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Spain

IBERIAN CONFERENCE IN OPTIMIZATION

Coimbra 2006

IBERIAN CONFERENCE IN OPTIMIZATION, Coimbra 2006– p. 1/59



Abstract

Portfolio selection problem deals with how to form a satisfying portfolio,
taking into account the uncertainty involved in the behavior of the financial
markets.

Markowitz (1952) established the relationship between the mean and
variance of the investment in the framework of risk-return trade-off. Since
then a variety of enlarged and improved models have been developed in
several directions.

Some models of portfolio management combines probability theory and
optimization theory to represent the behavior of the economic agents.
These representations of return and risk have permitted to apply different
optimization tools to the portfolio management.
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Abstract

In this talk we provide some new models for portfolio selection in which the
returns on the securities are considered as fuzzy numbers rather than
random variables.

In order to find the portfolio that minimizes the risk in achieving a given level
of return we introduce different approaches. In some of them the expected
total return is considered otherwise is the fuzzy total return.

The return on each asset and their membership functions are described
using historical data and the risk of the investment is approximated by using
interval-valued means which evaluate the downside risk for a given
portfolio.

In order to illustrate the performance of our methods we have used weekly
returns corresponding to a selection of assets from the Spanish Stock
Market.
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Portfolio selection models

Modern portfolio selection theory usually deals with two opposite concepts:
risk aversion and maximization of returns. The main point of the modelling
of this problem is how the risk and assets profitability are defined and
measured.

Classic models consider an asset return as a random variable and its
profitability is defined as the mathematical expectation of that random
variable, while the risk of the portfolio is measured by means of the
variance.

Since the formulation of the mean-variance model a variety of enlarged and
improved models have been developed in several directions. One dealt with
alternative portfolio selection models, for instance, a mean-semi-variance
model, a mean-absolute deviation model or mean-downside risk models.
Another approach concerned the modelling of uncertainty and the
knowledge of the experts provided by fuzzy set theory.
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Portfolio selection models

In a standard formulation of Markowitz model (Mean-Variance) we have the
following quadratic programming problem, for a given expected return ρ:

Min
∑n

j=1

∑n
i=1 σijxixj

s.t.
∑n

j=1 xjE(Rj) ≥ ρ
∑n

j=1 xj = 1

lj 6 xj 6 uj j = 1 . . . n

xj is the percentage of investment in the asset jth

Rj is the random variable representing the return of asset jth

σij is the covariance between Ri and Rj

lj , uj represent the maximum and minimum amount of the total fund which
can be invested in the asset jth

IBERIAN CONFERENCE IN OPTIMIZATION, Coimbra 2006– p. 7/59



Portfolio selection models

According to Konno and Yamazaki (1991), the (MV) problem is equivalent to the
following model (MAD), which minimizes the sum of absolute deviations from the
averages associated with the xj choices, when the assets are multivariate
normally distributed:

Min E(|
∑n

j=1 Rjxj − E(
∑n

j=1 Rjxj)|)

s.t.
∑n

j=1 xjE(Rj) ≥ ρ
∑n

j=1 xj = 1

lj 6 xj 6 uj j = 1 . . . n

This approach permits to avoid one of the main drawbacks associated to
the solution of the Mean-Variance (MV) model: the input problem of
estimating 2n + n(n − 1)/2 parameters.

IBERIAN CONFERENCE IN OPTIMIZATION, Coimbra 2006– p. 8/59



Portfolio selection models

The (MAD) problem can be converted in a finite LP problem replacing its
objective function by:

Min (1/T )
∑T

k=1 yk

s.t. yk +
∑n

j=1(rjk − E(Rj))xj ≥ 0 k = 1 . . . T

yk −
∑n

j=1(rjk − E(Rj))xj ≥ 0 k = 1 . . . T

(1)

where the observation of the assets returns over T periods are given and
rjk denotes the return of the jth asset at the time k.

That linear model (LMAD) gives portfolios which involves fewer non-zero
components and hence reduces the numerous small transactions that are
likely to appear in the (MV) model.
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Portfolio selection models

Simaan (1997) stated that although the minimization of mean-absolute
deviation is close to the (MV) formulation they lead to two different efficient
sets. The divergence between the two models is due to the fact that each
model utilizes different sample statistics and consequently relies on a
different set drawn from the sample.

If the return is normally distributed the minimization of (LMAD) provides
similar results as the (MV) formulation but the normality assumption rarely
is verified in practice, then different portfolios can be obtained. Júdice et al
(2003) studied the stability of the portfolios, their expected return and the
computational time using both models in real-life capital market and
conclude that none model is superior to the other.

Both models have also been compared with out-of-sample data from shares
traded in the Stockholm Stock Exchange (Papahristodoulou and Dotzauer,
2004) and the (MV) model yields higher utility levels and higher degrees of
risk aversion in very similar computing times.
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Portfolio selection models

The dissatisfaction with the traditional notion of variance as a measure of risk is
due to the fact that it makes no distinction between gains and loses. In particular,
Markowitz (1959) also proposed to use the semi-variance

w(x) = E((máx{0, E(

n
∑

j=1

Rjxj) −

n
∑

j=1

Rjxj})
2).

From then, several optimization models which consider only the downside risk of
a portfolio have been introduced. If the risk is measured by means of the
mean-absolute semi-deviation, as proposed Speranza (1993), we have the
following downside risk function

w(x) = E(|mı́n{0,

n
∑

j=1

Rjxj − E(

n
∑

j=1

Rjxj)}|).

which can be easily evaluated in contrast with the complexity of computing the
semi-variance of a given portfolio.
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Portfolio selection with fuzzy returns

Different elements can be fuzzified for managing the portfolio selection problem.

Some authors use possibility distributions to model the uncertainty on the
returns (Tanaka y Guo, 1999; Carlsson et al, 2002; Huang et al, 2006).

Fuzzy numbers can also represent the decision maker aspiration levels for
the expected return and risk (Watada, 1997; Arenas et al, 2000).

The imperfect knowledge of the reality can be introduced by means of fuzzy
quantities and/or fuzzy constraints (Ortí et al, 2002; Leon et al, 2002).

In our approach we propose some fuzzy models for portfolio selection based on
two issues:

the approximation of the rates of return on securities by means of fuzzy
numbers, and

the perception that the downside risk is a more realistic description of the
preferences of the investor, because this risk function only penalizes the
non-desired deviations.
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Portfolio selection with fuzzy returns

We consider a capital market with n risk assets offering uncertain returns.

xj is the proportion of the total investment fund devoted to asset jth, the
uncertainty on the return of asset jth is modelled by means of fuzzy
quantities R̃j = (alj , auj , cj , dj)LR for j = 1, 2, . . . , n and Rf is the rate of
return on the risk-less asset.

The portfolio may be denoted by P (x) = {x1, x2, . . . , xn} and the total
return on the fuzzy portfolio is a convex linear combination of the individual
asset returns, as follows:

R̃P (x) =

n
∑

j=1

xjR̃j ,

Different definitions of the average of a fuzzy number can be used to
evaluate both the expected return and the risk of a given portfolio P (x).
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Portfolio selection with fuzzy returns

Dubois and Prade (1987) introduce the mean interval of a fuzzy number as
a closed interval bounded by the expectations calculated from its lower and
upper probability mean values.

Alternatively, Carlsson and Fullér (2001) define an interval-valued
possibilistic mean of fuzzy numbers, their definition being consistent with
the extension principle and also based on the set of level-cuts.

Concerning the measure of investment risk, we will use a fuzzy downside
risk function introduced in Leon et al. (2004), which evaluates the
mean-absolute semi-deviation with respect the total return:

wE(P (x)) = E(máx{0, E(R̃P (x)) − R̃P (x)}).
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Fuzzy background

A function L, R : [0, +∞) → [0, 1] is said to be a reference function of a
fuzzy number Ã = (x, µÃ(x)) if it satisfies the following conditions:
(1) L(x) = L(−x), R(x) = R(−x),
(2) L(0) = 1, R(0) = 1,
(3) L(x) and R(x) are strictly decreasing and upper semi-continuous on
supp(Ã) = {x : µÃ(x) > 0}.

The membership function of an LR-fuzzy number Ãi = (ali, aui, ci, di)LiRi

has the following form:

µÃi
(x) =















Li(
ali−x

ci
) if x 6 ali,

1 if ali 6 x 6 aui,

Ri(
x−aui

di
) if x > aui,

where ci (respectively di) is the left (right) spread and Li and Ri are the
reference functions defining the left and right shapes of Ãi.
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Fuzzy background

The aggregation of positive linear combinations of LR-fuzzy numbers when
their reference functions have the same shape, for all Li and Ri

respectively, using Zadeh’s extension principle, provides an LR-fuzzy
number with the corresponding reference function. But this is not the case
for differently shaped fuzzy numbers, where this aggregation is defined with
respect to the α-level sets of a fuzzy number Ã, i.e. [Ã]α = {t : µÃ(t) > α}.

The calculation of the fuzzy expected return and risk of a given portfolio
depends both on the characteristics of the LR-fuzzy numbers which
represent the individual returns and the definition of the average of a fuzzy
number.

We work with membership functions for the individual returns on the assets
from the power family and we evaluate all the shape parameters by means
of the reverse rating procedure using historical data (Leon and Vercher,
2004).
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Fuzzy background

Proposition 1 (Dubois and Prade, 1988). Let us assume that Ãi, for
i = 1 . . . n, are LR-fuzzy numbers with different shapes and that the addition
is based on the minimum operator, then the sum Ã =

∑n
i=1 xiÃi, for xi > 0,

fulfills [Ã]α =
∑n

i=1[xiÃi]
α for any α ∈ [0, 1].

Definition (Dubois and Prade, 1987). The interval-valued expectation of a
fuzzy quantity Ã is the interval E(Ã) = [E∗(Ã), E∗(Ã)] whose endpoints

are: E∗(Ã) =
∫ 1

0
(infÃα) dα and E∗(Ã) =

∫ 1

0
(supÃα) dα.

Definition (Carlsson and Fullér, 2001). The interval-valued possibilistic
mean of a fuzzy quantity Ã is the interval M(Ã) = [M∗(Ã), M∗(Ã)] whose

endpoints are: M∗(Ã) = 2
∫ 1

0
α(infÃα) dα and M∗(Ã) = 2

∫ 1

0
α(supÃα) dα.
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Fuzzy background

For instance, if the returns are modelled as trapezoidal fuzzy numbers the fuzzy
total return is also a number of this type and the relationship between the above
interval-valued mean definitions is the following:

Dubois and Prade (1987): E(R̃P (x)) = [Pl −
1
2 C, Pu + 1

2 D]

Carlsson and Fullér (2001): M(R̃P (x)) = [Pl −
1
3 C, Pu + 1

3 D]

P
~(x) = (Pl, Pu, C, D)LR

1

2

2

3

1

Pl(x) − C(x) Pl(x) Pu(x) Pu(x) + D(x)

E(P~)

M(P~)
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Fuzzy downside risk models

The fuzzy portfolio selection problem with downside risk can be formulated
under different assumptions, for instance:

(I) Min wE(P (x))

s.t. E(
∑n

j=1 xjR̃j) ≥ ρ0

∑n
j=1 xj = 1

lj 6 xj 6 uj j = 1 . . . n

(II) Min wE(P (x))

s.t.
∑n

j=1 xjR̃j & R̃f

∑n
j=1 xj = 1

lj 6 xj 6 uj j = 1 . . . n
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Fuzzy downside risk models

Objective function: minimizing the fuzzy downside risk

wE(P (x))
defuz
−→ linear function

wM(P (x))
defuz
−→ linear function

Constraint: achieving a given return

E(R̃P (x)) ≥ ρ
defuz
−→ linear constraint

M(R̃P (x)) ≥ ρ
defuz
−→ linear constraint

R̃P (x) & R̃f

fuzzy returns of the same shape
defuz
−→ linear constraints

fuzzy returns of different shape
defuz
−→ linear semi-infinite constraints
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Fuzzy downside risk models: expected return

Concerning the expected return we will use either the mean interval of a
fuzzy number:

E(Ã) = [E∗(Ã), E∗(Ã)] = [

∫ 1

0

(infÃα) dα,

∫ 1

0

(supÃα) dα]

or the interval-valued possibilistic mean:

M(Ã) = [M∗(Ã), M∗(Ã)] = [2

∫ 1

0

α(infÃα) dα, 2

∫ 1

0

α(supÃα) dα]

The measure of investment risk evaluates the mean absolute
semi-deviation with respect the total return:

wE(P (x)) = E(máx{0, E(R̃P (x)) − R̃P (x)}).
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Fuzzy downside risk models: expected return

For comparison of the interval-valued means we will use the following ordering
relations. Let A = [al, ar] a closed interval, m(A) = 1

2 (al + ar) and
hw(A) = 1

2 (ar − al), its midpoint and half-width, respectively.

Ishibuchi and Tanaka (1990): A ≤lr B if and only if al ≤ bl and ar ≤ br

Ishibuchi and Tanaka (1990): A ≤mw B if m(A) ≤ m(B) and
hw(A) ≥ hw(B)

Sengupta and Pal (2000): if m(A) ≤ m(B) it is said that A ≺ B

with the acceptability grade m(B)−m(A)
hw(B)+hw(A)

Proposition 2 ( Vercher et al, 2006). Let R̃P (x) = (Pl, Pu, C, D)LR be a LR-fuzzy
number with continuous strictly decreasing reference functions, such that L = R.

If C ≥ D then E(R̃P (x)) ≤mw M(R̃P (x))

If C < D then M(R̃P (x)) ≺ E(R̃P (x)) with a grade of acceptability in (0,1).
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Fuzzy downside risk models: expected return

Example in Carlsson et al. (2002): Three assets with trapezoidal form

R̃1 = (−10.5, 70, 4, 100)LR; R̃2 = (−8.1, 35, 4.4, 54)LR; R̃3 = (−5, 28, 11, 85)LR

Applying an algorithm for finding the exact optimal solution in the sense of
maximizing a given utility score, the authors find the following portfolios:

share total return

x1 x2 x3 R̃P (x)

P1 0.124 0.373 0.503 (-6.84, 35.82, 7.67, 75.30)LR

P2 0.163 0.837 0.000 (-8.50, 40.71, 4.33, 61.50)LR

P3 0.103 0.000 0.897 (-5.57, 32.33, 10.28, 86.55)LR

P4 0.000 0.000 1.000 (-5.00, 28.00, 11.00, 85.00)LR

Being P1 the optimal portfolio.
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Fuzzy downside risk models: expected return

Comparison of the expected returns for the four feasible portfolios:

E(R̃P (x)) m(E(R̃P )) hw(E(R̃P )) M(R̃P (x)) m(M(R̃P )) hw(M(R̃P ))

P1 [-10.67,73.47] 31.4 42.07 [-9.40,60.92] 25.76 35.16

P2 [-10.66,71.45] 30.4 41.06 [-9.44,61.20] 25.63 35.57

P3 [-10.71,75.60] 32.4 43.16 [-8.99,61.17] 26.09 35.08

P4 [-10.50,70.50] 30.0 40.50 [-8.67,56.33] 23.83 32.50

Using E(R̃P (x)): E(R̃P4) ≺ E(R̃P2) ≺ E(R̃P1) ≺ E(R̃P3).

Using M(R̃P (x)): M(R̃P1) ≤lr M(R̃P3), M(R̃P2) ≤mw M(R̃P1),
M(R̃P2) ≤mw M(R̃P3) and M(R̃P4) ≺ M(R̃P3).

Where M(R̃Pi) ≺ E(R̃Pi) for i = 1, 2, . . . , 4

Then the portfolio with the best expected return is P3, which contradicts the
results in Carlsson et al. (2002).
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Fuzzy downside risk models: Objective function

On the other hand, concerning the evaluation of the fuzzy downside risk for
returns modelled by means of trapezoidal fuzzy numbers we have that

interval-valued mean

wE(P (x)) = E(máx{0, E(R̃P (x)) − R̃P (x)}) =

[

0, Pu − Pl +
1

2
(C + D)

]

interval-valued possibilistic mean

wM(P (x)) = M(máx{0, M(R̃P (x)) − R̃P (x)}) =

[

0, Pu − Pl +
1

3
(C + D)

]
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Fuzzy downside risk models: Objective function

But, if we have individual assets whose returns are modelled by means of
LR-fuzzy numbers with different shapes we obtain new formulas for the
downside risk. For instance:

Proposition 3 (Vercher et al, 2006 ). Let us denote by R̃j = (alj , auj , cj , dj)LjRj

the fuzzy return on the jth asset, where Lj (respectively Rj) are power reference
functions with a different parameter pj (respectively qj), for j = 1, 2, . . . , n. Let

R̃P (x) =
∑n

j=1 xjR̃j , for xj ≥ 0, then:

a) E(R̃P (x)) = [
n

∑

j=1

(alj − cj

pj

pj + 1
)xj ,

n
∑

j=1

(auj + dj

qj

qj + 1
)xj ]

b) wE(P (x)) = [0,

n
∑

j=1

(auj − alj + cj

pj

pj + 1
+ dj

qj

qj + 1
)xj ].
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Fuzzy downside risk models: Objective function

Note that in all cases the interval representation of the fuzzy downside risk
corresponds to an interval whose lower endpoint is zero. Then, we decide
to select as objective function minimizing the width of the interval of the
mean-absolute semi-deviation. That is to minimize the upper limit of
wE(P (x)) which also permits us to ensure that the non-desired deviations
on the expected return are minimal.

Concerning the defuzzification of the interval-valued mean of the expected
return of the portfolio in the fuzzy constraint we decide to select as left
hand-side of the constraint the midpoint of the mean interval.

In fact, we are looking for a portfolio whose expected return is an interval
with minimum width and midpoint greater than the achieved return (ρ).

IBERIAN CONFERENCE IN OPTIMIZATION, Coimbra 2006– p. 30/59



Outline

Portfolio selection models

Portfolio selection with fuzzy returns

Fuzzy background

Fuzzy downside risk models

Portfolio selection with linear programs

Portfolio selection with semi-infinite optimization

Numerical examples

IBERIAN CONFERENCE IN OPTIMIZATION, Coimbra 2006– p. 31/59



Portfolio selection with linear programs

(P1) min

n
X

i=1

„

aui − ali +
1

2
(ci + di)

«

xi

s.t.
n

X

i=1

„

1

2
(aui + ali) +

1

4
(di − ci)

«

xi ≥ ρ

(P2) min
n

X

i=1

„

aui − ali +
1

3
(ci + di)

«

xi

s.t.

n
X

i=1

„

1

2
(aui + ali) +

1

6
(di − ci)

«

xi ≥ ρ

n
X

i=1

xi = 1

li ≤ xi ≤ ui, i = 1, . . . , n
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Portfolio selection with linear programs

Example in Carlsson et al. (2002) revisited. For ρ = 30, l1 = l2 = l3 = 0 and
u1 = u2 = u3 = BOUND, for different BOUND values.

Using the definition of expected return due to Dubois and Prade (1987).

BOUND 0.4 0.5 0.6 0.8 1.0

x1 0.20 0.07 0.06 0.03 0.00

x2 0.40 0.43 0.34 0.17 0.00

x3 0.40 0.50 0.60 0.80 1.00

m(E(R̃P (x))) 33.1 30.0 30.0 30.0 30.0

wE(P (x)) 87.8 81.1 81.1 81.1 81.0

m(M(R̃P (x)))

wM(P (x))

So, the procedure minimizes the width of the interval wE(P (x)), s.t the constraint
m(E(R̃P (x))) ≥ ρ, that is (P1).

IBERIAN CONFERENCE IN OPTIMIZATION, Coimbra 2006– p. 33/59



Portfolio selection with linear programs

Example in Carlsson et al. (2002) revisited. For ρ = 30, l1 = l2 = l3 = 0 and
u1 = u2 = u3 = BOUND, for different BOUND values.

Using the definition of expected return due to Dubois and Prade (1987).

BOUND 0.4 0.5 0.6 0.8 1.0

x1 0.20 0.07 0.06 0.03 0.00

x2 0.40 0.43 0.34 0.17 0.00

x3 0.40 0.50 0.60 0.80 1.00

m(E(R̃P (x))) 33.1 30.0 30.0 30.0 30.0

wE(P (x)) 87.8 81.1 81.1 81.1 81.0

m(M(R̃P (x))) 27.4 24.6 24.4 24.1 23.8

wM(P (x)) 74.1 67.7 67.2 66.1 65.0

So, the procedure minimizes the width of the interval wE(P (x)), s.t the constraint
m(E(R̃P (x))) ≥ ρ, that is (P1).
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Portfolio selection with linear programs

Example in Carlsson et al. (2002) revisited. For ρ = 30, l1 = l2 = l3 = 0 and
u1 = u2 = u3 = BOUND, for different BOUND values.

Using the definition of expected return due to Carlsson and Fullér (2001).

BOUND 0.4 0.5 0.6 0.8 1.0

x1 0.31 0.30 0.29 0.28 0.28

x2 0.29 0.20 0.11 0.00 0.00

x3 0.40 0.50 0.60 0.72 0.72

m(E(R̃P (x)))

wE(P (x))

m(M(R̃P (x))) 30.0 30.0 30.0 30.0 30.0

wM(P (x)) 79.8 79.6 79.4 79.1 79.1

So, the procedure minimizes the width of the interval wM(P (x)), s.t the
constraint m(M(R̃P (x))) ≥ ρ, that is (P2).
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Portfolio selection with linear programs

Example in Carlsson et al. (2002) revisited. For ρ = 30, l1 = l2 = l3 = 0 and
u1 = u2 = u3 = BOUND, for different BOUND values.

Using the definition of expected return due to Carlsson and Fullér (2001).

BOUND 0.4 0.5 0.6 0.8 1.0

x1 0.31 0.30 0.29 0.28 0.28

x2 0.29 0.20 0.11 0.00 0.00

x3 0.40 0.50 0.60 0.72 0.72

m(E(R̃P (x))) 36.1 36.3 36.5 36.7 36.7

wE(P (x)) 94.4 94.8 95.1 95.5 95.5

m(M(R̃P (x))) 30.0 30.0 30.0 30.0 30.0

wM(P (x)) 79.8 79.6 79.4 79.1 79.1

So, the procedure minimizes the width of the interval wM(P (x)), s.t the
constraint m(M(R̃P (x))) ≥ ρ, that is (P2).
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Portfolio selection with semi-infinite optimization

The objective function may be any of the two mean-valued definitions E or M ,
and w.r.t. the achieving return:

(PI) Min wE(P (x))

s.t.
∑n

j=1 xjR̃j & R̃f

∑n
j=1 xj = 1

lj 6 xj 6 uj j = 1 . . . n

(PII) Min wM(P (x))

s.t.
∑n

j=1 xjR̃j & R̃f

∑n
j=1 xj = 1

lj 6 xj 6 uj j = 1 . . . n
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Portfolio selection with semi-infinite optimization

Consider n risk assets with returns modelled by means of fuzzy quantities and a
risk-free asset R̃f

Min wE(P (x))

s.t.
∑n

j=1 xjR̃j & R̃f

∑n
j=1 xj = 1

lj 6 xj 6 uj j = 1 . . . n

The reference functions belong to the power family with parameters pj and
qj : Lj(r) = max{0, 1 − |r|pj}, pj > 0 and Rj(r) = max{0, 1 − |r|qj}, qj > 0.

The α-level sets of the total return of the fuzzy portfolio for α in [0,1] are:

[R̃P (x)]α = [

n
∑

j=1

(alj − cj(1 − α)
1

pj ))xj ,

n
∑

j=1

(auj + dj(1 − α)
1

qj ))xj ]
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Portfolio selection with semi-infinite optimization

For comparison of fuzzy quantities we will use the following ordering relation.

Definition (Tanaka et al, 1984). Let M̃ and Ñ be two fuzzy numbers and h a real
number in [0, 1]. Then, M̃ &h Ñ if and only if for all α ∈ [h, 1] the following
statements hold:

inf{s : µM̃ (s) ≥ α} ≥ inf{t : µÑ (t) ≥ α},

sup{s : µM̃ (s) ≥ α} ≥ sup{t : µÑ (t) ≥ α}.

In fuzzy linear programs to use this ordering relation implies that each fuzzy
constraint is replaced by two ordinary constraints indexed on a closed
interval in the real line.

For fuzzy numbers of the same shape the accomplishment of the above
constraints can be tested with a finite number of points.
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Portfolio selection with semi-infinite optimization

Consider a trapezoidal fuzzy number for the risk-free value:
[R̃f ]α = [Rlf − c0(1 − α), Ruf + d0(1 − α)]

The fuzzy constraint
∑n

j=1 xjR̃j &h R̃f becomes two linear semi-infinite
constraints:

n
∑

j=1

(alj − cj(1 − α)
1

pj )xj ≥ Rlf − c0(1 − α), α ∈ [h, 1],

and

n
∑

j=1

(auj + dj(1 − α)
1

qj )xj ≥ Ruf + d0(1 − α), α ∈ [h, 1].

This ordering relation permits us to consider different possibility levels
h ∈ [0, 1], which facilitates the incorporation of the investor’s opinion with
respect to the accomplishment of the fuzzy constraint.
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Portfolio selection with semi-infinite optimization

Definition (Vercher, 2006). Let R̃P (x) =
∑n

j=1 xjR̃j , for xj ≥ 0 the total fuzzy

return of the portfolio and R̃f = (Rlf , Ruf , c0, d0)LR the trapezoidal fuzzy number

which represents the returns on the risk-free asset, then R̃P (x) �γ R̃f for a
threshold γ ∈ [0, 1] if the following statements hold for all α ∈ [0, 1] :

(i)

n
∑

j=1

(auj + dj(1 − α)
1

qj )xj ≥ Ruf + d0(1 − α),

(ii) A≺([R̃P (x)]α, [R̃f ]α) ≤ γ.

The acceptability index A≺ is (Sengupta and Pal, 2000):

A≺(A, B) =
m(B) − m(A)

hw(A) + hw(B)

where hw(A) + hw(B) 6= 0 and m(.) and hw(.) evaluate the midpoint and the
half-width of the interval, respectively.
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Portfolio selection with semi-infinite optimization

Let us present the semi-infinite representation of condition

A≺([R̃P (x)]α, [R̃f ]α) ≤ γ

in terms of the α-cuts:

(1 + γ)

n
∑

j=1

fuj(α)xj + (1 − γ)

n
∑

j=1

flj(α)xj ≥ (1 − γ)bu(α) + (1 + γ)bl(α),

for all α in [0, 1].

Where

flj(α) = alj − cj(1 − α)
1

pj , fuj(α) = auj + dj(1 − α)
1

qj ,
bl(α) = Rlf − c0(1 − α) and bu(α) = Ruf + d0(1 − α).
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Portfolio selection with semi-infinite optimization

(LSIP) Min
∑n

j=1 wjxj

s.t. zi(x, α) ≥ 0, α ∈ [h, 1] i ∈ q
∑n

j=1 xj = 1

lj 6 xj 6 uj j = 1 . . . n

where the set of SIP constraints is either q = {l, u} or q = {u, γ}.

zl(x, α) =

n
∑

j=1

flj(α)xj − bl(α) ≥ 0,

zu(x, α) =

n
∑

j=1

fuj(α)xj − bu(α) ≥ 0,

zγ(x, α) = (1 + γ)

n
∑

j=1

fuj(α)xj + (1 − γ)

n
∑

j=1

flj(α)xj − bγ(α) ≥ 0.
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Portfolio selection with semi-infinite optimization

The slack constraints zl(x, α) and zu(x, α) have a finite representation if the
return on each security has been modeled by means of LR-fuzzy number
of the same shape (triangular, trapezoidal, power with identical parameter
value, etc.).

We have established that the new condition zγ(x, α) has also a finite
representation if the LR-fuzzy numbers which model the returns on all the
assets have a trapezoidal form.

Proposition 4 (Vercher, 2006). Let M̃ = (ml, mu, c1, d1)LR and
Ñ = (nl, nu, c2, d2) be two trapezoidal fuzzy numbers. Then
A≺([Ñ ]α, [M̃ ]α) ≤ γ for all α ∈ [0, 1] if and only if the inequality holds for
α ∈ {0, 1}.

Hence, in some cases the linear semi-infinite programming problem can be
reduced to a finite one, but not always.
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Portfolio selection with semi-infinite optimization

We assume that (LSIP) is a consistent problem for a given h ∈ [0, 1] and
denote its feasible set by F .

In contrast to finite linear programs, semi-infinite problems do not
necessarily have the strong duality property unless additional constraint
qualifications hold (Goberna and Lopez, 1998).

The Slater‘s constraint qualification for (LSIP) assumes the existence of a
strictly feasible primal solution: "There are some x̂ ∈ F such that
lj < x̂ < uj for j = 1, . . . n and zi(x̂, α) > 0 for all α in [h, 1], i ∈ q."

Karush-Kuhn-Tucker type optimality conditions for (LSIP) are established
along the same lines as in standard mathematical programming, both for
q = {l, u} and q = {u, γ}.
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Portfolio selection with semi-infinite optimization

Concerning the criterion used to determine either the optimality of the current
iterate or the search direction, we will follow the next result:

Proposition 5 (Vercher, 2006). Let x ∈ F and suppose that the Slater constraint
qualification holds. Then x is optimal for the (LSIP) problem if and only if
v(A(x)) = 0, where v(.) is the objective value of the following auxiliary linear
program:

A(x) Min
∑n

j=1 wjdj

s.t.
∑n

j=1 fij(α)dj ≥ 0, α ∈ Zi(x), i ∈ q

eT d = 0

dj ≥ 0 j ∈ Jl(x)

dj ≤ 0 j ∈ Ju(x)

−1 ≤ dj ≤ 1 j = 1 . . . n
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Portfolio selection with semi-infinite optimization

There are many semi-infinite programming algorithms available for solving
(LSIP) problems. We will follow the hybrid method developed in Leon and
Vercher (2004).

Our hybrid method, which is a primal one, alternates purification steps and
feasible-direction descent steps. The purification phase is used to proceed
from a feasible solution to an improved extreme point. The descent rules
may be used for every feasible solution, applying the above optimality
criterion to generate a descent direction, or to stop.

Concerning the particularities of these semi-infinite programs, which
correspond to fuzzy portfolio selection problems, the more important one is
the boundedness of the feasible set, which implies that there are no
recession directions of F .
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Numerical examples

Example 1.a

We consider the weekly returns on 6 assets of the IBEX35, the most
popular index of the Spanish Stock Market. We have taken the observations
of the Wednesday prices as an estimate of the weekly prices, thus the
return on asset jth during the kth week is defined as follows:

rkj =
p(k+1)j − pkj

pkj

where pkj is the price of the asset jth on the Wednesday of the kth week.

We use the sample percentiles Pk to approximate the core, the spreads and
the parameter value p of the fuzzy returns on the assets. We set the core of
the fuzzy return as the interval [P50, P60] and the quantities P50 − P10 and
P95 − P60 as the left and right spreads, respectively. We have considered
P30 and P75 as the values with a fifty-fifty possibility of being realistic in
order to evaluate pj and qj , by means of the reverse rating procedure.
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Numerical examples

Specifications of the fuzzy weekly returns on the assets.

returns alj auj cj dj pj qj wj

R̃1 0,0065 0,0190 0,0640 0,0858 0,72 0,41 0,064203

R̃2 0,0063 0,0214 0,0782 0,1150 0,56 0,53 0,083069

R̃3 0,0029 0,0112 0,0437 0,0548 0,72 0,62 0,047520

R̃4 0,0092 0,0286 0,0582 0,0684 0,84 0,61 0,071897

R̃5 0,0092 0,0181 0,0546 0,0602 0,64 0,51 0,050516

R̃6 0,0020 0,0110 0,0561 0,0922 0,83 0,62 0,069737

We assume that the investor decided to impose both an expected profit by
means of R̃f = (0, 0,007, 0,005, 0,0005)LR and a specified portfolio
diversification defined by a set of given bounds.
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Numerical examples

First, let us set the bounds uj = 0,7 and lj = 0, for all j.

Optimal solutions for different possibility grades

h x1 x2 x3 x4 x5 x6 obj. value

0,8 0 0 0,700 0 0,300 0 0,048419

0,75 0 0 0,653 0 0,347 0 0,048560

0,72 0 0 0,497 0 0,503 0 0,049027

0,7 0 0 0,384 0 0,616 0 0,049367

Here we are using the ranking relation that implies to order the lower and
upper limits of all the α-level cuts.
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Numerical examples

Figure 1 shows the relative position of the fuzzy numbers R̃f and R̃P (x∗),
where the optimal portfolio is that obtained for the possibility grade h = 0,7.

The core of the optimal portfolio is [0,0068, 0,0154], where the left and right
spreads are 0,0504 and 0,0580, respectively.
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Numerical examples

Example 1.b

This example emphasizes the importance of obtaining portfolios that
overcome the upper limits of R̃f without considering its lower limits.

Table 2 shows the results for the portfolio selection problem when the new
ordering relation with γ = 0,001 and h = 0.

Optimal solutions for different upper bounds

uj x1 x2 x3 x4 x5 x6 obj. value

0,7 0 0 0,7 0 0,3 0 0,048419

0,6 0 0 0,6 0 0,4 0 0,048718

0,5 0 0 0,5 0 0,5 0 0,049018

0,4 0,2 0 0,4 0 0,4 0 0,052055

0,3 0,3 0 0,3 0 0,3 0,1 0,055645

0,2 0,2 0 0,2 0,2 0,2 0,2 0,060775

IBERIAN CONFERENCE IN OPTIMIZATION, Coimbra 2006– p. 54/59



Numerical examples

Notice that every solution verifies R̃P (x∗) �γ R̃f for α ∈ [0, 1]. The graph
shows the grade of unfulfillment of the lower semi-infinite constraint for the
optimal solution obtained with uj = 0,3

The core of the optimal portfolio P (x∗) is [0,0058, 0,0156], where the left and
right spreads are 0,0543 and 0,0695, respectively.
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Conclusions

First, taking the uncertainty of returns on assets in a financial market as
LR-fuzzy numbers we generalize the mean-absolute semi-deviation using
both interval-valued probabilistic and possibilistic means. Then based on a
fuzzy downside risk measure we formulate new portfolio selection problems
which can be solved using linear programming problems.

Secondly we develop a linear semi-infinite programming approach to the
fuzzy portfolio selection problem, where the returns on assets are modeled
by nonlinear LR-fuzzy numbers and the investment risk is evaluated by
means of a fuzzy downside risk function.

We present some results and the explicit formulation of the semi-infinite
program for fuzzy numbers belonging to the power family. Our semi-infinite
approach could be a good alternative in those situations in which the
description of the data set is made with LR-fuzzy numbers of different
shapes. In all these situations semi-infinite optimization could be a useful
methodology to find suitable portfolios.
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