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@ Internal gravity wave packet (8 < 0,cs = ¢, =v=A=0)
@ Sonic-Langmuir/Alfvén wave (¢, = —1,cs = A =v =~ =0)

@ General Theory of water waves interaction
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Alfvén Waves

@ In the presence of an external magnetic field, transverse
oscillations of the magnetic field lines known as Alfvén waves
can be observed in several magnetised plasmas.

@ The Dynamics of Alfvén waves are ruled by the so-called
MHD equations.

@ The MHD equations read:

Otpm + V.(pmu) =0

pm(Oru+u.Vu) = =2V (p))) + (V x b) x b
9tb =V x (uxb)— %V (iM(be)xb)
V.b=0,

where b is the magnetic field, p the density of mass and u the
fluid speed.
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We present here a uni-dimensional asymptotic model for the
evolution of wave trains of Alfvén waves with wave number k and
frequency w, in a frame travelling at the Alfvén-wave group
velocity v = 203k~ (k? + &%) L.

. § a0
N 1

(Champeaux & al, Nonlinear Processes in Geophysics, 1999)
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iﬁrB—i—w@XXB—k(u—%p+q|B|2)B:O (a)

eOrp + 8x(u — Vp) = —kax|B|2 (b)

eOru + Ix(Bp — vu) = £vox|B|? (c),
(X, T) has been scaled: X = ¢(x — vt) and T = €>t.

B is the transverse magnetic field, u is the ion speed in the (Ox)
direction and p the density of mass.

We obtain here the Zakharov-Rubenchik equation, introduced as
an (another) universal model for the interaction of long and short

waves (1972).
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First, a change of variables:

iBt + Byx + 1B + 1B + |B|?B =0
Y1t — 1x = |B|? (1)
w2tt - w2xx = |B|>2<x

For 11 = ¢» =0, the system becomes the Nonlinear Schrodinger
Equation.

For )1 = 0, we get the Zakharov Equation.

For ¢» = 0, the system reduces to the Benney Equation.

The difficulty here is the derivative loss in the nonlinear terms. )



Zakharov-Rubenchik system - Well posedness (2002-03) ;

Using Strichartz-type estimates for the free Schrodinger group, we
can now obtain the existence of local (strong) solutions via a
fixed-point in the Banach space

I(F, 1, 02)lIx(ry = [IFlleee(o,7,02) + [IFlliso,7,16)
+ N1l (o, 7,11 + 192l oo (0, 7, 11)
+ N1ellioo(o, 7,02y + 1Y2tll (0, 7,12)-

To obtain global solutions, we need to compute some invariants:
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flow:
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The following quantities are conserved by the Zakharov-Rubenchik
flow:

ho) = [ 18F
R
w kq k v
h(t) = = | |B?+— B4—/ — —p)|BJ?
() = 5 [1BR+5 [ 1845 [ gole
ﬁ/ 2 1/ 2 V/
g P g LR =5 [ e
b(t) = e/up+i/(BB_X—BX§).
R 2 Jr
Using these quantities, One can show the a priori estimation

vt < T7 H(F7w171/}2)”X(T) < D(T)7

where D is a continuous function. This is enough to prove that the
solutions are global (absence of blow-up)
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Well posedness

i0TB + wixx B — k(u — %p—l— Q|B|2)B =0 (a)

eOrp + Ox(u — Vp) = —kax|3|2 (b)

eOru + Ix(Bp — vu) = £vox|B|? (c).

The Zakharov-Rubenchik system is globally well-posed in
H?(R) x HY(R) x H(R).

(FO, Physica D, 2003)
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In the adiabatic limit (e — 0):
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k
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B() — B ? If so, in what sense?
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where B is the solution to the NLS equation (13) for initial data
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(FO, Reports on Mathematical Physics, 2007)
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Key: if © <0, f—v2?>0 and v < 0,putting
(V,F,G):= (ed7 (u+ %P)t, u—vp+ k|B|?, Bp — vu + kg|B|2)
and
(@, 8,7,6) := V2(Re(B), Im(B), Re(Bx), Im(Bx)),
Y =(V,F,G,a,03,7,0)
satisfies the perturbed symmetric hyperbolic system:

1
Y + <EM+ N(Y)> Yi + R(Y) + AYsy = 0.

Here, M, N(Y') are symmetric matrixes, A is antisymmetric and
R(Y) is a nonlinear term. We the use Friedrich’'s general theory of
hyperbolic systems, coupled with Klainerman and Maj'da ideas.
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A similar result:
(Kenig-Ponce-Vega, J. Functional Analysis, 1995)

JES+ AEC — nE
Entt—An == V|E6|2

sup ||E€ — E||ys — 0,
[0;T]

for “large” s.
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A previous result
(JP Dias & M Figueira, J. Hyperbolic Equations, 2007)

v+ Uy = |ufPu+wvu (2)
vi+ (F(V)x = [ul} 3)

For
f(v) = av? — bv3,

given initial data u,, v, € H1, there exists a weak solution u,v,
ue LRy, HY, vel®R,,L2nLY.

This result was obtained by parabolic regularisation.



A quasi-linear ver{

We were able to prove:
(JP Dias, M Figueira & FO,C.R. Acad. Sci. Paris, 2007)

Theorem
Let f € C3.

Given initial data (u,, vo € H3(R) x H?(R), there exists T > 0
and a unique solution, with

(u,v) € C([0, T H*%(R)) x C/([0, T]; H*/(R)), j = 0, L.

Here, the life-span T > 0 depends exclusively on f and on the
initial data (uo, vo).




A quasi-linear ver{

The proof relies on an algebraic “trick”: we rewrite the system
without derivative loss:
By setting F = u;, we obtain

iF 4 o — u = |u]?u + u(v —1).
Also, differentiating in time:

iFt + Foe = 2|ul*F + u*F + Fv + u|u? — uv, f'(v).



A quasi-linear ver{

Hence, we consider the following Cauchy problem:

iFe + Fo = 2\ulPF + ®F + Fv + uliiz — uvef'(v)
v+ [F(V = [0l

where u and @ are given in terms of F by

t
u(x,t) = up —I—/ F(x,s)ds
0

and

bi(x,t) = (A — 1) Y(|ufPu+ u(v — 1) — iF).

We then conclude by using Kato's general theory for quasilinear
systems.



Thank you for your attention!
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