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1. Introduction to Behavioral Modeling

Nonlinear Modeling of RF Nonlinear Devices

- Models are necessary for CAD of microwave circuits and systems

- Nonlinear CAD of Circuits is already in a mature state;
However, it can not support large and heterogeneous circuits
such as complete telecommunication systems

Reduced Complexity Higher Levels of Hierarchical Description

Circuit Level CAD/Modeling System Level CAD/Modeling
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1. Introduction to Behavioral Modeling

Physical Modeling   vs.   Behavioral Modeling

Physics Based Modeling:
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1. Introduction to Behavioral Modeling

Physical Modeling   vs.   Behavioral Modeling

Empirical, Behavioral or Black Box Modeling:

+ +

- -
v1(t) v2(t)

i2(t)i1(t)
i1[v1(t),v2(t),i1(t),i2(t) ]

i2[v1(t),v2(t),i1(t),i2(t) ]

where [ ]...),(),(),()( 2,12,12,12,1 tvtvtvt &&&=v

[ ]...),(),(),()( 2,12,12,12,1 tititit &&&=i
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1. Introduction to Behavioral Modeling

Physical Modeling   vs.   Behavioral Modeling

Equivalent Circuit Modeling can be seen as Behavioral Modeling 
using a-priori physics knowledge of the topology:
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1. Introduction to Behavioral Modeling

Equivalent Circuit Modeling can be seen as Behavioral Modeling 
using a-priori physics knowledge of the topology:
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Physical Modeling   vs.   Behavioral Modeling
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1. Introduction to Behavioral Modeling

x(t)
H(ω)

y(t)

Physical Modeling   vs.   Behavioral Modeling

Behavioral Models are Empirical in Nature:

They rely on input-output (Behavioral) observations

They need to compensate the lack of knowledge of device
constitution (Black-Box Models) with observation data

Physical Models can be deduced from the physics of the device

x(t) y(t)
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2. General Nonlinear Behavior of Wireless Systems

General Distortion Behavior of a Microwave PA

A wireless power amplifier includes, not only short-term (RF) memory 
effects, as long-term (envelope) memory caused by bias circuitry, charge-
carrier traps and self-heating. 
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iDS

vDS(τ, t) vO(τ, t)vGS(τ, t)

Linear
Dynamic
Matching
Network
Mi(Ω, ω)

Linear
Dynamic
Matching
Network

Mo(Ω, ω)

ZL(Ω, ω)

vRF(τ, t)

Z0 

Z0 

iDS(τ, t) = fNL[vGS(τ, t)]

vDS(τ, t) = L[iDS(τ, t), ZL(Ω, ω)]

General Distortion Behavior of a Microwave PA

These disparate origins of memory effects interact to create a very 
complex dynamic feedback behavior. 

iDS(τ, t) = fNL[vGS(τ, t), vDS(τ, t)]

T(τ) = LTH[iDS(τ, t), ZTH(Ω)]

iDS(τ, t) = fNL[vGS(τ, t), vDS(τ, t), T(τ)]

2. General Nonlinear Behavior of Wireless Systems



J.C.Pedro, Mathematics for Behavioral Modeling, MTPT, Leiria, Sep. 2006 12

( ) )(
)(

)( 1
1 ω

ω
ωω O

D
aHS =

( ) )(1 1 ωω FaD −=

Nonlinear Dynamic Model of a Feedback Wireless System

2. General Nonlinear Behavior of Wireless Systems
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x(t) y(t)

Linear / Dynamic

Nonlinear / Memoryless
e(t)

a1e(t)+a2e(t)2+a3e(t)3 O(ω)

Linear / Dynamic

H(ω)

Linear / Dynamic

A wireless system will then present Linear and Nonlinear Dynamic Effects. 
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Nonlinear Dynamic Model of a Feedback Wireless System

2. General Nonlinear Behavior of Wireless Systems

So, nonlinear dynamics cannot be represented by any
Filter-Nonlinearity (Wiener model) …
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2. General Nonlinear Behavior of Wireless Systems

Nonlinear Dynamic Model of a Feedback Wireless System

… nor any Nonlinearity-Filter (Hammerstein model) cascade !
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3. Basics on System Identification Theory

Contrary to some a-priori intuition and many heuristic behavioral models, 
system identification theory shows that our wireless system can be 
described by a mathematical operator (a function of functions) that maps 
a function of time x(t) (the input signal) onto another function of time y(t)
(the output):

The Behavioral Modeling Problem

Is it possible to produce a behavioral model with predictive capabilities 
(i.e. describing the whole system), from a finite set of observations ? 

Yes, it is !!

x(t) y(t) = S[x(t)]
S[f(t)]
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3. Basics on System Identification Theory

The Behavioral Modeling Problem
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This input-output map can be represented by the following forced 
nonlinear differential equation:
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3. Basics on System Identification Theory

Recursive and Non-Recursive Models

In a digital computer, time is a succession of uniform time samples: 

x(t) → x(s) y(t) → y(s)

so, our nonlinear differential equation becomes a difference equation.

[ ]),...(),...,1(),(,),...(),...,1()( rsxsxsxpsysyfsy R −−−−=

The solution of this nonlinear difference equation can be expressed in the 

following Recursive Form (Nonlinear IIR Filter):
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3. Basics on System Identification Theory

Recursive and Non-Recursive Models

If the system is causal, stable and of fading memory it can also be 

represented by a Non-Recursive,, or Direct, Form, where the relevant 

input past is restricted to q∈{0,1,2,…,Q}, the system’s Memory Span

(Nonlinear FIR Filter):

[ ])(),...,1(),()( Qsxsxsxfsy D −−=
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3. Basics on System Identification Theory

Recursive and Non-Recursive Models

[ ])(),...,1(),()( Qsxsxsxfsy D −−=

The S[x(t)] operator is replaced by 

a 1-to-(Q+1) linear mapping, 

followed by a (Q+1)-to-1 nonlinear 

(static) function. 

x(t)

y(t)

Nonlinear
Memoryless

(Q+1)-to-1

Multi
-

Dimensional

Memoryless
Function

... ...

z-1

z-1

z-1

1-to-(Q+1)

fD[.,...,.]

Dynamic Linear
Network
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The multi-dimensional functions fR(.) and fD(.), have been expressed in 

two different forms, leading to:

Polynomial Filters

fR(.) and fD(.) are approximated by Artificial Neural Networks

fR(.) and fD(.) are approximated by Polynomials

3. Basics on System Identification Theory

Polynomial Filters and Artificial Neural Networks
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3. Basics on System Identification Theory

Nonlinear IIR Filters

As a Recursive Polynomial Filter, fR(.) is replaced by a multi-
dimensional polynomial approximation:
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3. Basics on System Identification Theory
Nonlinear IIR Filters

E.g., a Recursive Bilinear Filter (2nd order IIR) is  implemented as:

...
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3. Basics on System Identification Theory

Nonlinear FIR Filters
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As a Direct Polynomial Filter, fD(.) is replaced by a multi-dimensional 
polynomial approximation:
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3. Basics on System Identification Theory

If fD(.) is approximated by a Taylor series, then this nonlinear 
FIR filter is known as the Volterra Series or Volterra Filter

Good modeling properties of small-signal
(or mildly nonlinear) regimes

Catastrophic degradation under strong nonlinear operation

Optimal approximation (in uniform error sense) near the expansion 
point, provides:

Nonlinear FIR Filters
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3. Basics on System Identification Theory

But fD(.) can also be approximated by any other
Multi-Dimensional (Orthogonal) Polynomial, generating a 

General Nonlinear FIR Filter

Optimal approximation (in mean square error sense) in the vicinity of 
a certain operating power level, and for a particular type of input, 
provides:

Good modeling properties of strong nonlinear regimes

As optimum as the input signal statistics are close to those
of the stimulus for which the polynomial is orthogonal

Nonlinear FIR Filters
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3. Basics on System Identification Theory

E.g., a Direct 1st Order Polynomial Filter (Linear FIR) is  implemented as:
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3. Basics on System Identification Theory

while a Direct 3rd Order Polynomial Filter (3rd Order FIR) would be:
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3. Basics on System Identification Theory

Dynamic Feedforward Artificial Neural Networks 
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in which bo, bk, wo(k) and wk(q) are the model parameters, and fa[.] is 
a one-dimensional nonlinearity (typically a sigmoid) known as the 
activation function.
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3. Basics on System Identification Theory

Dynamic Feedforward Artificial Neural Networks 
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3. Basics on System Identification Theory

Dynamic Recursive Artificial Neural Networks 
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4. Nonlinear Behavioral Modeling of Microwave PAs

Considering that a general wireless system processes a modulated
RF carrier, its band-pass input and output signals can be expressed 
as:

Band-Pass and Low-Pass Equivalent Behavioral Models
[Pedro and Maas, IEEE T-MTT 2005]

[ ]{ } [ ])(cos)()(Re)( 0
)(0 tttretrts ttj φωφω +== +

whose RF carrier is:

and low-pass equivalent complex envelope is:

)()()(~ tjetrts φ=

( )ttsc 0cos)( ω=
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4. Nonlinear Behavioral Modeling of Microwave PAs
Band-Pass and Low-Pass Equivalent Behavioral Models

Therefore, we may conceive a Low-pass Equivalent Behavioral Model
to handle only the complex base-band envelope, s(t): ~

Re[ x(τ) ]~

Im[ x(τ) ]~

0 Hz 0 Hz

Envelope Frequency (Ω)

Re[ y(τ) ]~

Im[ y(τ) ]~

Envelope Time (τ)

X(Ω)
~ Y(Ω)~
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4. Nonlinear Behavioral Modeling of Microwave PAs
Low-Pass Equivalent Behavioral Models

[Pedro and Maas, IEEE T-MTT 2005; Isaksson et al., IEEE T-MTT 2006]

Simple AM-AM / AM-PM Model

Memoryless AM-AM/AM-PM Saleh Model [Saleh., IEEE T-COM 1981]  

x(t) y(t)

Nonlinear / Memoryless

Nonlinear / Memoryless

ry[rx(t)]sinφy[rx(t)]

j

|x(t)|

|x(t)|
x(t)

~ ~

~
~

~

ejθ(t)

ry[rx(t)]ejφy[rx(t)]rx(t)
ry[rx(t)]cosφy[rx(t)]
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4. Nonlinear Behavioral Modeling of Microwave PAs
Low-Pass Equivalent Behavioral Models

Two-Box and Three-Box Models are simplified Nonlinear FIR Filters 
where memory effects are separated from Nonlinearity.

They assume a Filter-Nonlinearity (Wiener Model),
a Nonlinearity-Filter (Hammerstein Model) 

or Filter-Nonlinearity-Filter (Wiener-Hammerstein Model) structures: 

x(t) y(t)
Nonlinear / Memoryless

AM-AM / AM-PM O(ω)

Linear / Dynamic

H(ω)

Linear / Dynamic



J.C.Pedro, Mathematics for Behavioral Modeling, MTPT, Leiria, Sep. 2006 37

4. Nonlinear Behavioral Modeling of Microwave PAs
Low-Pass Equivalent Behavioral Models

Parallel Wiener Model [Ku, Mckinley and Kenney, IEEE T-MTT 2002]
or Non-Recurrent ANN 

Modifications of these Two or Three-Box models have also been used…

x(s) f1[z1(s)]W1(ω)

y(s)
fk[zk(s)]Wk(ω)

fK[zK(t)]WK(ω)

...
...

... ...
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zK(s)
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wk(q)
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f[uk]

⇔
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4. Nonlinear Behavioral Modeling of Microwave PAs
Low-Pass Equivalent Behavioral Models

In an effort to reach a more systematic structure for the model a 
recursive ANN [O´Brien et al., IMS’2006], but mostly several Polynomial FIR 
Filters have been tried.

The complete Volterra Model has been tried by Zhu, Wren and Brazil.

[Zhu, Wren and Brazil, IEEE IMS’2003]

∑ ∑

∑ ∑∑

= =

= ==

−−+

+

−−+−=

M

q

M

q
NNN

M

q

M

q

M

q

N

qsxqsxqqh

qsxqsxqqhqsxqhsy

0 0
11

0 0
21212

0
1

1

1 2

)()...().,...,(

...

)()(),()()()(

L



J.C.Pedro, Mathematics for Behavioral Modeling, MTPT, Leiria, Sep. 2006 39

4. Nonlinear Behavioral Modeling of Microwave PAs
Low-Pass Equivalent Behavioral Models

Unfortunately, the complexity of the parameter extraction poses severe 
restrictions on both the order N (degree of nonlinearity) and the number 
of delays M+1 (dynamic behavior).

This demanded the use of several alternatives for pruning the Volterra
coefficients …
[Zhu & Brazil, IEEE MWCL-2004; Zhu & Brazil, IEEE IMS’2005, Zhu et al., IEEE IMS’2006;
Dooley et al., IEEE IMS’2006; Isaksson et al., IMS’2006]

… or to extract them, one by one, in an orthogonal (separable) way

[Lavrador et al., APMC’2005; Pedro et al., IEEE IMS’2006]
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4. Nonlinear Behavioral Modeling of Microwave PAs
Low-Pass Equivalent Behavioral Models

A one-dimensional alternative was recently proposed:

One-Dimensional Volterra Model [Ku, Mckinley and Kenney, IEEE IMS’2003]  

x(s)
z-1

... ...

y2n+1(s)
z-1

z-1

...
x|x|2n a2n+1,1
~ ~

~ q=0

q=1

q=Q

a2n+1,0

a2n+1,Q

x|x|2n~ ~

x|x|2n~ ~

~

… which can be shown to be similar to the Nonlinear Integral Model.
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4. Nonlinear Behavioral Modeling of Microwave PAs
Low-Pass Equivalent Behavioral Models

Supposing the system may be strongly nonlinear, but memoryless, while 
showing approximately linear dynamic effects, allows the application of 
the Nonlinear Integral Model [Filicori et al., IEEE T-MTT 1992]:

[ ]∑
=

−=
Q

q
q qsxqsxfsy

0
)(~),(~~

)(~

in which fq[.] is a nonlinear impulse response, defined at a certain 
instantaneous excitation level.

Complex Envelope Nonlinear Integral Model [Mirri et al., IMTC/99], 
[Soury et al., IEEE IMS’2003, Zhu et al., IMS’2006]  
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4. Nonlinear Behavioral Modeling of Microwave PAs
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Low-Pass Equivalent Behavioral Models

Accordingly, the NIM could be implemented as:

x(s)

z-1

y(s)z-1

z-1

...

~ q=0

q=1

q=Q

f0[x(s)]~

f1[x(s)]~

fQ[x(s)]~

y(s)~

......
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4. Nonlinear Behavioral Modeling of Microwave PAs
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~

~ q=0

q=1

q=Q

f0[x(s)]~

f1[x(s-1)]~

fQ[x(s-Q)]~

Low-Pass Equivalent Behavioral Models
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hQ

… or, in a slightly different form, as a generalization of a liner FIR filter:
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5. Conclusions

1. Nonlinear behavior of wireless systems shows significant dynamic
effects caused by the interactions between the tuning networks, bias 
circuits and active device low-frequency dispersion.

2. System identification shows that many modeling activities can be
framed into a small set of canonic behavioral model structures.

3. Behavioral modeling of wireless systems has been directed to complex 
envelope low-pass equivalents that process the amplitude and phase 
data.

4. Although formal structures as the Polynomial FIR Filters, or 
Feedforward ANNs, provide guaranteed predictive capabilities, they 
involve a large number of parameters and are very difficult to extract.
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1. Excitation Design for Behavioral Model Extraction

Contrary to other modeling techniques, such as the Artificial Neural 
Networks, 

Fundamentals of Behavioral Model Extraction
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… which are nonlinear in their parameters, [bk and wk(q)], and thus 
require nonlinear optimization techniques for parameter extraction, …
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… Polynomial Filters are linear in the parameters (the Volterra Kernels), 

Fundamentals of Behavioral Model Extraction
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… therefore enabling the use of standard linear regression methods. 
This also easies the gathering of knowledge for excitation design.

1. Excitation Design for Behavioral Model Extraction
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In fact, in the same way the Impulse Response Function, h1(q), of a 
Linear Dynamic System can be estimated solving the following linear 
regression system :
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… provided the input x(s) is sufficiently rich in content …

Fundamentals of Behavioral Model Extraction
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… the n´th order Nonlinear Impulse Response Function, hn(q1,…,qn), 
of the Volterra-Wiener Model
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… can be estimated solving the following linear regression system :
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… provided the multi-input Πx(s-qi) is again sufficiently rich in content.
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Or, in the same way the Transfer Function, H(ω), of a Linear Dynamic 

System can be estimated from the input-output cross-correlation, Syx(ω),
and in input auto-correlation Sxx(ω):
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… provided the input X(ω) is sufficiently rich in content …

Fundamentals of Behavioral Model Extraction
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… the n’th order Nonlinear Transfer Function of a Nonlinear Dynamic 

System, Hn(ω1,…, ωn),
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… can be estimated from the higher-order input-output cross-correlations,

Syx…x(ω1,…, ωn), and in higher-order input auto-correlations Sxx(ω1,…, ωn):

… provided the multi-input ΠX(ωi) is again sufficiently rich in content.

Fundamentals of Behavioral Model Extraction

1. Excitation Design for Behavioral Model Extraction
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This shows that, no matter the domain (time or frequency), or the type 
of stimulus used for the tests, the model extraction procedure will be 
successful as long as the stimulus excites all wireless system’s states:

- x(s), x(s-1), … , x(s-Q) 

- x(s)2, x(s).x(s-1), …, x(s).x(s-Q), x(s-1)2, …, x(s-1).x(s-Q), …, x(s-Q)2

- x(s)n, x(s)...x(s-qn-1), …, x(s-Q)n

- x(s)3, x(s)2.x(s-1), …, x(s).x(s-Q)2, x(s-1)3, …, x(s-1).x(s-Q)2, …, x(s-Q)3

...

Fundamentals of Behavioral Model Extraction

1. Excitation Design for Behavioral Model Extraction
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… or:

- X(ω1), X(ω2), … , X(ωK)

- X(ω1)2, X(ω1).X(ω2), …, X(ω1).X(ωK), …, X(ωK).X(ω1), …, X(ωK)2

...

- X(ω1)3, X(ω1)2.X(ω2), …, X(ω1).X(ωK)2, …, X(ωK)2.X(ω1), …, X(ωK)3

- X(ω1)n, X(ω1)…X(ωn-1), …, X(ωK)n

Fundamentals of Behavioral Model Extraction

1. Excitation Design for Behavioral Model Extraction



J.C.Pedro, Mathematics for Behavioral Modeling, MTPT, Leiria, Sep. 2006 13

Some Historical Steps Towards Behavioral Model Extraction

In the 40’s Wiener proved that White Gaussian Noise was rich enough 
to excite a Volterra system. Then, in the 60’s, Schezten and Lee used 
that excitation to extract the Wiener Model – a polynomial filter 
orthogonal to this input.

The n’th order Wiener functional was obtained by time-domain correlation 
between the output, y(t), and a n’th order delayed version of the input, x(t-
τ1).x(t-τ2)…x(t-τn).

In the 80’s, Boyd, Tang and Chua and then Chua and Liao proposed 
methods for extracting Volterra kernels in the frequency-domain, using 
Sparsely Distributed Harmonically Related Sinusoids.

1. Excitation Design for Behavioral Model Extraction
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Some Historical Steps Towards Behavioral Model Extraction

More recently, much of the effort has been directed to obtain useful 
data from Multisines …

… or even time-domain Real Modulated Wireless excitations.

However, the traditional frequency-domain Sinusoidal Excitation and 
the time-domain Step Stimulus have also been extensively tried.

1. Excitation Design for Behavioral Model Extraction
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Nonlinear System Identification Theory May Help Again …

Recognizing that both digitally synthesized Multisines, Pseudo-Random 
Noise Sequences or Finite Modulation Sequences are discrete periodic 
functions in time and frequency domains, they can be related by the 
Discrete Fourier Series: 

∑
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… which shows that they are simply two distinct ways of extracting 
same type of information.

1. Excitation Design for Behavioral Model Extraction
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Furthermore, since the response of a system excited with various
realizations of:

- Random Multisine - Multisine with randomized phases

- Periodic Noise - Multisine with randomized amplitudes and phases

the response of that same system when excited with 

- Band-Limited White Gaussian Noise

Volterra-Wiener theories prove that both of these stimuli could be 
used to extract a behavioral model of, at least, a Nonlinear System of 
Fading Memory ! 

Nonlinear System Identification Theory May Help Again …

1. Excitation Design for Behavioral Model Extraction
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Probability Density, pdfx(x), as a Weighting Function

Since typical laboratory data like Output Power, Power Spectrum, etc., 
is averaged in nature:

… it is intuitive to expect that, more important than the trajectory of 
amplitude values assumed by the excitation, x(t), should be the 
Probability with which each value is reached, i.e., the Excitation’s pdfx(x).
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The Role of Excitation’s Statistics 
on Nonlinear Dynamic Systems’ Response2.
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The Role of Excitation’s Statistics 
on Nonlinear Dynamic Systems’ Response2.

To expose the role of the pdfx(x) we tested a static nonlinear system with 
three signals of equal integrated power but distinct amplitude distributions:
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Probability Density, pdfx(x), as a Weighting Function
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The Role of Excitation’s Statistics 
on Nonlinear Dynamic Systems’ Response2.

Memoryless Nonlinear System Model

The selected nonlinear system was a simple sigmoid function:  
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since its linear region, followed by a smoothly saturating behavior, is 
many times used to represent practical memoryless nonlinearities. 

y[x(t)]

x(t)
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Multisines for Memoryless Nonlinear Systems

The excitations used were two evenly spaced constant amplitude 
Band-Pass Multisines:  
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whose phases, φk, were designed for Gaussian and Uniform pdfx(x)
using a specially conceived algorithm.

(J. Pedro and N. Carvalho, IEEE IMS’2004)

The Role of Excitation’s Statistics 
on Nonlinear Dynamic Systems’ Response2.
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Nonlinear Dynamic System Model

A dynamic system is one whose output is dependent on the present
input and on its past:

[ ])(),...,1(),()( Qsxsxsxfsy D −−=

A nonlinear FIR filter approximation would be:  
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Nonlinear Dynamic System Model

the system’s output should no longer be only dependent on the input 
statistics, pdfx(x), but on the Joint Statistics of the input and its past 
samples, pdfx…x-Q[x(s),…,x(s-Q)].

[ ])(),...,1(),()( Qsxsxsxfsy D −−=If [ ])()( sxfsy D=

So, the n’th order response of a nonlinear dynamic system to a certain 
stimulus now depends on the Memory Span, Q, of hn(q1,…,qn) and on 
the correlation between x(s) and all other x(s-1),…,x(s-Q).

Not only the amplitude distribution is important as is the signal 
evolution with time, i.e., its Time-Domain Waveform or Frequency-
Domain Spectrum.

The Role of Excitation’s Statistics 
on Nonlinear Dynamic Systems’ Response2.
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As an example, consider a Hammerstein Model composed of a 
memoryless nonlinearity,

followed by a linear filter:
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The system’s response now depends on the memory span of h1(q), Q.

Nonlinear Dynamic System Model
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y1(t) y2(t)

H1(ω)
Linear / Dynamic
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Linear pos-filters used in the distortion simulations. (a) – Filter with short memory span. (b) –
Filter with long memory span.
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Response of the Hammerstein Model to Multisines of Equal pdf

Gaussian pdf of the two multisines of equal power spectrum.

Gaussian Distributions
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Response of the Hammerstein Model to Multisines of Equal pdf
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Time-domain waveforms of the two multisines of equal pdf and power spectrum.
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Response of the Hammerstein Model to Multisines of Distinct pdf

(a) (b)

Although different phase arrangements produce distinct power spectra in 
a memoryless nonlinearity, they generate equal integrated ACPR values.
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(a) (b)

ACPR=32dBACPR=28dB

Now, although the wide-band output filter would keep the entire spectra,  
the narrow-band linear band-pass filter can reshape the spectrum side 

lobes, and thus generate quite different integrated output ACPR values.
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Presentation Outline

1. Excitation Design for Behavioral Model Extraction 

2. The Role of Excitation’s Statistics
on Nonlinear Dynamic Systems’ Response

3. Multisine Design for Behavioral Model Validation
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3. Multisine Design For Behavioral Model Validation

Response of General Nonlinear Dynamic Systems to Arbitrary Signals
The reason for these discrepancies can be traced to the way the 
nonlinearity generates the spectral regrowth.

Since the multisine is periodic, there is a common frequency 
separation between the many different tones. So, the general 
multisine expression:

implies that all tone frequencies can be expressed by: 

( ) kAAtAtx k
K

k
kkk ∀=+= ∑

=
:;cos)(

1
φω

ω∆ωω kk += 0

and so, any (e.g., 3rd order) output spectral line at ωx will be given 
by all mixing products verifying:

321 kkkx ωωωω −+= 321 kkkx −+=in which
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3. Multisine Design For Behavioral Model Validation

Each of these mixing products has a phase of: 321 kkkx φφφφ −+=

and so, the resulting voltage wise addition depends on the possible 
correlation between these φx.

-K1ω1 -2ω1 -ω1 ω1 2ω1 K1ω10 ω

φ3φ1 φ2 φ3+φ2-φ1
φ3+φ3-φ2

Response of General Nonlinear Dynamic Systems to Arbitrary Multisines
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3. Multisine Design For Behavioral Model Validation

Each of these mixing products has a phase of: 321 kkkx φφφφ −+=

and so, the resulting voltage wise addition depends on the possible 
correlation between these φx.

Thus, in the context of nonlinear dynamic systems, signal excitations 
can no longer be completely specified by their moments (pdf), as in 
memoryless systems:

{ } ∫
∞
∞−

== dxxpdfxxExm x
nn

n )()(

Response of General Nonlinear Dynamic Systems to Arbitrary Multisines
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3. Multisine Design For Behavioral Model Validation

If signal excitations can not be completely specified by their moments 
(pdf), they can’t be either specified by the second order joint statistics as 
in linear dynamic systems:

because this signal metric is blind to the signal’ phases !

{ })()()( ττ += txtxERxx { }∗= )()()( ωωω XXESxx

Response of General Nonlinear Dynamic Systems to Arbitrary Multisines
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3. Multisine Design For Behavioral Model Validation

{ })()()(),( 21213 ττττ ++= txtxtxER x { }∗+= )()()(),( 2121213 ωωωωωω XXXES x

As expected from the polynomial structure of the Volterra-Wiener 
model, multisines must now be specified by their higher-order joint 
signal statistics:

{ })(...)()(),...,( 1111 −− ++= nnnx txtxtxER ττττ

{ }∗−−− ++= )...()()...(),...,( 111111 nnnnx XXXES ωωωωωω

… …

{ })()()( ττ += txtxERxx { }∗= )()()( ωωω XXESxx

Response of General Nonlinear Dynamic Systems to Arbitrary Multisines
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3. Multisine Design For Behavioral Model Validation

So, the desired multisine must meet the pdfx(x), the PSD:

and the higher order statistics, e.g.:

[ ]∗++= )()()()(),,( 321321321 ωωωωωωωωω XXXXES xxxx

This guarantees that the spectral regrowth is approximated at least for 
the order of the statistics considered.

(J. Pedro and N. Carvalho, IEEE T-MTT’2005)

{ }∗= )()()( ωωω XXESxx

Response of General Nonlinear Dynamic Systems to Arbitrary Multisines
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3. Multisine Design For Behavioral Model Validation

Discretized in K tones, these higher-order statistics require n-
dimensional matrix approximations (of Kn points), which can not be 
obtained by a single multisine of K tones (K phases).

[ ]∗++= )...()(...)(),...,( 111... nnnxx XXXES ωωωωωω

Two possibilities:

1 – An Ensemble of various Multines of K tones each.

2 – A single Multisine with many more tones.

A Multisine of K tones has not enough number of Degrees of Freedom !



J.C.Pedro, Mathematics for Behavioral Modeling, MTPT, Leiria, Sep. 2006 41

3. Multisine Design For Behavioral Model Validation

If a single multisine is the goal, then the number of tones must be 
increased, but the Sx…x(ω1,…,ωn) error evaluated for a smaller number 
of bins.

Designed Multisine

-Bw/2 0 Bw/2

Frequency Bins

Designed Multisine
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3. Multisine Design For Behavioral Model Validation

Consider the nonlinear dynamic system, which can be tuned to present 
certain properties independently:

x(t) y(t)

x2 H(jω)
Linear Filter

x

k3

k1x

Multisine Design Example for Nonlinear Dynamic System Excitation

Long-term, nonlinear, memory
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3. Multisine Design For Behavioral Model Validation
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Consider also an input signal with a pre-determined higher order 
statistics, for which the multisine is to be synthesized.

Multisine Design Example for Nonlinear Dynamic System Excitation
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3. Multisine Design For Behavioral Model Validation
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1st Case – A Nonlinear Memoryless System:

Multisine Design Example for Nonlinear Dynamic System Excitation
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3. Multisine Design For Behavioral Model Validation

2nd Case – A Nonlinear Dynamic System with Memory at the Base-Band:

Multisine Design Example for Nonlinear Dynamic System Excitation
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3. Multisine Design For Behavioral Model Validation
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3rd Case – A Nonlinear Dynamic System with Memory at the Base-Band 
and 2nd Harmonic:

Multisine Design Example for Nonlinear Dynamic System Excitation
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Presentation Outline

1. Excitation Design for Behavioral Model Extraction

2. The Role of Excitation’s Statistics
on Nonlinear Dynamic Systems’ Response

3. Multisine Design for Behavioral Model Validation

4. Conclusions



J.C.Pedro, Mathematics for Behavioral Modeling, MTPT, Leiria, Sep. 2006 48

5. Conclusions

1. Only very complex test signals like White Gaussian Noise can 
provide all the needed information about the system.

2. Multisines are very promising stimuli, but require deep care in 
selecting the tone spacing and the amplitude and phase sets.

3. Signal’s pdf play a determinant role as a signal metric, and thus for 
excitation design.

4. For nonlinear dynamic systems, the signal’s pdf is incomplete.

Joint pdf’s of the present input and past samples (within the 
memory span) are necessary to uniquely determine the response.
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5. Conclusions

5. Complete excitation information can be identified by the higher 
order statistics - Higher Order Auto-Correlations and Power Spectral 
Density Functions - which provide information of both the amplitude 
and the phase.

6. In the particular context of nonlinear behavioral model  extraction 
or validation with band-limited white Gaussian noise, either an 
ensemble of K-tone evenly spaced multisines of randomized phases, 

a single S-tone (S>>K) evenly spaced multisine of randomized 

phases or even a single K-tone multisine of un-commensurate 
frequencies can be used.
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