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1. Road Map to Cryptology

Cryptology is the study of:

Cryptography, the design of secret ciphers.
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1. Road Map to Cryptology

Cryptology is the study of:

Cryptography, the design of secret ciphers.

Cryptoanalysis, the analysis of secret ciphers.
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Cryptography

Cryptography is the study of mathematical techniques to aspects
of

(i) Confidentiality during point to point communication.
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Cryptography

Cryptography is the study of mathematical techniques to aspects
of

(i) Confidentiality during point to point communication.

(ii) Data integrity (it can be verified that the data is the same as
the original);

(iii) Authentication (e.g. digital signature);

(iv) Access control (e.g. passwords, PIN numbers).
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Historical remarks: Caesar ciphers

Caesar used to communicate with his generals using ‘cyclic
substitution ciphers’:
For this identify the alphabet with set Z26:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0102030405060708091011121314151617181920212223242526

A Caesar cipher is then of the form:

Z26 −→ Z26

x 7−→ x+k

where k is a secretly agreed number: 1≤ k≤ 25.
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Example Caesar

Caesar sent a messenger to one of his generals in Gaul. The
message was encrypted. It reads:
YWLPQNA WOPANET WJZ KXAHET DEY AP JQJY FQHEQO
YWAOWN
A simple ‘brute force attack’ checking all 25 possibilities will reveal
the text:
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Example Caesar

Map Resulting Plaintext

x 7→ x+1 ZXMQROB ...
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Map Resulting Plaintext
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Example Caesar

Map Resulting Plaintext

x 7→ x+1 ZXMQROB ...

x 7→ x+2 AYNRSPC ...

x 7→ x+3 BZOSTQD ...

x 7→ x+4 CAPTURE ASTERIX AND OBELIX ...

Alternatively it is possible to do a frequency analysis. In English,
the most frequently used letters are, in decreasing order of
frequency,

E, T, A, O, I, N, S, R, H, L, D, ...
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Vigenère ciphers

Around the year 1600, Vigenère introduced the vector version of
the substitution cipher. This involved a mapping of

(Z26)
n −→ (Z26)

n











x1

x2
...

xn











7−→











x1 +k1

x2 +k2
...

xn +kn











Vigenère ciphers can easily be broken with some frequency
analysis.
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Hill ciphers

In 1931, D. Hill introduced Hill Ciphers. A Hill Cipher utilizes an
n×n matrix which is invertible over Z26. Similar to the vector
version, the Hill Cipher is a map

(Z26)
n −→ (Z26)

n

defined by
x 7−→ Ax+k = y.

So, in the Hill Cipher, the recipient receives y, and if they are told
A−1 and k they can compute x.

Hill ciphers are weak because of plaintext attacks.
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Example Hill cipher

Alice and Bob use a Hill cipher to exchange messages. Their
cipher is of the form:







m1

m2

m3






7−→







4 18 21
24 3 7
11 0 3













m1

m2

m3






+







11
0
20






.

Help to decipher Bob the following message he received from
Alice:







22
12
10






,







16
12
20






,







19
0
21






,







11
9
19






.

Leiria, September 5, 2006 – p.10/82



Example Hill cipher

To invert the Hill cipher, let [x1x2x3] denote the cipher-text. We
then compute:







m1

m2

m3






= A−1







x1−11
x2−0
x3−20







Doing this, we obtain: “SEE” “YOU” “ATN” “OON’.
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Kerckhoff’s Principle

In 1883, Flemish linguist Auguste Kerckhoff published a
groundbreaking article that is still widely cited because of the
stated principle:

The security of a cryptosystem must not depend on
keeping secret the crypto algorithm. Instead the
security should depend only on keeping the key secret.

No security by obscurity.
In the article Kerckhoff formulated six principles:
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Kerckhoff’s Principle

The system must be practically, if not mathematically,
indecipherable;
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Kerckhoff’s Principle

The system must be practically, if not mathematically,
indecipherable;
It must not be required to be secret, and it must be able to fall
into the hands of the enemy without inconvenience;
Its key must be communicable and retainable without the help
of written notes, and changeable or modifiable at the will of the
correspondents;
It must be applicable to telegraphic correspondence;
It must be portable, and its usage and function must not require
the concourse of several people;
Finally, it is necessary, given the circumstances that command
its application, that the system be easy to use, requiring neither
mental strain nor the knowledge of a long series of rules to
observe.
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Provable security

In 1949 Claude Shannon [Sha49] published a fundamental result:

There exist unconditionally and
provable secure cryptographic
protocols.

Practically this meant that there exist cryptographic protocols
which cannot be broken even if somebody has unlimited
computing power.
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Claude Shannon
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Perfect secrecy and Main Theorem

Definition 1 A crypto system hasperfect secrecyor is
unconditionally secureif

Pr(m | c) = Pr(m).

Theorem 2 [Sha49] Let |M| = |K| and assume Pr(m) > 0 for all
m∈ M. A secret key crypto system has perfect secrecy if and only
if the random variable K is uniformly distributed and if for each
message m and each cipher c there is a unique key k such that

ϕ(m,k) = c.
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Perfect secrect ciphers

A Consequence of Shannon’s result is that in perfect secret
system the uncertainty (=entropy) of the secret key has to be
larger than the uncertainty of a message.
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The ‘Vernam-One Time Pad’
Encryption:

Binary Text: 1 0 0 1 0 1 0 0 1 0

Secret Key: 0 0 1 0 1 1 1 1 0 0

Message: 1 0 1 1 1 0 1 1 1 0
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The ‘Vernam-One Time Pad’
Encryption:

Binary Text: 1 0 0 1 0 1 0 0 1 0

Secret Key: 0 0 1 0 1 1 1 1 0 0

Message: 1 0 1 1 1 0 1 1 1 0

Decryption:

Message: 1 0 1 1 1 0 1 1 1 0

Secret Key: 0 0 1 0 1 1 1 1 0 0

Binary Text: 1 0 0 1 0 1 0 0 1 0

Problem: The secret key is required to be as long as the message.
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Recursive keys

One way to keep the secret key ‘small’ is through some (nonlinear)
recurrence relation:

sn+d = f (sn+d−1, . . . ,sn), n = 1,2, . . .

having initial conditions s1 = a1, . . . ,sd = ad.
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Recursive keys

One way to keep the secret key ‘small’ is through some (nonlinear)
recurrence relation:

sn+d = f (sn+d−1, . . . ,sn), n = 1,2, . . .

having initial conditions s1 = a1, . . . ,sd = ad.
Example 3 Fibonacci sequencesn+2 = sn+1 +sn with initial
conditions1 = 1, s2 = 1:

overF3: 1,1,2,0,2,2,1,0,1,1

overF5: 1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1
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Linear Feedback Shift Register

If the recurrence relation is linear, i.e. if it has the form:

sn+d = cd−1sn+d−1 + · · ·+c0sn, n = 1,2, . . .

then it is possible to implement the recurrence relation with a
‘linear feedback shift register’ (Almost Enigma).

Because of the Berlekamp-Massey algorithm [Mas69] linear
feedback shift register turned out to be insecure.
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Enigma
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Enigma
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Stream ciphers

Nonlinear recursive secret key systems, so called stream ciphers
are still in use. Mathematically the key is generated through a
(nonlinear) recurrence relation:

sn+d = f (sn+d−1, . . . ,sn), n = 1,2, . . .

The most famous stream cipher is RC4 designed by Ron Rivest for

RSA security.

Leiria, September 5, 2006 – p.24/82



2. The Data Encryption Standard DES

In the sequel let X,Y be arbitrary sets.
Definition 4 A one-way function is a mapϕ : X −→Y having the
property that for allx∈ X, f (x) can be efficiently computed. In
the same time it is practically not possible to computex∈ ϕ−1(y)
for almost ally∈Y.
One-way functions are used e.g.:

For password storage

As ‘hash functions’
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One way functions with secret key

M: Message space.
K: Key space.
C: Cipher space.
Definition 5 A One way functions with secret key is a map
ϕ : M×K −→C
together with a mapψ : C×K −→ M such that:

1. ψ(ϕ(m,k),k) = m for all (m,k) ∈ M×K.

2. The induced mapsϕm : K −→C, k 7−→ ϕ(m,k)
ϕk : M −→C, m 7−→ ϕ(m,k)

are one way functions.
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Data Encryption Standard DES

1973: National Institute of Standards asks for the
construction of a one way function with secret key
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Data Encryption Standard DES

1973: National Institute of Standards asks for the
construction of a one way function with secret key

1975: IBM proposes ‘Lucipher DES’ which has a key size of
2128.

1977: DES becomes the standard with a key size of 256.
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DES
DES works with:

|M| = 264, |K| = 256, |C| = 264.

For a fixed m∈ M the one-way function K −→C,k 7−→ ϕ(m,k) is
used in the Unix system for password storage.

Nota Bene:
The key size of K is less than 1017, much too small

for the current computers.
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3. The Advanced Encryption Standard

In the mid 90th the National Institute of Standards asks for an

‘Advanced Encryption Standard’ (AES):

http://www.nist.gov/aes
August 9, 1999 - NIST Announces the AES Finalist Candidates for

Round 2:

MARS, RC6, Rijndael, Serpent and Twofish

November 26, 2001 - NIST announces that Rijndael has been

selected as the proposed AES
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Federal Information

Processing Standards Publication 197

November 26, 2001

Announcing the

ADVANCED ENCRYPTION STANDARD (AES)

Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National

Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce

pursuant to Section 5131 of the Information Technology Management Reform Act of 1996

(Public Law 104-106) and the Computer Security Act of 1987 (Public Law 100-235).

1. Name of Standard.  Advanced Encryption Standard (AES) (FIPS PUB 197).

2. Category of Standard.  Computer Security Standard, Cryptography.

3. Explanation.  The Advanced Encryption Standard (AES) specifies a FIPS-approved

cryptographic algorithm that can be used to protect electronic data.  The AES algorithm is a

symmetric block cipher that can encrypt (encipher) and decrypt (decipher) information.

Encryption converts data to an unintelligible form called ciphertext;  decrypting the ciphertext

converts the data back into its original form, called plaintext.

The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits to encrypt

and decrypt data in blocks of 128 bits.

4. Approving Authority.  Secretary of Commerce.

5. Maintenance Agency.  Department of Commerce, National Institute of Standards and

Technology, Information Technology Laboratory (ITL).

6. Applicability. This standard may be used by Federal departments and agencies when an

agency determines that sensitive (unclassified) information (as defined in P. L. 100-235) requires

cryptographic protection.

Other FIPS-approved cryptographic algorithms may be used in addition to, or in lieu of, this

standard. Federal agencies or departments that use cryptographic devices for protecting classified

information can use those devices for protecting sensitive (unclassified) information in lieu of

this standard.

In addition, this standard may be adopted and used by non-Federal Government organizations.

Such use is encouraged when it provides the desired security for commercial and private

organizations.
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The Rijndael system

Compare with [Ros03]. Consider the irreducible polynomial

µ(z) := z8 +z4 +z3 +z+1∈ Z2[z].

Let F := Z2[z]/ < µ(z) >= GF(256) be the Galois field of 28

elements and consider the ideal:

I :=< x4 +1,y4 +1,µ(z) >⊂ Z2[x,y,z].

We will describe the Rijndael algorithm through a sequence of
polynomial manipulations inside the finite ring

R := Z2[x,y,z]/I = F[x,y]/ < x4 +1,y4 +1 > . (1)
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The Rijndael system

The monomials
{

xiy jzk | 0≤ i, j ≤ 3, 0≤ k≤ 7
}

form a Z2-basis of the ring (algebra) R. In particular
dimZ2 R= 128, i.e. |R| = 2128. Whenever r ∈ R is an element we
will define elements r i, j ∈ F and r i ∈ F[y]/ < y4 +1 > through:

r =
3

∑
i=0

3

∑
j=0

r i, jx
iy j =

3

∑
i=0

r ix
i. (2)

For the Rijndael algorithm we define

K = M = C = R.
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Rijndael system

Crucial for the description will be a fixed permutation polynomial:

θ(u) :=
(

z2+1
)

u254+
(

z3+1
)

u253+
(

z7+z6+z5+z4+z3+1
)

u251

+
(

z5+z2+1
)

u247+
(

z7+z6+z5+z4+z2)u239+u223

+
(

z7+z5+z4+z2+1
)

u191+
(

z7+z3+z2+z+1
)

u127

+(z6+z5+z+1) ∈ F[u]. (3)

Assume Alice and Bob share a common secret key k∈ R and
Alice wants to encrypt the message m∈ R. In a first step both
Alice and Bob do a key expansion which will result in 11 elements
k(t) ∈ R t = 0, . . . ,10.
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Rijndael key expansion:

Key expansion: Using the notation introduced in
Equation (2), both Alice and Bob compute recursively 10

elements k(t) ∈ R, t = 0, . . . ,9 in the following way:

k(0) := k

k(t+1)
0 :=

(

3

∑
j=0

θ(k(t)
3, j)y

j

)

y3 +zt +k(t)
0 for t = 0, . . . ,9.

k(t+1)
i := k(t+1)

i−1 +k(t)
i for t = 0, . . . ,9, i = 1,2,3.

In order to describe the actual encryption algorithm we define the
polynomial:

γ := (z+1)y3 +y2 +y+z∈ R.
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Rijndael encryption algorithm:

Using the round keys k(t) ∈ R and starting with the message
m∈ R Alice computes recursively:

m(0) := m+k(0)

m(t+1) := γ
3

∑
i=0

3

∑
j=0

θ(m(t)
i, j )x

i+ jy j +k(t+1), t = 0, . . . ,8.

m(10) :=
3

∑
i=0

3

∑
j=0

θ(m(9)
i, j )x

i+ jy j +k(10)

The cipher to be transmitted by Alice is m(10).
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4. Public Key Cryptography

Fundamental Question:

How can a secure communication between two parties,
say Alice and Bob, be established without having
exchanged secretly a method of encryption?!

In 1976 W. Diffie, M. E. Hellmann and R. C. Merkle provided a
mathematical formulation to this problem.

Leiria, September 5, 2006 – p.36/82



Illustration
Alice Bob

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Leiria, September 5, 2006 – p.37/82



Illustration
Alice Bob

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Leiria, September 5, 2006 – p.37/82



Illustration
Alice Bob

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

A

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Leiria, September 5, 2006 – p.37/82



Illustration
Alice Bob

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

A

A B

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Leiria, September 5, 2006 – p.37/82



Illustration
Alice Bob

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

A

A B

B

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Leiria, September 5, 2006 – p.37/82



Illustration
Alice Bob

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

A

A B

B

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Leiria, September 5, 2006 – p.37/82



Illustration
Alice Bob

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

A

A B

B
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Leiria, September 5, 2006 – p.37/82



Massey-Omura protocol

Alice and Bob use an elliptic curve E(Fq) of prime order for
communication. This is ‘the letter box’.
Alice wants to send the message P∈ E(Fq) to Bob.

1. Alice sends to Bob aP, the integer a∈ Z is the private key of
Alice.
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Massey-Omura protocol

Alice and Bob use an elliptic curve E(Fq) of prime order for
communication. This is ‘the letter box’.
Alice wants to send the message P∈ E(Fq) to Bob.

1. Alice sends to Bob aP, the integer a∈ Z is the private key of
Alice.

2. Bob sends to Alice baP, the integer b∈ Z is the private key
of Bob.

3. Alice sends to Bob a−1baP= bP.

4. Bob computes b−1bP= P and reads the message.

Leiria, September 5, 2006 – p.38/82



The elliptic curve group E(Fp)
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The elliptic curve group E(Fp)

P+Q

P

Q
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One way trapdoor functions

Definition 6 A one way trapdoor function is a one-way function
ϕ : X −→Y, which has the property:

1. ϕ is injective

2. With the help of a ‘private key’ it is possible to compute:

ϕ−1 : ϕ(X) −→ X.
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Principle of public key cryptography

Alice constructs a one-way trapdoor function ϕ : X −→Y and
publishes it.
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Principle of public key cryptography

Alice constructs a one-way trapdoor function ϕ : X −→Y and
publishes it.

Bob wants to send to Alice the message x∈ X. He computes
ϕ(x) ∈Y and sends this to Alice.

Only Alice knows how to compute x = ϕ−1(ϕ(x)).

Remark 6 In practicesx∈ X represents often the key for some
secret key system. The importance of one-way trapdoor functions
was recognized by Diffie and Hellman in 1976.
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Application: Digital signatures:

Alice wants to sign a document electronically. For this she has to
deposit a one-way trapdoor function ϕ : X −→Y with a ‘trusted
party’.
She wants to sign the message:

y = Alice, Zürich, August 29, 2006

She sends to Bob ϕ−1(y) = x.
Bob verifies the signature by computing ϕ(x) = y.
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Applications for one-way trapdoor functions

One-way trapdoor functions are the building block of many
interesting applications such as:

Secret key exchange
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Applications for one-way trapdoor functions

One-way trapdoor functions are the building block of many
interesting applications such as:

Secret key exchange

Digital signatures

Authentication protocols

Digital Cash system

Zero knowledge proofs

Leiria, September 5, 2006 – p.43/82



5. The RSA public key system

Prime numbers in the range of 10100 can efficiently be
computed with ‘Monte Carlo’ methods.
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5. The RSA public key system

Prime numbers in the range of 10100 can efficiently be
computed with ‘Monte Carlo’ methods.

If p,q are primes in the range of 10100 then it is
computationally unknown how to factor n = pq.

The multiplicative group (Zn)
∗ has φ(n) = (p−1)(q−1)

elements.

With the help of ‘consecutive squaring’ one can efficiently
compute xe inside (Zn)

∗.
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RSA one way trapdoor function

Alice constructs an integer n = pq which has prime factors in the
range of 10100. She chooses a random number e< n, which is
coprime to φ(n) = (p−1)(q−1). She publishes the one-way
trapdoor function:

ϕ : Zn −→ Zn (4)
m 7−→ me = c
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RSA
If Bob wants to send to Alice a message m he sends to Alice me.
Alice knows the group order of (Zn)

∗ and this allows her to
compute m. She applies Euclid’s algorithm and computes d,b∈ Z

having the property that de+bφ(n) = 1. The inverse function
which only Alice knows is:

Zn −→ Zn

c 7−→ cd = m
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RSA
If Bob wants to send to Alice a message m he sends to Alice me.
Alice knows the group order of (Zn)

∗ and this allows her to
compute m. She applies Euclid’s algorithm and computes d,b∈ Z

having the property that de+bφ(n) = 1. The inverse function
which only Alice knows is:

Zn −→ Zn

c 7−→ cd = m
Verify:

cd = (me)d = mde = m1−bφ(n) = m·
(

mφ(n)
)−b

= m
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Remark
The RSA system is based on the fact that Alice knows the group
order of the multiplicative group (Zn)

∗ and an eavesdropper, say
Eve, does not know this.
Whenever one can construct a group G where the designer knows
the group order and the general public does not know it one has a
potential one-way trapdoor function of the form:

G −→ G

m 7−→ me = c
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Security issues for RSA

The modulus n has to have at least 1024 bits, the record for
factoring a general number stands at 640 bits.
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Security issues for RSA

The modulus n has to have at least 1024 bits, the record for
factoring a general number stands at 640 bits.

The factors p,q of n have to be chosen ‘sufficiently random’.
E.g. all the numbers p±1 and q±1 should contain large
prime factors.

The decryption exponent d has to be chosen ‘large’.

The submitted message has to be ‘randomized’ [BJN00] and
acknowledgment of the server has to avoid the
‘Bleichenbacher attack’
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6. The Discrete Logarithm Problem

Definition 7 Let G be an arbitrary group,α ∈ G an arbitrary
element andH :=< α >⊂ G the cyclic group generated byα.
Assumeβ ∈ H is an arbitrary element. The unique integern
having the property that 1≤ n < |H| andαn = β is called the
discrete logarithm ofβ to the baseα.
Notation 8 logα β = n.

One has the usual computations:

α(logα β) = β, logα(αn) = n

logα(β1β2) = logα(β1)+ logα(β2) mod |H|
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Diffie-Hellman protocol [DH76]

Alice and Bob want to exchange a secret key over some insecure
channel. In order to achieve this goal Alice and Bob agree on a
group H and a common base g∈ H. Alice chooses a random
integer a∈ N and Bob chooses a random integer b∈ N. Alice
transmits to Bob ga and Bob transmits to Alice gb. Their common
secret key is k := gab.
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El Gamal one way trapdoor function:

Let < α >= H be a cyclic group, where it is known that the
discrete logarithm problem is ‘hard’. Let n be an integer
1 < n < |H| and compute β := αn.

Public Key: (α,β,G)

Encryption: H −→ H ×H
x 7−→ (αk,xβk) =: (c1,c2),

where k has been randomly chosen by Alice.
Bob, with the knowledge of n is able to compute x from the cipher
text c1,c2:

x = c2((c1)
n)−1 .
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Groups where the DLP is interesting

Every finite cyclic group is isomorphic to (Zn,+) and for this group
the DLP is trivial.

The difficulty of the discrete logarithm problem in a finite cyclic
group of order n is equivalent to finding an explicit isomorphism to
the group (Zn,+).

In practice the following groups were studied:

(Fq)
∗, (Zn)

∗.
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Groups where the DLP is interesting

Every finite cyclic group is isomorphic to (Zn,+) and for this group
the DLP is trivial.

The difficulty of the discrete logarithm problem in a finite cyclic
group of order n is equivalent to finding an explicit isomorphism to
the group (Zn,+).

In practice the following groups were studied:

(Fq)
∗, (Zn)

∗.

Glm(Fq)

E(Fp), E(F2n), where E is an elliptic curve over a finite field.

The Jacobian group JC(Fq) over an elliptic curve and more
general abelian varieties.
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Remarks on Complexity of the DLP

Ln(α,c) := O
(

ec(logn)α(log logn)1−α
)

.
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Remarks on Complexity of the DLP

Ln(α,c) := O
(

ec(logn)α(log logn)1−α
)

.

With α = 0 this reduces to O ((logn)c), i. e. polynomial time.

With α = 1 this reduces to O (nc), i. e. exponential time.

Algorithms having a complexity Ln(α,c) with 0 < α < 1 are called
sub-exponential time algorithms.

The best known algorithms for factoring a number n or for solving
a DLP in F

∗
q is the generalized number field sieve, which has

Ln(
1
3,c).

The best known algorithm for solving the discrete logarithm
problem over an elliptic curve E(Fp) has exponential complexity.
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Consequence

Systems based on the hardness of factoring or the hardness
of the DLP in F

∗
q necessarily have to work with public keys of

more than 1000 bits.
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Consequence

Systems based on the hardness of factoring or the hardness
of the DLP in F

∗
q necessarily have to work with public keys of

more than 1000 bits.

Systems based on the DLP over an elliptic curve E(Fp) are

considered secure if the group size is more than 2160.
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Remarks on Quantum Computer

The practically implemented public key crypto systems are
based on the hardness of factorization integers and on the
discrete logarithm problem.
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Remarks on Quantum Computer

The practically implemented public key crypto systems are
based on the hardness of factorization integers and on the
discrete logarithm problem.

It has recently been shown by Shor [Sho99] that factorization
of integers and the discrete logarithm problem are both
polynomial time problems on a quantum computer. This
means that if a quantum computer can ever be physically
realized then most implemented public key protocols become
insecure immediately.
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7. Systems Based on Group Actions

Let G be an abelian semi-group, let Sbe a finite set and consider
the action of G on S:

ϕ : G×S −→ S

(g,s) 7−→ gs

We will refer to this action as a G-action on the set S. By the
definition of a group action we require that (g·h)s= g(hs) for all
g,h∈ G and s∈ S.
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Generalized Diffie-Hellman protocol

Let Sbe a finite set, G an abelian semi-group and an action of G
on Sas defined above. The Extended Diffie-Hellman key
exchange is the following protocol:

Alice and Bob agree on an element s∈ S.
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Generalized Diffie-Hellman protocol

Let Sbe a finite set, G an abelian semi-group and an action of G
on Sas defined above. The Extended Diffie-Hellman key
exchange is the following protocol:

Alice and Bob agree on an element s∈ S.

Alice chooses a∈ G and computes as. Alice’s secret key is
a, her public key is as.

Bob chooses b∈ G and computes bs. Bob’s secret key is b,
his public key is bs.

Their common secret key is then

a(bs) = (a·b)s= (b·a)s= b(as)
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Extended ElGamal public key system

If S is a group with respect to some operation ◦, then the Extended
ElGamal public key system is the following protocol:

Alice’s public key is (s,as).
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Extended ElGamal public key system

If S is a group with respect to some operation ◦, then the Extended
ElGamal public key system is the following protocol:

Alice’s public key is (s,as).

Bob chooses a random element b∈ G and encrypts a
message m using the encryption function

(m,b) 7−→ (bs,(b(as))◦m) = (c1,c2).

Alice can decrypt the message using

m= (b(as))−1◦c2 = (ac1)
−1◦c2.
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Example 9 IntegersZ act on an abelian groupH. This leads to
the usual discrete logarithm problem.
Example 10 Any abelian groupH comes with its ring of
endomorphisms EndH where addition is defined pointwise and
multiplication via composition of maps. There is a natural action
of EndH onH as follows :

EndH ×H −→ H

(ϕ,h) 7−→ ϕ(h)

For a givenϕ ∈ EndH, the subringZ[ϕ] of EndH is commutative
and yields to a Diffie-Hellman protocol.
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Special situation

Let Fp be a prime finite field (p > 3), Fp its algebraic closure and

E : y2 = x3 +ax+b an ordinary elliptic curve over Fp with
complex multiplication. In this case, it is known that
EndE(Fp) ∼= Z⊕Zϕ, where ϕ is the Frobenius endomorphism:

ϕ : E(Fp) −→ E(Fp)

(x,y) −→ (xp,yp)
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Chebyshev action

Definition 11

Tn(x) = cos(ncos−1x) =
⌊n/2⌋

∑
k=0

(

n
2k

)

(−1)kxn−2k(1−x2)k

is called thenth Chebyshev polynomial.
Theorem 12 Tnm(x) = Tn(Tm(x)) in Z[x]. In particular if R is any
finite semiring then Tn(r) can be efficiently computed for any r ∈ R
and n∈ N.
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Actions on semi-modules
Let R be a semiring, not necessarily finite.
(Two operations ‘+’ and ‘·’ which are distributive and associative.
We assume also that ‘+’ is commutative. No neutral elements
assumed.)
Let M be a finite semi-module over R. With this we mean that M
has the structure of a finite semi-group and there is an action
R×M −→ M such that

r(sm) = (rs)m,

(r +s)m = rm+sm,

r(m+n) = rm+ rn.

for all r,s∈ R and m,n∈ M.
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Let Matn×n(R) be the set of all n×n matrices with entries in R.
The semi-ring structure on R induces a semi-ring structure on
Matn×n(R). Moreover the semi-module structure on M lifts to a
semi-module structure on Mn via the matrix multiplication:

Matn×n(R)×Mn −→ Mn (4)

(A,x) 7−→ Ax.

One readily verifies that Matn×n(R)×Mn −→ Mn is an action by a
semi-group, indeed one readily computes that A(Bg) = (AB)g.
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Commutative semi-groups

Let R[t] be the polynomial ring in the indeterminant t and let
A∈ Matn×n(R) be a fixed matrix. Let C⊂ R be the center of R. If

p(t) = r0 + r1t + · · ·+ rkt
k ∈C[t]

then we define in the usual way p(A) = r0In + r1A+ · · ·+ rkAk,
where r0In is the n×n diagonal matrix with entry r0 in each
diagonal element.
Consider the semi-group

G := C[A] := {p(A) | p(t) ∈C[t]}.

Clearly G has the structure of an abelian semi-group.
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Diffie-Hellman protocol

Alice and Bob agree on an R-module M , an element b∈M n and
a matrix A∈ Matn×n(R).
Alice chooses secretly p(t) ∈C[t] and computes p(A)b and sends
the result to Bob. Bob chooses secretly q(t) ∈C[t] and computes
q(A)b and sends the result to Alice.
As a common secret key serves k := p(A)q(A)b

Nota Bene:
It should be difficult to find p̃(t) ∈C[t] such that

p̃(A)b = p(A)b.
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In Diagram:

q(A)b

M n //

�

// q(A)p(A)b

M n

M n

b

q(A)

OO

//

�

//

M n

p(A)b

q(A)

OO
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Systems theory interpretation

Let b∈M n and A∈ Matn×n(R). Then the computation of p(A)b
can be iteratively done through the linear system:

xt+1 = Axt +but , xt ∈M
n, ut ∈ R.

Eve is faced with the task of finding a control sequence
u0,u1, . . . ,un which steers the zero state x0 = 0 to
p(A)b.

When the semiring R is a field and the module M is vector space
over this field then the problem is trivially solved by linear algebra.
If R and M have less structure then the problem becomes
computationally hard.
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Special situation

R= Z, the integers and as a module any finite abelian group
M = H. The group H is a Z module and Matn×n(Z) operates on
S:= Hn = H × . . .×H via the formal multiplication:







g1
...

gn






7−→







a11 . . . a1n
...

...

an1 . . . ann













g1
...

gn






. (5)

How difficult is the reachability problem for the system:

xt+1 = Axt +but ,

b,xt ∈ Hn, ut ∈ Z, and A∈ Matn×n(Z).
E.g. When H is the abelian group over an elliptic curve then this is
a control problem on the divisor group!
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Computational difficulty

Example 13 R= Z, the integers andM the abelian group over
an elliptic curve. Even whenn = 1 this is a very hard problem.
Whenn = 1 the problem asks:

Given two pointsP,Q on an elliptic curve. Find an
integerm∈ Z such thatQ = mP.
(This is a discrete logarithm problem).
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Systems theory over simple semirings

Remark: Good simple semi-rings and semi-modules are needed.
If a semi-ring has some proper subrings then a ‘Pohlig-Hellman’
type reduction is usually possible.
Example 14 Consider the discrete logarithm problem in the
semi-groupG := Matn×n(R), whereR= Z6. Reduction modulo 2
and modulo 3 reduces the problem to two simpler instances which
can be solved separately.
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Simple semirings

Definition 15 A congruence relation on a semiringR is an
equivalence relation∼ that also satisfies

x1 ∼ x2 ⇒



















c+x1 ∼ c+x2,

x1 +c ∼ x2 +c,
cx1 ∼ cx2,

x1c ∼ x2c,

for all x1,x2,c∈ R. A semiringR that admits no congruence
relations other than the trivial ones, idR andR×R, is said to be
congruence-simple, or c-simple.
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Simple semirings

Theorem 16 (Monico [Mon02]) Let R be a finite, additively
commutative, congruence-simple semiring. Then one of the
following holds:

1. |R| = 2.

2. R∼= Matn×n(Fq) for some finite field Fq and some n≥ 1.

3. R is a zero multiplication ring of prime order.

4. R is additively idempotent.

5. There is an infinite element ∞ such that R+R= {∞}. (∞ is
an element having the property that
∞r = r∞ = ∞+ r = r +∞ = ∞).
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A simple semiring of order 2

+ 0 1

0 0 1

1 1 1

∗ 0 1

0 0 0

1 1 1

A Simple Semiring of order 3

+ 0 1 2

0 0 1 2

1 1 1 2

2 2 2 2

∗ 0 1 2

0 0 0 0

1 0 1 2

2 2 2 2
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A simple semiring of order 6

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 1 1 1 1 5

2 2 1 2 1 2 5

3 3 1 1 3 3 5

4 4 1 2 3 4 5

5 5 5 5 5 5 5

∗ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 2 0 0 5

3 0 3 4 3 4 3

4 0 4 4 0 0 3

5 0 5 2 5 2 5
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Simple matrix rings

Theorem 17 (Maze [Maz03]) When the semiring R is simple with
0,1 then the matrix ring Matn×n(R) is simple.
Lemma 18 When the semiring R is simple with 0,1 then
Matn×n(R) contains elements of order

g(n) = max{ordσ | σ ∈ Sn}

= max{lcm{a1, . . . ,am} | ai > 0,a1 + · · ·+am = n}

In particular the order grows exponentially in n.
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Example

Assume a matrix is given as:
0 2 0 0 0 0 0 0 0 3
2 0 3 0 0 0 1 0 0 0
0 0 0 0 2 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
0 0 0 2 0 5 0 0 0 0
0 0 0 0 4 0 0 0 0 2
0 0 3 0 0 2 0 0 0 0
0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 2 0 0
0 3 0 0 0 0 0 0 2 0
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Example

What power has the following matrix?
2 3 3 3 3 3 2 2 3 2
3 2 3 3 3 2 1 3 2 3
0 5 2 1 5 5 5 0 5 5
5 0 5 2 1 5 1 5 0 5
5 5 5 5 2 5 1 5 5 5
3 3 3 4 3 3 3 3 3 2
3 3 3 3 4 2 4 3 3 3
0 3 0 4 3 3 2 0 3 3
3 0 3 0 4 0 4 2 0 3
3 3 3 3 3 3 3 4 2 3
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Systems theory questions

How difficult is the reachability question over a semiring R for
the linear system:

xt+1 = Axt +but ,

A,b,xt and ut all defined over R.
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Systems theory questions

How difficult is the reachability question over a semiring R for
the linear system:

xt+1 = Axt +but ,

A,b,xt and ut all defined over R.

How difficult is the nonlinear analogon?
For this assume that f : Rm+n −→ Rn is a polynomial map.
Then consider the nonlinear system:

xt+1 = f (xt ,ut), xt ∈ Rn, ut ∈ Rm.
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Systems theory questions

How difficult is the reachability question over a semiring R for
the linear system:

xt+1 = Axt +but ,

A,b,xt and ut all defined over R.

How difficult is the nonlinear analogon?
For this assume that f : Rm+n −→ Rn is a polynomial map.
Then consider the nonlinear system:

xt+1 = f (xt ,ut), xt ∈ Rn, ut ∈ Rm.

Is it possible to identify a class of nonlinear systems where
the control serves as trapdoor and a Diffie-Hellman
exchange is possible.
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An interesting semi-group action

Alice and Bob agree on a simple semi-ring R having center C⊂ R
and agree on three matrices

A,B,M ∈ Matn×n(R).

Alice chooses secretly p1(t), p2(t) ∈C[t] and computes
p1(A)Mp2(B) and sends the result to Bob. Bob chooses secretly
q1(t),q2(t) ∈C[t] and computes q1(A)Mq2(B) and sends the
result to Alice.
As a common secret key serves

k := p1(A)q1(A)Mq2(B)p2(B)

which both can easily compute.
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In Diagram:

Rn p2(B)
// Rn

Rn p1(A)
// Rn M

// Rn

q2(B)

OO

p2(B)
// Rn

q2(B)

OO

Rn

q1(A)

OO

p1(A)
// Rn

q1(A)

OO
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Example:

As a concrete choice let assume that n = 20. Consider the
matrices

A =

















































10000000000000000000
00100000000000000000
00010000000000000000
00001000000000000000
01000000000000000000
00000010000000000000
00000002000000000010
00000100000000000000
00000000010000000000
00000000001000000000
00000000000200000000
00000000000010000000
00000000100000000000
00000000000000100000
00000000000000010000
00000000000000001000
00000000000000000100
00000000000000000010
00000000000000000001
00000000000001000000

















































B =

















































00000000000000000010
00000000000100000000
00000010000000000000
00100000000000000000
00000000000000000004
00000000000000010000
01000000000000000000
00000000000000000100
00010000100000000000
00000000000310000000
00000000000000200000
00010000000000000100
00000000001000000000
00000100000000000000
00000000010000000000
00000001000000000000
10000000000000000000
00001000000000000000
00000000000000001000
00000000000001000000
















































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Example

M =















































00200000000000000100
01000000010001000000
00000001000000000030
20020000000010000000
00000010000000001000
00000005000100000001
00000000200010000001
01000000030000000003
00000002000000010001
01000100000010000000
00000000000050100000
00000000000004000000
00000000000000100500
00300000002000100000
00001000000200001000
00000002000000000100
00002000001000000000
00100000000100000000
00020001000000000030
10000001000010000001















































T =















































02020000000204000200
00111411002100241114
30111011002000240134
12000020020200202034
22111424020100201110
12222020022220222212
11111014222124211122
21111014222124222124
00222020022022200200
00002000022020220000
00222020020000200200
00000000022022200000
00002000000000020200
03333404021324040300
02202420020020001010
01111014000104040104
32000020020220000034
11111014020104211104
31333424021124040334
12202420020000211014















































.

The task of Eve will be to find p1(t), p2(t) ∈ C[t] such that

p1(A)Mp2(B) = T.
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Questions:
1. Find all finite simple semirings of order smaller than 10.
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Questions:
1. Find all finite simple semirings of order smaller than 10.

2. Develop a linear systems theory over semirings and
semi-modules.
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Questions:
1. Find all finite simple semirings of order smaller than 10.

2. Develop a linear systems theory over semirings and
semi-modules.

3. Study ’how difficult it is’ to solve linear algebra problems over
a semi-ring such as the ‘reachability problem for a system of
the form xt+1 = Axt +but .
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Questions:
1. Find all finite simple semirings of order smaller than 10.

2. Develop a linear systems theory over semirings and
semi-modules.

3. Study ’how difficult it is’ to solve linear algebra problems over
a semi-ring such as the ‘reachability problem for a system of
the form xt+1 = Axt +but .

4. Come up with new semi-group actions on a finite set where
the problem: Given asand s, find α such that as= αs is
provable complex.
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