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General problem
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Let us cosider the following evolution problem in space X0

{

x′ + A0x = F0(x), t > 0
x(0) = x0 ∈ X0

Let us assume that appropriate conditions are satisfied so that we have
global existence of solutions and contiuous dependence with respect to initial
data. Hence, the equation generates a dynamical system in X0 (phase space):

T0(t) : X0 → X0

x0 → x(t, x0)
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Under certain conditions on the equation we guarantee that T0 is dissipative
and asymptotically compact
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Under certain conditions on the equation we guarantee that T0 is dissipative
and asymptotically compact

These two conditions guarantee the existence of the attractor of the equation,
A0 ⊂ X0.
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Attractor: largest compact, invariant set which attracts every bounded set of the
phase space.

It contains all global and bounded orbits: equilibria, periodic orbits, conecting
orbits, etc ..

The dynamics in the attractor contains all the asymptotic dynamics.

The attractor is a global entity of the dynamical system. Therefore, unders-
tanding its structure is far away from being resolved in this generality.

The attractor may have a very complicated structure and it is not easy to
analyze its behavior under perturbations.
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Nevertheless, if the dynamical system is gradient, the attractor structure is
simpler. It is made of

• Equilibria.

• Conections among equilibria.
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We consider the following problem

{

x′ + A0x = F0(x), t > 0
x(0) = x0 ∈ X0

which generates dynamical system T0(t) : X0 → X0 and has attractor A0.
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We consider the following problem

{

x′ + A0x = F0(x), t > 0
x(0) = x0 ∈ X0

which generates dynamical system T0(t) : X0 → X0 and has attractor A0.

Let us consider a perturbed problem (0 < ǫ ≤ ǫ0)

{

x′ + Aǫx = Fǫ(x), t > 0
x(0) = xǫ ∈ Xǫ

which generates dynamical system Tǫ(t) : Xǫ → Xǫ and has attractor Aǫ.
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Questions:

◮ What is the relation between attractors A0 and Aǫ?.

◮ Under which conditions we can guarantee that Aǫ is close to A0?.
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Questions:

◮ What is the relation between attractors A0 and Aǫ?.

◮ Under which conditions we can guarantee that Aǫ is close to A0?.

Since we are comparing elements of X0 with elements of Xǫ, we need a
concept of “closeness” or “convergence” for elements living in different spaces.

If for instance there exists an space Y so that Xǫ →֒ Y , 0 ≤ ǫ ≤ ǫ0, then
we can talk of convergence in Y .

In each case we need to define this concept in a very precise way.
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Domain Perturbation
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Case 1. General domain perturbation and Neumann boundary conditions.

{

ut − ∆u = f(x, u) in Ωǫ
∂u
∂n = 0 on ∂Ωǫ.
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Case 1. General domain perturbation and Neumann boundary conditions.
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ut − ∆u = f(x, u) in Ωǫ
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Case 1. General domain perturbation and Neumann boundary conditions.

{

ut − ∆u = f(x, u) in Ωǫ
∂u
∂n = 0 on ∂Ωǫ.

J.A., A.N. Carvalho “ Spectral Convergence and Nonlinear Dynamics of
Reaction-Diffusion Equations under Perturbations of the Domain ” Journal of
Differential Equations 199 (2004) pp 143-178
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Case 2. Nonlinear boundary conditions and boundary oscillations

{

ut − ∆u + u = f(x, u) in Ωǫ
∂u
∂n + g(x, u) = 0 on ∂Ωǫ.

Ω

Ω ε

0
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Case 2. Nonlinear boundary conditions and boundary oscillations

{

ut − ∆u + u = f(x, u) in Ωǫ
∂u
∂n + g(x, u) = 0 on ∂Ωǫ.
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R. Acad. Sci. Paris, t. 343, Series I, pp. 99-104 (2006)

J.A., S.M. Bruschi “Rapidly varying boundaries in equations with nonlinear
boundary conditions. The case of a Lipschitz deformation, Math. Methods and
Models in Applied Science (2007). To appear.

J.A., S.M. Bruschi “Very rapidly varying boundaries in equations with nonlinear
boundary conditions”, In preparation
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Dumbell Domain
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Case 3. Dumbbell type domain

{

ut − ∆u + u = f(u) in Ωǫ
∂u
∂n = 0 on ∂Ωǫ.
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Case 3. Dumbbell type domain

{

ut − ∆u + u = f(u) in Ωǫ
∂u
∂n = 0 on ∂Ωǫ.

Ωǫ = Ω ∪ Rǫ ⊂ R
N , N ≥ 2.

Ω
Ω

Ω

R ε

ε
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We assume that f : R → R is a smooth function, satisfying (to simplify)

|f(u)| + |f ′(u)| + |f ′′(u)| ≤ M, ∀u ∈ R

With this hypothesis it is not difficult to see that the equation has an attractor
Aǫ for each ǫ which is unifomly bounded in L∞(Ωǫ) by the constant M (using
comparison arguments).

In particular, all equilibria (solutions of the nonlinear elliptic problem) are
uniformly bounded by M .
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The channel Rǫ is given as:

Rǫ = {(x1, ǫx
′) : (x1, x

′) = x ∈ R1}

and

R1 = {(x1, x
′) : 0 ≤ x1 ≤ 1, x′ ∈ Γx1}

where Γx1 is diffeomorphic to the unit ball in (N − 1) dimensions and Γx1

changes smoothly as we move x1 ∈ [0, 1]}.

In particular, the function g(x1) = |Γx1| is smooth.
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The limit domain is given by

Ω
Ω

R 0
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• The behavior of the solutions in the channel Rǫ is relevant.

For instance, if the equation is ut − ∆u = u − u3, we have that u ≡ 1 is
a constant solution of the equation for all ǫ > 0 and it does not vanish in the
channel at least in L∞ as ǫ → 0.

This is one difference with respect to the same problem with Dirichlet boun-
dary conditions in which all solutions vanish in the channel as ǫ → 0.

Ω
Ω

Ω

R ε

ε
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Other reasons: there exist functions uǫ ∈ H1(Ωǫ) with bounded energy, that
is ‖uǫ‖H1(Ωǫ) ≤ C, which concentrate their mass in the channel Rǫ.

39



Other reasons: there exist functions uǫ ∈ H1(Ωǫ) with bounded energy, that
is ‖uǫ‖H1(Ωǫ) ≤ C, which concentrate their mass in the channel Rǫ.

Eigenvalue problem: if we denote by {(λǫ
n, ϕǫ

n)}∞n=1 the set of eigenvalues
and orthonormalized eigenfunctions of the operator −∆ with Neumann boun-
dary conditions in Ωǫ,

{

−∆ϕǫ
n = λǫ

nϕǫ
n in Ωǫ

∂ϕǫ
n

∂n = 0 on ∂Ωǫ

Then, it is not true that the eigenvalues of λǫ
n converge to the eigenvalues of

{

−∆φn = µnφn in Ω
∂ϕn
∂n = 0 on ∂Ω

Some of them will do...
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But, some eigenfunctions will concentrate on the channel and the eigenva-
lue will converge to an eigenvalue of the problem

{

−1
g(gγ′)′ = τγ in (0, 1)

γ(0) = γ(1) = 0
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As a matter of fact, if we denote by {τn}
∞
n=1 the eigenvalues of the problem

above and by {µn}
∞
n=1 the eigenvalues in Ω with Neumann boundary condi-

tions we have the following diagram:

λ

5
µµ

4
τ

2
µ

3
τ

1
µµ

1 2
=

λ

λ
λ λ λ λ

τ
3
=

1

2
3

4 5 6 8

λ 7
ε

ε
ε

ε ε ε

ε

εε
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• If the behavior in the channel is relevant, then to analyze the convergence of
the solutions we should choose a functional space that makes the behavior in
the channel relevant.

- bad choices: H1(Ωǫ), Lp(Ωǫ), 1 ≤ p < ∞ with the usual norms

- good but difficult choices: L∞(Ωǫ) or C(Ω̄ǫ)

- reasonable choices: Up
ǫ = Lp(Ωǫ), 1 ≤ p < ∞ with the following “weigh-

ted” norm:

‖u‖U
p
ǫ

= ‖u‖Lp(Ω) +
1

ǫ(N−1)/p
‖u‖Lp(Rǫ)

and U1,2
ǫ = H1(Ωǫ) with the norm

‖u‖
U

1,2
ǫ

= ‖u‖H1(Ω) +
1

ǫ(N−1)/2
‖u‖H1(Rǫ)
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• The limit problem and limit “domain” are























wt − ∆w + w = f(w) in Ω
∂w
∂n = 0 on ∂Ω

vt −
1
g(gvx)x + v = f(v), x ∈ (0, 1)

v(0) = w(P0), v(1) = w(P1)

Ω
Ω

R 0
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• The problem is “one sided coupled”: w is independent of v but v strongly
depends on w through the boundary conditions.

• For a given initial condition (w0, v0) we first solve the equation for w,







wt − ∆w + w = f(w) in Ω
∂w
∂n = 0 on ∂Ω
w(0) = w0

then, we calculate the trace of w(t, x) at x = P0 = (0, 0, ..,0) and x = P1 =
(1, 0, ..,0), then we solve the v equation







vt −
1
g(gvx)x + v = f(v), x ∈ (0, 1)

v(t, 0) = w(t, P0), v(t, 1) = w(t, P1)
v(0, x) = v0(x)
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A natural space to pose the problem is

Up
0 = {u = (w, v) : w ∈ Lp(Ω), v ∈ Lp

g(0, 1)} = Lp(Ω) ⊕ Lp
g(0, 1)

with the norm:

‖u‖U
p
0

= ‖w‖Lp(Ω) +

(
∫ 1

0

g(x1)|v(x1)|
pdx1

)

1
p

and we require p > N/2 to have the trace at P0 and P1 of the solution well
defined.
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We have the following transformations among the spaces: Eǫ : Up
0 → Up

ǫ

given by

Eǫ(w, v) =

{

w(x), x ∈ Ω
v(x1), (x1, x

′) ∈ Rǫ

which obviously satisfies ‖Eǫ(w, v)‖U
p
ǫ

= ‖(w, v)‖U
p
0

We also have Mǫ : Up
ǫ → Up

0 given by Mǫuǫ = (w, v) ∈ Up
0 where

w = uǫ|Ω

v(x1) =
1

|Γǫ
x1
|

∫

Γǫ
x1

uǫ(x1, x
′)dx′
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Hence






ut − ∆u + u = f(u) in Ωǫ
∂u
∂n = 0 on ∂Ωǫ,
u(0) = φǫ ∈ Up

ǫ

which can be written as ut + Aǫu = F (u) in Up
ǫ where

Aǫ : D(Aǫ) : Up
ǫ → Up

ǫ

uǫ → −∆u + u

D(Aǫ) = {uǫ ∈ W 2,p(Ωǫ) :
∂u

∂n
= 0}
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• The equilibria (critical points) are given by the fixed points of

uǫ = A−1
ǫ F (uǫ) in Up

ǫ

• Also, the solutions of the nonlinear evolution problem are given by the variation
of constants formula:

Tǫ(t, φǫ) = e−Aǫtφǫ +

∫ t

0

e−Aǫ(t−s)T (s, φǫ)ds

and

e−Aǫt =
1

2πi

∫

Γ

eλt(λ + Aǫ)
−1dλ
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We should study the behavior of A−1
ǫ : Up

ǫ → Up
ǫ as ǫ → 0.

Let fǫ ∈ Up
ǫ and let uǫ = A−1

ǫ fǫ, that is

{

−∆uǫ + uǫ = fǫ in Ωǫ
∂uǫ
∂n = 0 on ∂Ωǫ.

Let also (wǫ, vǫ) = A−1
0 Mǫfǫ be the solution of























−∆wǫ + wǫ = fǫ in Ω
∂wǫ
∂n = 0 on ∂Ω

−1
g(gvx)x + vǫ = Mǫfǫ, x ∈ (0, 1)

vǫ(0) = wǫ(P0), vǫ(1) = wǫ(P1)
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Proposition. There exists a constant C > 0, independent of ǫ and of fǫ ∈ Up
ǫ ,

such that

• If p > N/2 then ‖uǫ‖L∞(Ωǫ) = ‖A−1
ǫ fǫ‖L∞(Ωǫ) ≤ C‖fǫ‖U

p
ǫ

• If p > N, 1 ≤ q < ∞

‖uǫ − wǫ‖H1(Ω) + ‖uǫ − vǫ‖H1(Rǫ) ≤ CǫN/2‖fǫ‖U
p
ǫ

‖uǫ − wǫ‖Lq(Ω) + ‖uǫ − vǫ‖Lq(Rǫ) ≤ CǫN/q‖fǫ‖U
p
ǫ

This implies that

‖uǫ − wǫ‖H1(Ω) + ǫ
−(N−1)

2 ‖uǫ − vǫ‖H1(Rǫ) ≤ Cǫ1/2‖fǫ‖U
p
ǫ

‖uǫ − wǫ‖Lq(Ω) + ǫ
−(N−1)

q ‖uǫ − vǫ‖Lq(Rǫ) ≤ Cǫ1/q‖fǫ‖U
p
ǫ
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Equivalently

‖A−1
ǫ fǫ − EǫA

−1
0 Mǫfǫ‖U

1,2
ǫ

≤ Cǫ1/2‖fǫ‖U
p
ǫ

‖A−1
ǫ fǫ − EǫA

−1
0 Mǫfǫ‖U

q
ǫ
≤ Cǫ1/q‖fǫ‖U

p
ǫ

And this represents some convergence of A−1
ǫ to A−1

0 .

An appropriate way to define “convergence of operators” which are defined
in different spaces is as follows:
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Definition 1. uǫ
E
−→ u if ‖uǫ − Eǫu‖Uǫ

ǫ→0
−→ 0.

Definition 2. {uǫ}ǫ is E-pre-compact if for each sequence {uǫn} there is a

subsequence {uǫn′
} and an element u ∈ U0 such that uǫn′

E
−→ u.

Definition 3. Bǫ
EE
−→ B0 if Bǫuǫ

E
−→ B0u whenever uǫ

E
−→ u ∈ U0.

Definition 4. Bǫ
CC
−→ B0 if

i) Bǫ, B0 are compact operators.

ii) {Bǫuǫ} is E-precompact for any family {uǫ} with ‖uǫ‖Uǫ ≤ R, for any R > 0.

iii) Bǫ
EE
−→ B0
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The Proposition we have proved implies

Theorem 5. If p > N , we have L(Up
ǫ ) ∋ A−1

ǫ
CC
−→ A−1

0 ∈ L(Up
0 )

This theorem has a lot of consequences:

• σ(Aǫ) → σ(A0) and the spectral projections behave also continuously.

• If Vǫ ∈ L∞(Ωǫ) and Vǫ
E
−→ V0 and ∃ (A0 + V0)

−1, then for ǫ small enough

∃ (Aǫ + Vǫ)
−1 and (Aǫ + Vǫ)

−1 CC
−→ (A0 + V0)

−1

• A−1
ǫ ◦ f

CC
−→ A−1

0 ◦ f
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Proposition 6. (Uppersemicontinuity of fixed points) If Nǫ : Uǫ → Uǫ is a

sequence of nonlinear operators with Nǫ
CC
−→ N0 and u∗

ǫ = Nǫ(u
∗
ǫ) with

‖u∗
ǫ‖Uǫ ≤ R then there exists a subsequence uǫ′ and a fixed point of the li-

mit problem u∗
0 such that uǫ′

E
−→ u∗

0.

• Applying this result to A−1
ǫ ◦ f

CC
−→ A−1

0 ◦ f and since the equilibria is uni-
formly bounded in L∞ (and therefore in Up

ǫ ) we get that the set of equilibria is
uppersemicontinuous in Up

ǫ .

• If u∗
ǫ

E
−→ u∗

0 then Vǫ(·) = f ′(u∗
ǫ(·))

E
−→ f ′(u∗

0(·)). Therefore if (A0 −
f ′(u∗

0) + C) is invertible then so is (Aǫ − f ′(u∗
ǫ) + C) for ǫ small and

(Aǫ − f ′(u∗(·) + C)−1 CC
−→ (A0 − f ′(u∗

0(·) + C)−1

and this implies that σ(Aǫ − f ′(u∗
ǫ)) → σ(A0 − f ′(u∗

0))
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In particular if u∗
0 is a hyperbolic equilibria, ∃ (A0−f ′(u∗

0))
−1, and if u∗

ǫ
E
−→

u∗
0, then u∗

ǫ is also a hyperbolic equilibria. We can actually prove something
else:

Proposition 7. If u∗
0 is a hyperbolic equilibrium of the limit problem, there exists

δ > 0 small such that the problem in the dumbbell domain has one and only
one solution satisfying ‖u∗

ǫ − Eu∗
0‖U

p
ǫ

< δ. Moreover

• ‖u∗
ǫ − Eǫu

∗
0‖U

p
ǫ
→ 0.

• σ(Aǫ−f ′(u∗
ǫ)) → σ(A0−f ′(u∗

0)) and the spectral projections also converge.
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With respect to the evolution equation

(λ + Aǫ)
−1 − Eǫ(λ + A0)

−1Mǫ =

= (I − λ(λ + Aǫ)
−1) ◦ (A−1

ǫ − EǫA
−1
0 Mǫ) ◦ (I + Eǫλ(λ + A0)

−1Mǫ)

which implies

‖(λ + Aǫ)
−1 − Eǫ(λ + A0)

−1Mǫ‖L(U
p
ǫ ,Lq(Ωǫ))

≤ CǫN/q(1 + |λ|1−α)

for some 0 < α < 1
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And usign the expresion:

e−Aǫt − Eǫe
−A0tMǫ =

1

2πi

∫

Γ

eλt((λ + Aǫ)
−1 − Eǫ(λ + A0)

−1Mǫ)dλ

we conclude

‖e−Aǫt − Eǫe
−A0tMǫ‖L(U

p
ǫ ,U

q
ǫ ) ≤ Cǫ1/qeβtt−2+α

But using that
‖e−Aǫt − Eǫe

−A0tMǫ‖L(L∞,L∞) ≤ C

and interpolation, we get

‖e−Aǫt − Eǫe
−A0tMǫ‖L(U

p
ǫ ,U

q
ǫ ) ≤ Ceβtt−γθ(ǫ)
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Now, with the aid of the variation of constants formula:

Tǫ(t, φǫ) = e−Aǫtφǫ +

∫ t

0

e−Aǫ(t−s)T (s, φǫ)ds

T0(t, φ0) = e−A0tφ0 +

∫ t

0

e−A0(t−s)T (s, φ0)ds

we will be able to compare the nonlinear evolution problems and prove:
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Proposition 8. There exists a 0 6 γ < 1 and a function c(ǫ) with c(ǫ)
ǫ→0
−→ 0

such that, for each τ > 0 we have

‖Tǫ(t, uǫ) − EǫT0(t, Mǫuǫ)‖U
p
ǫ
≤ M(τ)c(ǫ)t−γ, t ∈ (0, τ ], uǫ ∈ Aǫ.

Moreover, the family of attractors {Aǫ : ǫ ∈ [0, ǫ0]} is upper semicontinuous at
ǫ = 0 in Up

ǫ , in the sense that

sup
uǫ∈Aǫ

[

ı́nf
u0∈A0

{‖uǫ − Eǫu0‖U
p
ǫ
}
]

→ 0, as ǫ → 0
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Finally,

• Requiring that all equilibria of the limit problem is hyperbolic

• Analyzing in detail the convergence of the “local unstable manifold” of each
equilibria

• Using the gradient structure of the limit equation

we show the lower semicontinuity (and therfore the continuity) of the attractors.
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