^{\prime}-\frac{\ln \alpha^{\prime}}{\sigma} \omega\right) \oplus(1-t) \bullet\left(\frac{1}{\alpha^{\prime \prime}} x^{\prime \prime}-\frac{\ln \alpha^{\prime \prime}}{\sigma} \omega\right)\right)$
$\forall t \in[0,1], \forall \alpha^{\prime}, \alpha^{\prime \prime}>0$ such that $t \alpha^{\prime}+(1-t) \alpha^{\prime \prime}=1$,
$\forall x^{\prime}, x^{\prime \prime} \in R^{n}$ such that

$$
\frac{1}{\alpha^{\prime}} x^{\prime}-\frac{\ln \alpha^{\prime}}{\sigma} \omega, \frac{1}{\alpha^{\prime \prime}} x^{\prime \prime}-\frac{\ln \alpha^{\prime \prime}}{\sigma} \omega \in R_{++}^{n}
$$

THEOREM. Suppose $u: R_{++}^{n} \rightarrow R$ is very well behaved and generates the indirect utility function $v: R_{++}^{n} \times R_{++} \rightarrow R$. Then the following are equivalent:
a. $v(p, \cdot)$ is of type A_{σ} for all p in the normalized price set Q^{ω};
b. u has the representation

$$
u(x)=\min _{(q, r) \in \bar{U}}\left\{\phi(q, r)-r e^{-\sigma(q \cdot x)}\right\},
$$

where $\bar{U} \subset Q^{\omega} \times R$ and $\phi: \bar{U} \rightarrow R$;
c. u is of type A_{σ}^{ω}.

Suppose that $u: R_{++}^{n} \rightarrow R$ is well behaved
$\theta \geq 0, \theta \neq 1$
u is of type R_{θ} if
$u\left(t x^{\prime}+(1-t) x^{\prime \prime}\right) \geq$
$u\left(t \bullet\left(\alpha^{\prime \theta /(1-\theta)} x^{\prime}\right) \oplus(1-t) \bullet\left(\alpha^{\prime \prime \theta /(1-\theta)} x^{\prime \prime}\right)\right)$
$\forall t \in[0,1] \forall \alpha^{\prime}, \alpha^{\prime \prime}>0$ such that $t \alpha^{\prime}+(1-t) \alpha^{\prime \prime}=1$,
$\forall x^{\prime}, x^{\prime \prime} \in R_{+}^{n}+$
u is of type R_{1} if
$u\left(t x^{\prime}+(1-t) x^{\prime \prime}\right) \geq u\left(t \bullet\left(e^{\alpha^{\prime}} x^{\prime}\right) \oplus(1-t) \bullet\left(e^{\alpha^{\prime \prime}} x^{\prime \prime}\right)\right)$
$\forall t \in[0,1], \forall \alpha^{\prime}, \alpha^{\prime \prime}>0$ such that $t \alpha^{\prime}+(1-t) \alpha^{\prime \prime}=0$,
$\forall x^{\prime}, x^{\prime \prime} \in R_{++}^{n}$

THEOREM. Suppose $u: R_{++}^{n} \rightarrow R$ is well behaved and generates the indirect utility function
$v: R_{++}^{n} \times R_{++} \rightarrow R$. Then
$v(p, \cdot)$ is of type R_{θ} for all $p \in R_{++}^{n} \Longleftrightarrow u$ is of type R_{θ}

θ-CONCAVE FUNCTIONS OF ONE REAL VARIABLE

Let $\theta \in R \backslash[0,1)$.

A nondecreasing function $F: R_{+} \rightarrow R$ is θ-concave if $R_{++} \ni y \longmapsto F\left(y^{\theta}\right)$ is concave.

PROPOSITION. If $F: R_{+} \rightarrow R$ is θ-concave then it is α-concave for all $\alpha \in R \backslash[0,1)$ such that $\frac{1}{\alpha} \geq \frac{1}{\theta}$ (that is, for $1 \leq \alpha \leq \theta$ if $\theta \geq 1$ and for all $\alpha \leq \theta$ and all $\alpha \geq 1$ if $\theta<0$).

In particular, every θ-concave function is concave.

PROPOSITION. Suppose $F: R_{+} \rightarrow R$ is a nondecreasing function and let $\theta \in R \backslash[0,1)$. Then the following statements are equivalent:
(i) The function F is θ-concave.
(ii) There exists a set $U \subseteq R_{++}$and a map $g: U \rightarrow R$ such that, for any $x \in R_{++}$,
$F(x)=\min _{r \in U}\left\{g(r)+s(\theta)(r x)^{\frac{1}{\theta}}\right\}$, where $s(\theta)=\frac{\theta}{|\theta|}$.
(iii) For any $t \in[0,1]$ and $x^{\prime}, x^{\prime \prime} \in R_{++}$, we have

$$
\begin{aligned}
F\left(t x^{\prime}+(1-t) x^{\prime \prime}\right) & \geq t F\left(\frac{x^{\prime \theta}}{\left(t x^{\prime}+(1-t) x^{\prime \prime}\right)^{\theta-1}}\right) \\
+ & (1-t) F\left(\frac{x^{\prime \prime \theta}}{\left(t x^{\prime}+(1-t) x^{\prime \prime}\right)^{\theta-1}}\right) .
\end{aligned}
$$

PROPOSITION. Suppose $F: R_{+} \rightarrow R$ is a nondecreasing function and let $\theta \in R \backslash[0,1)$. If F is θ concave and differentiable at $x \in R_{++}$then

$$
\begin{equation*}
F(y) \leq F(x)+\theta F^{\prime}(x)\left(\left(x^{\theta-1} y\right)^{\frac{1}{\theta}}-x\right) \tag{1}
\end{equation*}
$$

for all $y \in R_{++}$.

Conversely, if F is differentiable on R_{++}and satisfies (1) for all $x, y \in R_{++}$then it is θ-concave.

PROPOSITION. Suppose $F: R_{+} \rightarrow R$ is increasing, C^{2} on R_{++}and satisfies $F^{\prime}(y)>0$ for all $y \in R_{++}$ and let $\theta \in R \backslash[0,1)$. Then F is θ-concave if and only if the function $K_{F}: R_{++} \rightarrow R$ given by

$$
K_{F}(y)=-\frac{y F^{\prime \prime}(y)}{F^{\prime}(y)}
$$

satisfies $K_{F}(y) \geq 1-\frac{1}{\theta}$ for all $y \in R_{++}$.

θ-CONCAVE UTILITY FUNCTIONS

A function $u: R_{+}^{l} \rightarrow R$ is called a utility function if it has the following properties:
(i) u is nondecreasing along rays, i.e., $u(\lambda x) \geq u(x)$ for any scalar $\lambda \geq 1$ and $x \in R_{+}^{l}$;
(ii) u is locally non-satiated, i.e., for any x, there is x^{\prime} arbitrarily close to x such that $u\left(x^{\prime}\right)>u(x)$;
(iii) for any (p, y) in $R_{++}^{l} \times R_{+}$, there is $\bar{x} \in R_{+}^{l}$ that maximizes $u(x)$ in $B(p, y)=\left\{x \in R_{+}^{l}: p \cdot x \leq y\right\}$.

$$
f(p, y)=\left\{\bar{x} \in R_{+}^{l} \mid \bar{x} \text { maximizes } u(x) \text { in } B(p, y)\right\}
$$

$u: R_{+}^{l} \rightarrow R$ is θ-concave at $p \in R_{++}^{l}$ if

$$
u(x) \geq t u\left(\left(p \cdot x^{\prime}\right)^{\theta-1} x^{\prime}\right)+(1-t) u\left(\left(p \cdot x^{\prime \prime}\right)^{\theta-1} x^{\prime \prime}\right)
$$

whenever $x \in f(p, 1), 0 \leq t \leq 1, x^{\prime}, x^{\prime \prime} \in R_{+}^{l} \backslash\{0\}$, and $p \cdot\left(t x^{\prime}+(1-t) x^{\prime \prime}\right)=1$.

PROPOSITION. Suppose $F: R_{+} \rightarrow R$ is an increasing function and let $\theta \in R \backslash[0,1)$. Then F is θ-concave if and only if it is θ-concave at p for all $p \in R_{++}$.

PROPOSITION. If a utility function $u: R_{+}^{l} \rightarrow R$ is θ-concave at p then it is α-concave at p for all $\alpha \in R \backslash[0,1)$ such that $\frac{1}{\alpha} \geq \frac{1}{\theta}$ (that is, for $1 \leq \alpha \leq \theta$ if $\theta \geq 1$ and for all $\alpha \leq \theta$ and all $\alpha \geq 1$ if $\theta<0$).

In particular, every θ-concave function is concave.
$v(p, \cdot)$ is θ-concave $\Longleftrightarrow u$ is θ-concave at $\lambda p \forall \lambda>0$
$u: R_{+}^{l} \rightarrow R$ has the supporting price property if at every $x \in R_{+}^{l} \backslash\{0\}$, there is $p \in R_{++}^{l}$ such that $x \in f(p, 1)$.

THEOREM. Suppose $u: R_{+}^{l} \rightarrow R$ is a utility function with the supporting price property and let $\theta \in$ $R \backslash[0,1)$. Then the following statements are equivalent:
(i) The function u is θ-concave at all prices.
(ii) There exist a set $U \subseteq R_{++}^{l}$ and a map $g: U \rightarrow R$ such that, for any $x \in R_{+}^{l} \backslash\{0\}$,
$u(x)=\min _{r \in U}\left\{g(r)+s(\theta)(r \cdot x)^{\frac{1}{\theta}}\right\}$, where $s(\theta)=\frac{\theta}{|\theta|}$.
(iii) For any $p \in R_{++}^{l}, t \in[0,1]$ and $x^{\prime}, x^{\prime \prime} \in R_{+}^{l} \backslash\{0\}$ satisfying $p \cdot\left(t x^{\prime}+(1-t) x^{\prime \prime}\right)=1$, we have

$$
\begin{aligned}
u\left(t x^{\prime}+(1-t) x^{\prime \prime}\right) \geq & t u\left(\left(p \cdot x^{\prime}\right)^{\theta-1} x^{\prime}\right) \\
& +(1-t) u\left(\left(p \cdot x^{\prime \prime}\right)^{\theta-1} x^{\prime \prime}\right) .
\end{aligned}
$$

(iv) For any $p \in R_{++}^{l}, t \in[0,1]$ and $x^{\prime}, x^{\prime \prime} \in R_{+}^{l} \backslash\{0\}$, we have

$$
\begin{array}{r}
u\left(t x^{\prime}+(1-t) x^{\prime \prime}\right) \geq t u\left(\left(\frac{p \cdot x^{\prime}}{t p \cdot x^{\prime}+(1-t) p \cdot x^{\prime \prime}}\right)^{\theta-1} x^{\prime}\right) \\
+(1-t) u\left(\left(\frac{p \cdot x^{\prime \prime}}{t p \cdot x^{\prime}+(1-t) p \cdot x^{\prime \prime}}\right)^{\theta-1} x^{\prime \prime}\right)
\end{array}
$$

(v) For any $p \in R_{++}^{l}, t \in[0,1], x^{\prime}, x^{\prime \prime} \in R_{+}^{l} \backslash\{0\}$ and $\alpha, \beta \in R_{++}$satisfying $t \alpha+(1-t) \beta=1$ and $\alpha x^{\prime \prime}-\beta x^{\prime} \notin\left(R_{+}^{l} \cup\left(-R_{+}^{l}\right)\right) \backslash\{0\}$, we have $u\left(t x^{\prime}+(1-t) x^{\prime \prime}\right) \geq t u\left(\alpha^{\theta-1} x^{\prime}\right)+(1-t) u\left(\beta^{\theta-1} x^{\prime \prime}\right)$.

PROPOSITION. If $u: R_{+}^{l} \rightarrow R$ is a θ-concave utility function, with $\theta \in R \backslash[0,1)$, satisfying the supporting price property and being differentiable at $x \in R_{++}^{l}$ then

$$
\begin{equation*}
u(y) \leq u(x)+\theta\left(\left((\nabla u(x) \cdot x)^{\theta-1} \nabla u(x) \cdot y\right)^{\frac{1}{\theta}}-\nabla u(x) \cdot x\right) \tag{2}
\end{equation*}
$$

for all $y \in R_{+}^{l} \backslash\{0\}$.
Conversely, if $u: R_{++}^{l} \rightarrow R$ is differentiable and satisfies $\nabla u(x) \in R_{++}^{l}$ and (2) for all $x, y \in R_{++}^{l}$ then it admits an extension as a θ-concave utility function on R_{+}^{l}.

PROPOSITION. If $u: R_{+}^{l} \rightarrow R$ is a θ-concave utility function, with $\theta \in R \backslash[0,1)$, having the supporting price property and being C^{2} on R_{++}^{l} then the function $K_{u}: R_{++}^{l} \rightarrow R$ given by

$$
K_{u}(x)=\left\{\begin{array}{c}
-\frac{\nabla u(x) \cdot x}{\nabla u(x) \cdot\left(\nabla^{2} u(x)\right)^{-1} \nabla u(x)} \\
\text { if } \nabla^{2} u(x) \text { is nonsingular } \\
0 \quad \text { otherwise }
\end{array}\right.
$$

satisfies $K_{u}(x) \geq 1-\frac{1}{\theta}$ for all $x \in R_{++}^{l}$.
Conversely, if $u: R_{++}^{l} \rightarrow R$ is a C^{2} concave function satisfying $\nabla u(x) \in R_{++}^{l}$ and $K_{u}(x) \geq 1-\frac{1}{\theta} \geq 0$, with $\theta \in R \backslash[0,1)$, for all $x \in R_{++}^{l}$ then it admits an extension as a θ-concave utility function on R_{+}^{l}.

