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1 Introduction, Notations and Preliminaries

Introduction

In vector optimization one investigate optimal elements of a nonempty set E of a

partially ordered linear space Y .

Problems of this type can be found not only in mathematics but also in other fields

such as engineering or economics.
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In mathematics, vector optimization problems arise for example in

• Functional Analysis: the Hahn-Banach theorem, the lemma of Bishop-Phelps, Eke-

land variational principle...

• Statistics: Bayes solutions, theory of test, minimal covariance matrices...

• Game Theory: cooperative n player differential games.

• Operational Research: multiobjective programming, multi-criteria decision mak-

ing,...

• Approximation Theory: location theory, simultaneous approximation, solution of

boundary value problems,...

In the last decade vector optimization has been extended to problems with set-

valued maps (see [11]). This new field of research called set optimization seems to

have important applications, and presents a new difficulty: in this case we are working

without a linear structure.
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The roots of vector optimization go back to the works by:

F.Y. Edgeworth (1845-1926). Mathematical Physics (1881).

V. Pareto (1848-1923). Manuale di Economia Politica (1896).

who already gave the definition of the standard optimality concepts in multiobjective

optimization.

But in mathematics this branch of optimization has started with the legendary paper

of Kuhn and Tucker (1951).
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To introduce the minimality concepts we consider a partial ordering on Y as follows.

Let Y be a real linear space.

Definition 1.1. A binary relation ≤ on Y is called a partial ordering on Y , if the

following properties are satisfied (for arbitrary x, y, z, u ∈ Y and α ∈ R+):

(i) x ≤ x

(ii) x ≤ y, y ≤ z ⇒ x ≤ z

(iii) x ≤ y, u ≤ z ⇒ x + u ≤ y + z

(iv) x ≤ y ⇒ αx ≤ αy.

A partial ordering is called antisymmetric if the following condition hold:

x ≤ y, y ≤ x ⇒ x = y.

Definition 1.2. A real linear space equipped with a partial ordering is called a par-

tially ordered linear space.
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Here we have a characterization of a partial ordering in a real linear space.

Theorem 1.3. (i) If ≤ is a partial ordering on Y , then the set D = {x ∈ Y : 0 ≤

x} is a convex cone. If, in addition, ≤ is antisymmetric, then D is pointed.

(ii) If D is a convex cone in Y , then the binary relation

x ≤D y ⇔ y − x ∈ D

is a partial ordering on Y . If, in addition, D is pointed, then ≤ is antisymmetric.
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Remark 1.4. Recall that:

(i) A nonempty set D ⊂ Y is a cone if x ∈ D,α ≥ 0 ⇒ αx ∈ D.

(ii) A cone D is pointed if D ∩ (−D) = {0}.

(iii) A cone D is solid if corD 6= ∅, where the algebraic interior or core of E is the set

corE = {x̄ ∈ E : ∀x ∈ X,∃λ̄, such that x̄ + λx ∈ E, ∀λ ∈ [0, λ̄]}.

If X is a topological linear space and C is a convex set, then cor(C) = int(C), in

particular if D is a convex cone, then cor(D) = int(D).

Example 1.5. The most usual ordering cone in a finite dimensional space R
n is given

by the positive orthant R
n
+. This set is a pointed, closed and solid convex cone that

define the componentwise partial ordering on R
n, also called Pareto order.
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One of the most important application of the vectorial optimization techniques

is found in the study of vectorial mathematical programming problems, and as a

particular case in multiobjective programming problems.

Multiobjective Program:

Min f(x) subject to x ∈M, (1)

M = S ∩Q, S = {x ∈ R
n : g(x) ≤K 0, h(x) = 0}, Q ⊂ R

n,

f : R
n → R

p, g : R
n → R

m, h : R
n → R

r.

If D = R
p
+ and K = R

m
+ we have a multiobjective Pareto program.

If p = 1 and D = R+ we have a scalar program.
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We consider an extension of problem (1).

Let X , Y , Z and W be partially ordered linear spaces, let D ⊂ Y be the order-

ing cone on Y , letK ⊂ Z be the ordering cone on Z and letM ⊂ X be a nonempty set.

Vectorial Program:

• General

Min f(x) subject to x ∈M. (2)

• Constrained

Min f(x) subject to x ∈M, (3)

M = S ∩Q, S = {x ∈ X : g(x) ∈ −K, h(x) = 0}, Q ⊂ X,

f : X → Y, g : X → Z, h : X → W.
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Now, we give the solution concepts for a vector optimization problem. We consider

only efficient and weak-efficient solutions, but in vector optimization there are other

solution concepts as ideal, strong, strict or proper efficient points.

Solution Concepts

Let (Y,D) be a linear ordered space, where D is a pointed convex cone, and let E ⊂ Y

be a nonempty set.

Definition 1.6. A point y0 ∈ E is said to be an efficient or minimal element of E

if there is no y ∈ E, y 6= y0, such that y ≤ y0. The set of efficient elements of E is

denoted by Min(E,D).

This definition is equivalent to:

(i) there is no y ∈ E, such that y0 ∈ y +D \ {0}.

(ii) (E − y0) ∩ (−D) = {0}.
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If the condition is satisfied in a neighborhood of y0, we have the concept of local

efficient point.

Definition 1.7. A point y0 ∈ E is said to be a local efficient or local minimal element

of E, if there exists a neighborhood V of y0, such that ((E ∩ V )− y0)∩ (−D) = {0}.

We write y0 ∈ LMin(E,D).

If we replace D for its interior, we have the concept of weak efficient point.

Definition 1.8. (i) A point y0 ∈ E is said to be a weak efficient or weak minimal

element of E if (E − y0) ∩ (− corD) = ∅. We write y0 ∈ WMin(E,D).

(ii) A point y0 ∈ E is said to be a local weak efficient or a local weak minimal element

of E if there exists a neighborhood V of y0, such that (E ∩ V − y0) ∩ (− corD) = ∅.

We write y0 ∈ LWMin(E,D).

Note that for the definition of weak solution it is necessary to consider that D is a

solid cone, that is corD 6= ∅, otherwise all element of E is a weak solution.
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For a vectorial program we obtain the different concepts of solution making

E = f(M).

For example, a feasible point x0 ∈ M is an efficient solution, denoted by

x0 ∈ Min(f,M), if f(x0) ∈ Min(f(M), D).

It is clear that Min(E,D) ⊂ WMin(E,D), so it is usual to give the necessary

conditions for the weak efficient points and the sufficient conditions for the efficient

points.
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From now on we consider normed spaces, and we will use the following tangent sets.

Tangent Sets

Definition 1.9. Let M ⊂ X and x0, v ∈ X .

(a) The tangent (Bouligand or contingent) cone to M at x0 is

T (M,x0) = {u ∈ X : ∃tn → 0+, ∃un → u such that x0 + tnun ∈M ∀n ∈ N}.

(b) The interior tangent (Ursescu) cone to M at x0 is

TI (M,x0) = {u ∈ X : ∃δ > 0 such that x0 + tu′ ∈M ∀t ∈ (0, δ] ∀u′ ∈ B(u, δ)}.

(c) The second order tangent set to M at (x0, v) is

T 2(M,x0, v) =
{

w ∈ X : ∃tn → 0+, ∃wn → w such that xn := x0 + tnv+ 1
2
t2nwn ∈

M ∀n ∈ N
}

.
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(d) The asymptotic second order tangent (Penot) cone to M at (x0, v) is

T ′′(M,x0, v) =
{

w ∈ X : ∃(tn, rn) → (0+, 0+),∃wn → w such that

tn/rn → 0, xn := x0 + tnv + 1
2tnrnwn ∈M ∀n ∈ N

}

.

The tangent cone T , the interior tangent cone TI and the second order tangent set

T 2, that is not a cone, are well-known.

The asymptotic second order tangent cone T ′′ has been introduced by Penot and

used by Penot [8] and Cambini, Martein and Vlach [1] in order to state optimality

conditions in scalar optimization.

Here we well use this second order tangent cone in vector optimization problems and

so we extend several results by Penot and Cambini et al..
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Next propositions collects some properties of these first and second order tangent

cones and sets.

Proposition 1.10. Let C ⊂ X be a convex set and x0 ∈ clC, then we have

i) T (C, x0) = cl cone(C − x0).

If moreover intC 6= ∅, then

ii) TI (intC, x0) = TI (C, x0) = int cone(C − x0).

iii) cl TI (C, x0) = T (C, x0).

If moreover C is a cone, then

iv) TI (C, 0) = TI (intC, 0) = intC.

Proposition 1.11. Let M be a subset of X, and let x0 ∈ clM , v ∈ X.

(i) T 2(M,x0, v) and T ′′(M,x0, v) are closed sets contained in cl cone[cone(M −

x0) − v] and T ′′(M,x0, v) is a cone.

(ii) If v /∈ T (M,x0), then T 2(M,x0, v) = T ′′(M,x0, v) = ∅.

(iii) T 2(M,x0, 0) = T ′′(M,x0, 0) = T (M,x0).
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Proposition 1.12. Let C ⊂ X be a convex set, x0 ∈ C, v ∈ T (C, x0). Then

(i) T 2(C, x0, v) + T (T (C, x0), v) ⊂ T 2(C, x0, v).

(ii) T (T (C, x0), v) = cl cone[cone(C − x0) − v].

(iii) If T ′′(C, x0, v) 6= ∅ (in particular, when X is finite dimensional), then

T ′′(C, x0, v) = cl cone[cone(C − x0) − v] and T 2(C, x0, v) ⊂ T ′′(C, x0, v).
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Directional Derivatives

Definition 1.13. Let f : X → Y and x0, v ∈ X .

(a) The Hadamard derivative of f at x0 in the direction v is

df(x0, v) = lim
(t,u)→(0+,v)

f(x0 + tu) − f(x0)

t
.

(b) The Dini derivative of f at x0 in the direction v is

Df(x0, v) = lim
t→0+

f(x0 + tv) − f(x0)

t
.

(c) f is Hadamard (resp. Dini) derivable at x0 if there exists df(x0, v) (resp. Df(x0, v))

for all v ∈ X .
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It is well-known that:

• If f is Fréchet differentiable at x0 (we denote the Fréchet differential by ∇f(x0))

then ∇f(x0)v = df(x0, v).

• If there exists df(x0, v), then there exists Df(x0, v) and both derivatives are the

same.

• In particular, if f is Lipschitz in a neighborhood of x0 and there exists Dini deriva-

tive, then there exists Hadamard derivative.

• If f is Hadamard derivable at x0, then f is continuous at x0 and df(x0, · ) is con-

tinuous on X (see Demjanov and Rubinov [9]). This property is not true for a Dini

type derivative.
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Next we recall the notion of Dini subdifferential.

Definition 1.14. Let f : X → R be Dini derivable at x0. The Dini subdifferential of

f at x0 is

∂Df(x0) = {ξ ∈ X∗ : 〈ξ, v〉 ≤ Df(x0, v) ∀v ∈ X}.

If Df(x0, · ) is a convex function, then there exists the Dini subdifferential.

If Df(x0, · ) is not a convex function, then ∂Df(x0) can be the empty set.
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2 Optimality Conditions in Vector Optimization

In this section we obtain very general first and second order optimality conditions for

a point to be a local efficient element of a nonempty set E ⊂ Y , using the first and

second order tangent sets.
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Theorem 2.1. If y0 ∈ E ⊂ Y is a local weak minimum of E (with respect to D),

then the following conditions are satisfied:

(i) T (E, y0) ∩ TI(−D, 0) = ∅,

(ii) T 2(E, y0, u) ∩ TI(− intD, u) = ∅ for all u ∈ T (E, y0) ∩ bd(−D),

(iii) T ′′(E, y0, u) ∩ TI(− intD, u) = ∅, for all u ∈ T (E, y0) ∩ bd(−D).
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Proof. (i) From proposition 1.10 (iv) we have that TI (−D, 0) = TI (− intD, 0).

Let us suppose that there exists v ∈ T (E, y0) ∩ TI (−D, 0).

As v ∈ T (E, y0), there exist sequences (yn) ⊂ E, (yn) → y0 and (tn) → 0+, such

that vn = yn−y0
tn

→ v, then

yn = y0 + tnvn ∈ E,∀n ∈ N. (4)

On the other hand, since v ∈ TI (− intD, 0), there exists δ > 0, such that

0 + tv′ ∈ − intD,∀t ∈ (0, δ], ∀v′ ∈ B(v, δ).

Now, for this δ > 0, there exists n0 ∈ N such that tn ∈ (0, δ] and vn ∈ B(v, δ), for

all n ≥ n0.

Making t = tn and v′ = vn, we have that −dn = tnvn ∈ − intD, ∀n ≥ n0 and

taking into account (4), it follows that

yn = y0 − dn ∈ E, dn ∈ intD,

in contradiction with the local weak minimality of y0.
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Proofs of parts (ii) and (iii) are similar taking into account the definitions, so we only

prove part (iii).

Suppose that there exists z ∈ T ′′(E, y0, u) ∩ TI (− intD,u). By the definition of

the set T ′′(E, y0, u) there exist sequences (tn, rn) → (0+, 0+) and zn → z such that

tn/rn → 0 and

yn := y0 + tnu + 1
2tnrnzn ∈ E ∀n ∈ N. (5)

On the other hand, as z ∈ TI (− intD, u), there exists δ > 0 such that

u + αz′ ∈ − intD ∀α ∈ (0, δ), z′ ∈ B(z, δ).

For this δ > 0 there exists an n0 ∈ N such that 1
2rn ∈ (0, δ) and zn ∈ B(z, δ) for all

n ≥ n0. So, u + 1
2
rnzn ∈ − intD, and consequently −dn := tnu + 1

2
tnrnzn ∈ − intD.

Thus, (5) can be written

yn = y0 − dn with dn ∈ intD,

in contradiction to the local weak efficiency of y0.
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Even in the Paretian case, (i) and (ii) may fail to detect non-efficient points.

Example 2.2. E = {(y1, y2) : y2 = −|y1|
3/2}, y0 = (0, 0), u = (−1, 0), D = R

2
+.

Then T (E, y0) = {(u1, u2) : u2 = 0}, T 2(E, y0, u) = ∅ and

T ′′(E, y0, u) = {(z1, z2) : z2 ≤ 0}.

Thus (i) and (ii) are satisfied, but (iii) is false. So, y0 /∈ LWMin(E,D).

y
2
 = − | y

1
 | 3 / 2

u y
0 y

1

y
2
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The theorem that follows establishes sufficient conditions for local efficiency, and

assuming that the space is finite dimensional shows that there is not gap with the

necessary conditions established in Theorem 2.1.

Here we use the closure of D instead of the interior of D.

Theorem 2.3. Let Y be a finite dimensional space and y0 ∈ E ⊂ Y . If one of

the following conditions holds:

(i) T (E, y0) ∩ cl(−D) = {0}.

(ii) For each u ∈ T (E, y0) ∩ cl(−D) \ {0} we have

T 2(E, y0, u) ∩ u⊥ ∩ − cl cone(D + u) = ∅, (6)

T ′′(E, y0, u) ∩ u⊥ ∩ − cl cone(D + u) = {0}., (7)

then y0 is a local efficient element of E
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Example 2.4. Let E = {(y1, y2) ∈ R
2 : y2 ≥ |y1|

3/2}, y0 = (0, 0), u = (−1, 0),

D = R
2
+.

Then T 2(E, y0, u) = ∅ and T (E, y0) = T ′′(E, y0, u) = R × R+.

Theorem 2.3(ii) applies and 2.3(i) is false.

So y0 ∈ LMin(E,D), and since E is a convex set, y0 ∈ Min(E,D).

y
2
 = | y

1
 | 3 / 2

u
y

0
y

1

y
2

E
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3 Optimality Conditions in Nonsmooth Vectorial Programming Prob-

lems

In this section, we apply the obtained results to a vectorial mathematical programming

problem with nonsmooth data. We suppose that f , g and h are Hadamard derivable

at x0 ∈M .
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In finite dimensional spaces, the linearized or critical cone (also called cone of descent

directions) is defined by considering the active inequality constraints at x0.

Here, we propose next critical cones.

For a feasible set given by S = {x ∈ X : g(x) ∈ −K, h(x) = 0} the critical cone

to S at x0 is defined by:

C(S, x0) = {v ∈ X : dg(x0, v) ∈ cl cone(−K − g(x0)), dh(x0, v) = 0}.

For the objective function f of problem (2), we define the critical cone and the strict

critical cone to f at x0 as follows:

C(f, x0) = {v ∈ X : df(x0, v) ∈ −D},

C0(f, x0) = {v ∈ X : df(x0, v) ∈ − intD}.
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In the following lemma we prove an interesting property of the Hadamard derivative.

Lemma 3.1. Let M ⊂ X, x0 ∈M and v ∈ X.

i) If there exist df(x0, v) and v = lim
n→∞

xn − x0

tn
, with tn → 0+ and xn ∈ M , then

lim
n→∞

f(xn) − f(x0)

tn
= df(x0, v).

ii) If f is Hadamard derivable at x0, then df(x0, ·)
(

T (M,x0)
)

⊂ T
(

f(M), f(x0)
)

.

Proof. If v ∈ T (M,x0), then there exist sequences (xn) → x0, (xn) ⊂ M and (tn) →

0+ such that vn = xn−x0
tn

→ v, so

df(x0, v) = lim
(t,u)→(0+,v)

f(x0 + tu) − f(x0)

t
= lim

n→∞

f(x0 + tnvn) − f(x0)

tn
= lim

n→∞

f(xn) − f(x0)

tn

and part (i) follows.

Since f is continuous at x0 we have that (f(xn)) → f(x0). Taking into account that

f(xn) ∈ f(M) and that (tn) → 0+, we deduce that df(x0, v) ∈ T (f(M), f(x0)), and

the proof is finished.
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As an application of Theorem 2.1 we prove the following first order necessary opti-

mality condition.

Theorem 3.2. Let f : X → Y be Hadamard derivable at x0 ∈ M . If x0 ∈

LWMin(f,M) for problem (2), then T (M,x0) ∩ C0(f, x0) = ∅.

Proof. If x0 ∈ LWMin(f,M) there exists a neighborhood U of x0 such that f(x0) =

y0 ∈ WMin(f(M ∩ U),D), and from theorem 2.1, we have that

T (f(M ∩ U), y0) ∩ TI (−D, 0) = ∅,

equivalent to T (f(M ∩U), y0)∩ (− intD) = ∅. Since T (M ∩U, x0) = T (M,x0), from

lemma 3.1 it follows that

df(x0, ·)(T (M,x0)) = df(x0, ·)(T (M ∩ U, x0)) ⊂ T (f(M ∩ U), y0),

consequently df(x0, ·)(T (M,x0)) ∩ (− intD) = ∅. Using the inverse of df(x0, ·), we

conclude that T (M,x0) ∩ C0(f, x0) = ∅ and the proof is finished.
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Next, we obtain, as corollaries of this theorem, several well-known necessary optimal-

ity conditions for scalar and multiobjetive optimization problems.

First we consider a nonsmooth scalar problem.

Corollary 3.3. Let us consider problem (2) with Y = R, D = R
+ and f

Hadamard derivable.

If x0 is a local minimum, then df(x0, v) ≥ 0 for all v ∈ T (M,x0).

Proof. The proof is an easy consequence of our theorem 3.2, there is not v ∈ T (M,x0)

such that df(x0, v) < 0, therefore

df(x0, v) ≥ 0, ∀v ∈ T (M,x0).
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Corollary 3.4. Let us consider problem (2) with Y = R, D = R
+, and let f be

Fréchet differentiable at x0 ∈ intM .

If x0 is a local minimum, then ∇f(x0) = 0.

Proof. Because x0 ∈ intM , we have that T (M,x0) = X and from theorem 3.2 it is

follows that

df(x0, v) ≥ 0, ∀v ∈ X.

Since f is Fréchet differentiable at x0 that condition is equivalent to

∇f(x0)(v) ≥ 0, ∀v ∈ X.

As ∇f(x0) is linear, we conclude that ∇f(x0) = 0.
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Corollary 3.5. Let us consider problem (2), with X = R
n, Y = R, D = R

+,

M = {x ∈ R
n : h(x) = 0} given by equality constraint, where h : R

n → R
r is

Fréchet differentiable at x0 ∈ M and continuous in a neighborhood of x0, such

that ∇h1(x0),∇h2(x0), . . . ,∇hr(x0) are linearly independent.

If x0 is a local minimum, then ∇f(x0) +
∑r

k=1 νk∇hk(x0) = 0.

Proof. Under these hypotheses, from the Lyusternik theorem, we have that

T (M,x0) = Ker∇h(x0).

This set is a linear subspace and now the result of theorem 3.2 is ∇f(x0)v ≥ 0, ∀v ∈

Ker∇h(x0), therefore ∇f(x0)v = 0, ∀v ∈ Ker∇h(x0), equivalent to:

∇f(x0) ∈ (Ker∇h(x0))
⊥ =

{

r
∑

k=1

νk∇hk(x0) : νk ∈ R

}

,

consequently, there exist multipliers ν1, ν2, . . . , νr ∈ R such that

∇f(x0) +
∑r

k=1 νk∇hk(x0) = 0.



The Iberian Conference in Optimization. Coimbra 2006. Vicente Novo 35

Corollary 3.6. Let us consider problem (2) with X = R
n, Y = R and D = R

+. Let

us suppose that M is given by inequality constraints, M = {x ∈ R
n : g(x) ≤ 0},

g : R
n → R

m is Fréchet differentiable at x0 ∈M and next constraint qualification

is verified:

(MFCQ) There exists v̄ ∈ R
n such that ∇gj(x0)v̄ < 0 ∀j ∈ J0,

where J0 = {j ∈ {1, . . . ,m} : gj(x0) = 0}.

If x0 is a local minimum, then there there exist µ1, . . . , µm ∈ R such that

µj ≥ 0, µjgj(x0) = 0, j = 1, . . . ,m,

∇f(x0) +
m

∑

j=1

µj∇gj(x0) = 0.

Proof. In these conditions, it is easy to prove that

T (M,x0) = C(M,x0) = {v ∈ R
n : ∇gj(x0)v ≤ 0 ∀j ∈ J0}.

From corollary 3.3, we have that ∇f(x0)v ≥ 0, ∀v ∈ C(M,x0) and, consequently,
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next system
{

∇f(x0)v < 0

∇gj(x0)v ≤ 0 ∀j ∈ J0

is incompatible in v ∈ R
n. Using the Farkas lemma, there exist µj ≥ 0, j ∈ J0 such

that ∇f(x0) +
∑

j∈J0
µj∇gj(x0) = 0.

Finally, choosing µj = 0 ∀j ∈ {1, . . . ,m} \ J0 the conclusion is obtained.
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Corollary 3.7. Let us consider problem (2) with X = R
n, Y = R

p and D = R
p
+.

Let us suppose that M = {x ∈ R
n : g(x) ≤ 0, h(x) = 0} is given by equality and

inequality constraints, the involved functions g : R
n → R

m and h : R
n → R

r are

Fréchet differentiable at x0 ∈M and next constraint qualification is satisfied:

(MFCQ)

{

∇hk(x0), k = 1, . . . , r, are linearly independent,

∃v̄ ∈ R
n such that ∇gj(x0)v̄ < 0 ∀j ∈ J0,∇hk(x0)v̄ = 0, k = 1, . . . , r,

where J0 = {j ∈ {1, . . . ,m} : gj(x0) = 0}.

If x0 ∈ LWMin(f,M), then there exist λ1, . . . , λp, µ1, . . . , µm, ν1, . . . , νr ∈ R such

that

λi ≥ 0, i = 1, . . . , p, λ 6= 0,

µj ≥ 0, µjgj(x0) = 0, j = 1, . . . ,m,
p

∑

i=1

λi∇fi(x0) +
m

∑

j=1

µj∇gj(x0) +
r

∑

k=1

νk∇hk(x0) = 0.
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4 A Multiplier Rule for a Nonsmooth Multiobjective Pareto Program

We consider next multiobjective Pareto program with equality and inequality con-

straints:

Min f(x) subject to x ∈ S, (8)

where

S = {x ∈ R
n : g(x) ≤ 0, h(x) = 0}, f : R

n → R
p, g : R

n → R
m, h : R

n → R
r.

We denote:

fi, i ∈ I = {1, 2, . . . , p}, gj, j ∈ J = {1, 2, . . . ,m}, hk, k ∈ K = {1, 2, . . . , r}, the

component functions of f , g and h, respectively

J0 = {j ∈ J : gj(x0) = 0} the set of active indexes of g at x0

G = {x ∈ R
n : g(x) ≤ 0}

H = {x ∈ R
n : h(x) = 0}

S = G ∩H ,
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and we consider the following conditions:

(H1) f and g are Hadamard derivable with convex derivative.

(H2) h is Fréchet differentiable, such that ∇h(x0) has maximal rank (linearly indepen-

dent ∇hk(x0), k ∈ K).
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In these conditions, the strict critical cones to the objective function and to the set

given by the inequality constrains are, respectively:

C0(f, x0) = {v ∈ R
n : df(x0, v) ∈ − int R

p
+} = {v ∈ R

n : dfi(x0, v) < 0, ∀i ∈ I},

C0(G, x0) = {v ∈ R
n : dgj(x0, v) < 0, ∀j ∈ J0}.

For the proof we need two previous results.

Theorem 4.1. (Jiménez, Novo [4]). Under the hypotheses (H1) and (H2), we have

that

C0(G, x0) ∩ Ker∇h(x0) ⊂ T (S, x0).
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Theorem 4.2. (Jiménez, Novo [3]). Let us suppose that ϕ1, ϕ2, . . . , ϕq : R
n → R

are sublinear functions and ψ1, ψ2, . . . , ψr : R
n → R are linear functions given by

ψk(u) = 〈ck, u〉, k ∈ K = {1, 2, . . . , r}.

Then one and only one of the following assertions are true

(a) There exist v ∈ R
n such that

{

ϕi(x0, v) < 0 ∀i = 1, 2, . . . q

ψk(v) = 0 ∀k = 1, 2, . . . k.

(b) There exists (ξ, ν) = (ξ1, ξ2, . . . , ξq, ν1, ν2, . . . , νk) ∈ R
q+r, ξ 6= 0, ξ ≥ 0, such

that

0 ∈

q
∑

i=1

ξi∂ϕi(0) +
r

∑

k=1

νkck.
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Theorem 4.3. Let us consider the multiobjective Pareto program with the pre-

ceding conditions (H1) and (H2).

If x0 ∈ LWMin(f,M), then there exists (λ, µ, ν) ∈ R
p × R

m × R
r such that

(λ, µ) ≥ 0, (λ, µ) 6= 0, (9)

0 ∈

p
∑

i=1

λi∂Dfi(x0) +

m
∑

j=1

µj∂Dgj(x0) +

r
∑

k=1

νk∇hk(x0), (10)

µjgj(x0) = 0, j = 1, . . . ,m. (11)

If, in addition, C0(S, x0) 6= ∅, then λ 6= 0.
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Proof. As x0 ∈ LWMin(f,M), from theorem 3.2 we have that

T (S, x0) ∩ C0(f, x0) = ∅, (12)

but, since in that case C0(f, x0) = {v ∈ R
n : dfi(x0, v) < 0, ∀i ∈ I}, condition (12)

means that there exists no v ∈ R
n such that

{

dfi(x0, v) < 0 ∀i ∈ I

v ∈ T (S, x0).
(13)

Now, from theorem 4.1 we have that

C0(G, x0) ∩ Ker∇h(x0) ⊂ T (S, x0).

So, taking into account (13), there exists no v ∈ R
n such that















dfi(x0, v) < 0 ∀i ∈ I

dgj(x0, v) < 0 ∀j ∈ J0

∇hk(x0)v = 0 ∀k ∈ K,

(14)

and using theorem 4.2 the conclusion follows choosing µj = 0 for all j ∈ J \ J0.
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For the second part, let us suppose that C0(S, x0) 6= ∅, that is, there exists w ∈ R
n

such that

dgj(x0, w) < 0, ∀j ∈ J0, ∇hk(x0)(w) = 0, ∀k ∈ K. (15)

Assume that λ = 0. Then conditions (9)-(11) imply that

∑

j∈J0

µjdgj(x0, u) +
r

∑

k=1

νk∇hk(x0)(u) ≥ 0, ∀u ∈ R
n

with µ 6= 0. For u = w we have a contradiction since from (15) it follows that

∑

j∈J0

µjdgj(x0, w) +

r
∑

k=1

νk∇hk(x0)(w) < 0.

Consequently λ 6= 0.
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