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X - configuration space of a mechanical system.

Does X I

λ : I = [0, 1] → X

X × X

(λ(0), λ(1))

admit a section s?

If X is path-connected then s exists.
Is it possible to define s by a formula? to find s continuous?

In general: NOT so that s(x , y) =

{
... if (x , y) ∈ ...
...

...
How many “continuous formulas” are necessary?

 Topological complexity
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Definition. (M. Farber) TC(X ) is the least integer n such that
X × X can be covered by n + 1 open sets on each of which

ev0,1 : X I → X × X admits a continuous section.

This is a homotopy invariant and a particular case of:

Definition. (A. Schwarz) The sectional category of a fibration
p : E → B, secat(p), is the least integer n such that B can be
covered by n +1 open sets on each of which p admits a section.

Another particular case of this is the Lusternik-Schnirelmann
category:

cat(X ) = secat(ev0 : PX → X )

where PX = {λ : I → X , λ(1) = ∗}.
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Theorem. (A. Schwarz) For a fibration p : E → B we have

nil(ker p∗) ≤ secatp ≤ catB

where

I p∗ : H∗(B) → H∗(E) is the morphism induced by p
I nil(ker p∗) ≤ n iff every product of length n + 1 in ker p∗ is 0.



secatp ≤ catB because:

PB

ev0   B
BB

BB
BB

B
exists // E

p����
��

��
�

B

For p = ev0,1 : X I → X × X we get

TC(X ) ≤ cat(X × X ) ≤ 2 catX .
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On the other hand, we have

X

∆ ""F
FF

FF
FF

FF
' // X I

p=ev0,1{{xx
xx

xx
xx

x

X × X

so that, with H∗() = H∗(−, k),

nil(ker p∗) = nil(ker ^)

where ^: H∗(X )⊗ H∗(X ) → H∗(X ) is the cup-product.

In H∗(X )⊗ H∗(X ), (a⊗ b)(a′ ⊗ b′) = (−1)deg(b)deg(a′)aa′ ⊗ bb′.
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Theorem. (M. Farber)

nil(ker ^)
cat(X )

}
≤ TC(X ) ≤

{
2cat(X )
dim(X ) (Xsimply-connected)



Examples.

1- (M. Farber) TC(Sn) =

{
1 n odd
2 n even

I cat(Sn) = 1 Hence 1 ≤ TC(Sn) ≤ 2.
I nil(ker ^) =?

H∗(Sn) = k · 1⊕ kx with deg(1) = 0 and deg(x) = n.

In the kernel of ^ we have:

x ⊗ 1− 1⊗ x and x ⊗ x

(x ⊗ 1− 1⊗ x)2 = −x ⊗ x − (−1)nx ⊗ x

Therefore nil(ker ^) =

{
1 n odd
2 n even

and TC(Sn) = 2 if n is even.
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I If n is odd TC(Sn) ≤ 1:

Sn × Sn is covered by
{

U0 = {(x , y) | x 6= −y}
U1 = {(x , y) | x 6= y}

For (x , y) ∈ U0, go from x to y through the shortest great
circle arc.

To define the section on U1 choose a continuous non-zero
vector field on Sn. For (x , y) ∈ U1 go from x to −x through
the meridian determined by the vector field at x and then
from −x to y by the shortest great circle arc.
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2- (M. Farber, S. Tabachnikov, S. Yuzvinsky) TC(RPn) is the
least integer k such that there exists an immersion of RPn in Rk .

Our objective: Find a computable lower bound of TC which is
better than nil(ker ^).

nil(ker ^) ≤ ≤ TC(X )OO
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The join of 2 fibrations p : E → B and p′ : E ′ → B is the map

E ∗B E ′ := E q (E ×B E ′ × [0, 1])q E ′/ ∼ → B

〈e, e′, t〉 7→ p(e) = p(e′)

where ∼ is given by (e, e′, t) ∼
{

e t = 0
e′ t = 1

This map is a fibration with fibre

F ∗ F ′ = F q F × F ′ × [0, 1]q F ′/ ∼

where F and F ′ are the respective fibres of p and p′.
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For p : E → B and n ≥ 1, consider

jn(p) : ∗n
BE = E ∗B · · · ∗B E︸ ︷︷ ︸

n+1 factors

→ B

Theorem. (A. Schwarz) If B is normal, then

secat(p) ≤ n ⇐⇒ jn(p) admits a (continuous) section.

Corollary. If X is normal, then

TC(X ) ≤ n ⇐⇒ jn(ev0,1) : ∗n
X×X X I → X × X admits a section.



For p : E → B and n ≥ 1, consider

jn(p) : ∗n
BE = E ∗B · · · ∗B E︸ ︷︷ ︸

n+1 factors

→ B

Theorem. (A. Schwarz) If B is normal, then

secat(p) ≤ n ⇐⇒ jn(p) admits a (continuous) section.

Corollary. If X is normal, then

TC(X ) ≤ n ⇐⇒ jn(ev0,1) : ∗n
X×X X I → X × X admits a section.



For p : E → B and n ≥ 1, consider

jn(p) : ∗n
BE = E ∗B · · · ∗B E︸ ︷︷ ︸

n+1 factors

→ B

Theorem. (A. Schwarz) If B is normal, then

secat(p) ≤ n ⇐⇒ jn(p) admits a (continuous) section.

Corollary. If X is normal, then

TC(X ) ≤ n ⇐⇒ jn(ev0,1) : ∗n
X×X X I → X × X admits a section.



Models in Rational Homotopy Theory

I Q is the ground field.

I Sullivan functor:
APL : TOP → CDGA (comm. diff. grad. algebra)

[ab = (−1)deg(a)deg(b)ba]

I If X is simply-connected and of finite type then APL(X )
contains all rational homotopy information about X .

I In particular, H(APL(X )) = H∗(X ; Q).
I Sullivan model of a space X :

(ΛV , d)
∼→ APL(X )

If d(V ) ⊂ Λ>1(V ) the model is said to be minimal. In this
case V ∼= dual of π∗(X )⊗Q.
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Example: Sullivan model of Sn

H∗(Sn; Q) = Q · 1⊕Qx with deg(1) = 0 and deg(x) = n.

If V = Qx , then ΛV =

{
Q · 1⊕Qx ⊕Qx2 ⊕ · · · n even
Q · 1⊕Qx n odd

Hence a Sullivan model of Sn is given by:
Λ(x) with dx = 0 n odd

Λ(x , y) with dx = 0, deg(y) = 2n − 1, dy = x2 n even
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Let F → E
p→ B a fibration.

By applying APL we get:

APL(B)
APL(p)// APL(E) // APL(F )
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Model of ∗nF → ∗n
BE

jn(p)→ B

Starting with a semi-free model of p

(A, d) // // (A⊗ H, d) // (H, 0)

and writing H = Q⊕ X we obtained a semi-free model of jn(p)
of the form

(A, d) // // (A⊗ (Q⊕ s−n(X⊗n+1)), d) // (Q⊕ s−n(X⊗n+1), 0)

with (s−nV )k = V k−n and an explicit differential.
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Application to TC:

The initial fibration is ΩX → X I ev0,1→ X × X

Let (ΛV , d) be a minimal Sullivan model of X .
A semi-free model of ev0,1 is:

APL(X × X ) // APL(X I) // APL(ΩX )

(Λ(V ⊕ V ′), d)

∼

OO

// // (Λ(V ⊕ V ′)⊗ ΛsV , d)

∼
OO

// (ΛsV , 0)

∼

OO

where (sV )k = V k+1 and the differential d is given by

dsv = v ′ − v −
∞∑

i=1

(ζd)i

i!
(v)

where ζ is the derivation given by ζ(v) = ζ(v ′) = sv and
ζ(sv) = 0.
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Writing ΛsV = Q⊕ Λ+sV , we obtain:

APL(X × X ) // APL(∗n
X×X X I) // APL(∗nΩX )

(Λ(V ⊕ V ′), d)

∼

OO

// // (Jn, d)

∼ (A,d)−mod.
OO

// (Q⊕ s−n(Λ+sV )⊗n+1, 0)

∼ chain cplx
OO

Definition. MTC(X ) is the least n such that the morphism

(Λ(V ⊕ V ′), d) → (Jn, d)

admits a retraction of (Λ(V ⊕ V ′), d)-modules.
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Theorem. nil(ker ^) ≤ MTC(X ) ≤ TC(X )

Proposition. If X is formal, that is (H∗(X ), 0) is a
CDGA-model of X , then

nil(ker ^) = MTC(X )

Theorem. There exists a (non formal) space
X = S3 ∨ S3 ∪ e8 ∪ e8 for which

nil(ker(^)) = 2 and MTC(X ) = 3.
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Theorem. (i) For any n, there exists a finite CW-complex X
such that

MTC(X )− nil(ker ^) ≥ n.

(ii) There exists a space X with MTC(X ) = ∞ and
nil(ker ^) < ∞.


