On Farber's Topological Complexity

Lucile Vandembroucq Joint work with L. Fernández Suárez, P. Ghienne, and T. Kahl.

24/11/2007
X - configuration space of a mechanical system.
X - configuration space of a mechanical system.

$$
\lambda: I=[0,1] \rightarrow X
$$

$(\lambda(0), \lambda(1))$

X - configuration space of a mechanical system.

$$
\begin{aligned}
& \lambda: I=[0,1] \rightarrow X \\
& \text { T } \\
& (\lambda(0), \lambda(1))
\end{aligned}
$$

X - configuration space of a mechanical system.

Does $\begin{array}{ccc}X^{\prime} & \lambda: I=[0,1] \rightarrow X & \\ & \stackrel{\downarrow}{\downarrow} \times X & (\lambda(0), \lambda(1)) \quad \text { admit a section } s \text { ? }\end{array}$
X - configuration space of a mechanical system.

If X is path-connected then s exists.
X - configuration space of a mechanical system.

If X is path-connected then s exists. Is it possible to define s by a formula?
X - configuration space of a mechanical system.

If X is path-connected then s exists.
Is it possible to define s by a formula? to find s continuous?
X - configuration space of a mechanical system.

If X is path-connected then s exists.
Is it possible to define s by a formula? to find s continuous?
In general: NOT
X - configuration space of a mechanical system.

If X is path-connected then s exists.
Is it possible to define s by a formula? to find s continuous?
In general: NOT
How many "continuous formulas" are necessary?
\rightsquigarrow Topological complexity

Definition. (M. Farber) $T C(X)$ is the least integer n such that $X \times X$ can be covered by $n+1$ open sets on each of which
$e v_{0,1}: X^{\prime} \rightarrow X \times X$ admits a continuous section.

Definition. (M. Farber) $T C(X)$ is the least integer n such that $X \times X$ can be covered by $n+1$ open sets on each of which
$e v_{0,1}: X^{\prime} \rightarrow X \times X \quad$ admits a continuous section.
This is a homotopy invariant

Definition. (M. Farber) $T C(X)$ is the least integer n such that $X \times X$ can be covered by $n+1$ open sets on each of which

$$
e v_{0,1}: X^{\prime} \rightarrow X \times X \quad \text { admits a continuous section. }
$$

This is a homotopy invariant and a particular case of:
Definition. (A. Schwarz) The sectional category of a fibration $p: E \rightarrow B$, secat (p), is the least integer n such that B can be covered by $n+1$ open sets on each of which p admits a section.

Definition. (M. Farber) $T C(X)$ is the least integer n such that $X \times X$ can be covered by $n+1$ open sets on each of which

$$
e v_{0,1}: X^{\prime} \rightarrow X \times X \quad \text { admits a continuous section. }
$$

This is a homotopy invariant and a particular case of:
Definition. (A. Schwarz) The sectional category of a fibration $p: E \rightarrow B, \operatorname{secat}(p)$, is the least integer n such that B can be covered by $n+1$ open sets on each of which p admits a section.

Another particular case of this is the Lusternik-Schnirelmann category:

$$
\begin{aligned}
& \operatorname{cat}(X)=\operatorname{secat}\left(e v_{0}: P X \rightarrow X\right) \\
& \quad \text { where } P X=\{\lambda: I \rightarrow X, \lambda(1)=*\}
\end{aligned}
$$

Theorem. (A. Schwarz) For a fibration $p: E \rightarrow B$ we have

$$
\operatorname{nil}\left(\operatorname{ker} p^{*}\right) \leq \operatorname{secat} p \leq \operatorname{cat} B
$$

where

- $p^{*}: H^{*}(B) \rightarrow H^{*}(E)$ is the morphism induced by p
$-\operatorname{nil}\left(\operatorname{ker} p^{*}\right) \leq n$ iff every product of length $n+1$ in $\operatorname{ker} p^{*}$ is 0.
secat $p \leq \operatorname{cat} B$ because:

secat $p \leq \operatorname{cat} B$ because:

For $p=e v_{0,1}: X^{\prime} \rightarrow X \times X$ we get

$$
\mathrm{TC}(X) \leq \operatorname{cat}(X \times X) \leq 2 \operatorname{cat} X
$$

On the other hand, we have

On the other hand, we have

so that, with $H^{*}()=H^{*}(-, \mathbb{k})$,

$$
\operatorname{nil}\left(\operatorname{ker} p^{*}\right)=\operatorname{nil}(\operatorname{ker} \smile)
$$

where $\smile: H^{*}(X) \otimes H^{*}(X) \rightarrow H^{*}(X)$ is the cup-product.

On the other hand, we have

so that, with $H^{*}()=H^{*}(-, \mathbb{k})$,

$$
\operatorname{nil}\left(\operatorname{ker} p^{*}\right)=\operatorname{nil}(\operatorname{ker} \smile)
$$

where $\smile: H^{*}(X) \otimes H^{*}(X) \rightarrow H^{*}(X)$ is the cup-product.
In $H^{*}(X) \otimes H^{*}(X),(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=(-1)^{\operatorname{deg}(b) \operatorname{deg}\left(a^{\prime}\right)} a a^{\prime} \otimes b b^{\prime}$.

Theorem. (M. Farber)

$$
\left.\begin{array}{l}
\operatorname{nil}(\operatorname{ker} \smile) \\
\operatorname{cat}(X)
\end{array}\right\} \leq \mathrm{TC}(X) \leq\left\{\begin{array}{l}
2 \operatorname{cat}(X) \\
\operatorname{dim}(X) \quad(X \text { simply-connected })
\end{array}\right.
$$

Examples.

1- (M. Farber) $\mathrm{TC}\left(S^{n}\right)= \begin{cases}1 & \mathrm{n} \text { odd } \\ 2 & \mathrm{n} \text { even }\end{cases}$

Examples.

1- (M. Farber) $\mathrm{TC}\left(S^{n}\right)= \begin{cases}1 & \mathrm{n} \text { odd } \\ 2 & \mathrm{n} \text { even }\end{cases}$
$-\operatorname{cat}\left(S^{n}\right)=1 \quad$ Hence $1 \leq \mathrm{TC}\left(S^{n}\right) \leq 2$.

Examples.

1- (M. Farber) $\mathrm{TC}\left(S^{n}\right)= \begin{cases}1 & \mathrm{n} \text { odd } \\ 2 & \mathrm{n} \text { even }\end{cases}$

- $\operatorname{cat}\left(S^{n}\right)=1 \quad$ Hence $1 \leq \mathrm{TC}\left(S^{n}\right) \leq 2$.
$-\operatorname{nil}($ ker $\smile)=$?

Examples.

1- (M. Farber) $\mathrm{TC}\left(S^{n}\right)= \begin{cases}1 & \mathrm{n} \text { odd } \\ 2 & \mathrm{n} \text { even }\end{cases}$

- $\operatorname{cat}\left(S^{n}\right)=1 \quad$ Hence $1 \leq \mathrm{TC}\left(S^{n}\right) \leq 2$.
- $\operatorname{nil}($ ker $\smile)=$?
$H^{*}\left(S^{n}\right)=\mathbb{k} \cdot 1 \oplus \mathbb{k} x$ with $\operatorname{deg}(1)=0$ and $\operatorname{deg}(x)=n$.

Examples.

1- (M. Farber) $\mathrm{TC}\left(S^{n}\right)= \begin{cases}1 & \mathrm{n} \text { odd } \\ 2 & \mathrm{n} \text { even }\end{cases}$

- $\operatorname{cat}\left(S^{n}\right)=1 \quad$ Hence $1 \leq \mathrm{TC}\left(S^{n}\right) \leq 2$.
- $\operatorname{nil}($ ker $\smile)=$?
$H^{*}\left(S^{n}\right)=\mathbb{k} \cdot 1 \oplus \mathbb{k} x$ with $\operatorname{deg}(1)=0$ and $\operatorname{deg}(x)=n$. In the kernel of \smile we have:

$$
x \otimes 1-1 \otimes x \quad \text { and } \quad x \otimes x
$$

Examples.

1- (M. Farber) $\mathrm{TC}\left(S^{n}\right)= \begin{cases}1 & \mathrm{n} \text { odd } \\ 2 & \mathrm{n} \text { even }\end{cases}$

- $\operatorname{cat}\left(S^{n}\right)=1 \quad$ Hence $1 \leq \mathrm{TC}\left(S^{n}\right) \leq 2$.
- nil(ker $\smile)=$?
$H^{*}\left(S^{n}\right)=\mathbb{k} \cdot 1 \oplus \mathbb{k} x$ with $\operatorname{deg}(1)=0$ and $\operatorname{deg}(x)=n$. In the kernel of \smile we have:

$$
\begin{array}{r}
x \otimes 1-1 \otimes x \quad \text { and } \quad x \otimes x \\
(x \otimes 1-1 \otimes x)^{2}=-x \otimes x-(-1)^{n} x \otimes x
\end{array}
$$

Examples.

1- (M. Farber) $\mathrm{TC}\left(S^{n}\right)= \begin{cases}1 & \mathrm{n} \text { odd } \\ 2 & \mathrm{n} \text { even }\end{cases}$

- $\operatorname{cat}\left(S^{n}\right)=1 \quad$ Hence $1 \leq \mathrm{TC}\left(S^{n}\right) \leq 2$.
- nil(ker $\smile)=$?
$H^{*}\left(S^{n}\right)=\mathbb{k} \cdot 1 \oplus \mathbb{k} x$ with $\operatorname{deg}(1)=0$ and $\operatorname{deg}(x)=n$.
In the kernel of \smile we have:

$$
x \otimes 1-1 \otimes x \quad \text { and } \quad x \otimes x
$$

$(x \otimes 1-1 \otimes x)^{2}=-x \otimes x-(-1)^{n} x \otimes x$
Therefore nil $($ ker $\smile)=\left\{\begin{array}{cc}1 & n \text { odd } \\ 2 & n \text { even }\end{array}\right.$
and $\operatorname{TC}\left(S^{n}\right)=2$ if n is even.

- If n is odd $\mathrm{TC}\left(S^{n}\right) \leq 1$:
- If n is odd $\mathrm{TC}\left(S^{n}\right) \leq 1$:

$$
S^{n} \times S^{n} \text { is covered by }\left\{\begin{array}{l}
U_{0}=\{(x, y) \mid x \neq-y\} \\
U_{1}=\{(x, y) \mid x \neq y\}
\end{array}\right.
$$

- If n is odd $\mathrm{TC}\left(S^{n}\right) \leq 1$:
$S^{n} \times S^{n}$ is covered by $\left\{\begin{array}{l}U_{0}=\{(x, y) \mid x \neq-y\} \\ U_{1}=\{(x, y) \mid x \neq y\}\end{array}\right.$
For $(x, y) \in U_{0}$, go from x to y through the shortest great circle arc.
- If n is odd $\mathrm{TC}\left(S^{n}\right) \leq 1$:
$S^{n} \times S^{n}$ is covered by $\left\{\begin{array}{l}U_{0}=\{(x, y) \mid x \neq-y\} \\ U_{1}=\{(x, y) \mid x \neq y\}\end{array}\right.$
For $(x, y) \in U_{0}$, go from x to y through the shortest great circle arc.

To define the section on U_{1} choose a continuous non-zero vector field on S^{n}. For $(x, y) \in U_{1}$ go from x to $-x$ through the meridian determined by the vector field at x and then from $-x$ to y by the shortest great circle arc.

2- (M. Farber, S. Tabachnikov, S. Yuzvinsky) TC($\left.\mathbb{R}^{p}{ }^{n}\right)$ is the least integer k such that there exists an immersion of $\mathbb{R P}^{n}$ in \mathbb{R}^{k}.

2- (M. Farber, S. Tabachnikov, S. Yuzvinsky) TC($\mathbb{R P}^{n}$) is the least integer k such that there exists an immersion of $\mathbb{R P}^{n}$ in \mathbb{R}^{k}.

Our objective: Find a computable lower bound of TC which is better than nil(ker $\smile)$.

$$
\operatorname{nil}(\operatorname{ker} \smile) \leq \quad \uparrow \quad \mathrm{TC}(X)
$$

The join of 2 fibrations $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ is the map

$$
\begin{aligned}
E *_{B} E^{\prime}:=E \amalg\left(E \times_{B} E^{\prime} \times[0,1]\right) \amalg E^{\prime} / \sim & \rightarrow B \\
\left\langle e, e^{\prime}, t\right\rangle & \mapsto p(e)=p\left(e^{\prime}\right)
\end{aligned}
$$

where \sim is given by $\left(e, e^{\prime}, t\right) \sim \begin{cases}e & t=0 \\ e^{\prime} & t=1\end{cases}$

The join of 2 fibrations $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B$ is the map

$$
\begin{aligned}
E *_{B} E^{\prime}:=E \amalg\left(E \times_{B} E^{\prime} \times[0,1]\right) \amalg E^{\prime} / \sim & \rightarrow B \\
\left\langle e, e^{\prime}, t\right\rangle & \mapsto p(e)=p\left(e^{\prime}\right)
\end{aligned}
$$

where \sim is given by $\left(e, e^{\prime}, t\right) \sim \begin{cases}e & t=0 \\ e^{\prime} & t=1\end{cases}$
This map is a fibration with fibre

$$
F * F^{\prime}=F \amalg F \times F^{\prime} \times[0,1] \amalg F^{\prime} / \sim
$$

where F and F^{\prime} are the respective fibres of p and p^{\prime}.

For $p: E \rightarrow B$ and $n \geq 1$, consider

$$
j^{n}(p): *_{B}^{n} E=\underbrace{E *_{B} \cdots *_{B} E}_{n+1} \rightarrow B
$$

For $p: E \rightarrow B$ and $n \geq 1$, consider

$$
j^{n}(p): *_{B}^{n} E=\underbrace{E *_{B} \cdots *_{B} E}_{n+1} \rightarrow B
$$

Theorem. (A. Schwarz) If B is normal, then
$\operatorname{secat}(p) \leq n \Longleftrightarrow j^{n}(p)$ admits a (continuous) section.

For $p: E \rightarrow B$ and $n \geq 1$, consider

$$
j^{n}(p): *_{B}^{n} E=\underbrace{E *_{B} \cdots *_{B} E}_{n+1 \text { factors }} \rightarrow B
$$

Theorem. (A. Schwarz) If B is normal, then
$\operatorname{secat}(p) \leq n \Longleftrightarrow j^{n}(p)$ admits a (continuous) section.
Corollary. If X is normal, then
$\mathrm{TC}(X) \leq n \Longleftrightarrow j^{n}\left(e v_{0,1}\right): *_{X \times X}^{n} X^{\prime} \rightarrow X \times X$ admits a section.

Models in Rational Homotopy Theory

- \mathbb{Q} is the ground field.

Models in Rational Homotopy Theory

- \mathbb{Q} is the ground field.
- Sullivan functor:
$A_{P L}: T O P \rightarrow C D G A$ (comm. diff. grad. algebra) $\left[a b=(-1)^{\operatorname{deg}(a) \operatorname{deg}(b)} b a\right]$

Models in Rational Homotopy Theory

- \mathbb{Q} is the ground field.
- Sullivan functor:
$A_{P L}: T O P \rightarrow C D G A$ (comm. diff. grad. algebra)

$$
\left[a b=(-1)^{\operatorname{deg}(a) \operatorname{deg}(b)} b a\right]
$$

- If X is simply-connected and of finite type then $A_{P L}(X)$ contains all rational homotopy information about X.

Models in Rational Homotopy Theory

- \mathbb{Q} is the ground field.
- Sullivan functor:
$A_{P L}: T O P \rightarrow C D G A$ (comm. diff. grad. algebra)

$$
\left[a b=(-1)^{\operatorname{deg}(a) \operatorname{deg}(b)} b a\right]
$$

- If X is simply-connected and of finite type then $A_{P L}(X)$ contains all rational homotopy information about X.
- In particular, $H\left(A_{P L}(X)\right)=H^{*}(X ; \mathbb{Q})$.

Models in Rational Homotopy Theory

- \mathbb{Q} is the ground field.
- Sullivan functor:
$A_{P L}: T O P \rightarrow C D G A$ (comm. diff. grad. algebra)

$$
\left[a b=(-1)^{\operatorname{deg}(a) \operatorname{deg}(b)} b a\right]
$$

- If X is simply-connected and of finite type then $A_{P L}(X)$ contains all rational homotopy information about X.
- In particular, $H\left(A_{P L}(X)\right)=H^{*}(X ; \mathbb{Q})$.
- Sullivan model of a space X :

$$
(\wedge V, d) \xrightarrow{\sim} A_{P L}(X)
$$

If $d(V) \subset \Lambda^{>1}(V)$ the model is said to be minimal. In this case $V \cong$ dual of $\pi_{*}(X) \otimes \mathbb{Q}$.

Example: Sullivan model of S^{n}

Example: Sullivan model of S^{n}
$H^{*}\left(S^{n} ; \mathbb{Q}\right)=\mathbb{Q} \cdot 1 \oplus \mathbb{Q} x$ with $\operatorname{deg}(1)=0$ and $\operatorname{deg}(x)=n$.

Example: Sullivan model of S^{n}
$H^{*}\left(S^{n} ; \mathbb{Q}\right)=\mathbb{Q} \cdot 1 \oplus \mathbb{Q} x$ with $\operatorname{deg}(1)=0$ and $\operatorname{deg}(x)=n$.
If $V=\mathbb{Q} x$, then $\Lambda V=\left\{\begin{array}{lr}\mathbb{Q} \cdot 1 \oplus \mathbb{Q} x \oplus \mathbb{Q} x^{2} \oplus \cdots & n \text { even } \\ \mathbb{Q} \cdot 1 \oplus \mathbb{Q} x & n \text { odd }\end{array}\right.$

Example: Sullivan model of S^{n}
$H^{*}\left(S^{n} ; \mathbb{Q}\right)=\mathbb{Q} \cdot 1 \oplus \mathbb{Q} x$ with $\operatorname{deg}(1)=0$ and $\operatorname{deg}(x)=n$.
If $V=\mathbb{Q} x$, then $\Lambda V=\left\{\begin{array}{lr}\mathbb{Q} \cdot 1 \oplus \mathbb{Q} x \oplus \mathbb{Q} x^{2} \oplus \cdots & n \text { even } \\ \mathbb{Q} \cdot 1 \oplus \mathbb{Q} x & n \text { odd }\end{array}\right.$
Hence a Sullivan model of S^{n} is given by:

$$
\begin{cases}\wedge(x) \text { with } d x=0 & n \text { odd } \\ \wedge(x, y) \text { with } d x=0, \operatorname{deg}(y)=2 n-1, d y=x^{2} & n \text { even }\end{cases}
$$

Let $\quad F \rightarrow E \xrightarrow{p} B \quad$ a fibration.

Let $\quad F \rightarrow E \xrightarrow{p} B \quad$ a fibration.
By applying $A_{P L}$ we get:

$$
A_{P L}(B) \xrightarrow{A_{P L}(p)} A_{P L}(E) \longrightarrow A_{P L}(F)
$$

Such a diagram is a semi-free model of the fibration p.

Model of $*^{n} F \rightarrow *_{B}^{n} E \xrightarrow{j^{n}(p)} B$

Model of $*^{n} F \rightarrow *_{B}^{n} E \xrightarrow{j^{n}(p)} B$
Starting with a semi-free model of p

$$
(A, d) \downarrow(A \otimes H, d) \longrightarrow(H, 0)
$$

and writing $H=\mathbb{Q} \oplus X$

Model of $*^{n} F \rightarrow *_{B}^{n} E \xrightarrow{j^{n}(p)} B$
Starting with a semi-free model of p

$$
(A, d) \longmapsto(A \otimes H, d) \longrightarrow(H, 0)
$$

and writing $H=\mathbb{Q} \oplus X$ we obtained a semi-free model of $j^{n}(p)$ of the form
$(A, d) \longleftrightarrow\left(A \otimes\left(\mathbb{Q} \oplus s^{-n}\left(X^{\otimes n+1}\right)\right), d\right) \longrightarrow\left(\mathbb{Q} \oplus s^{-n}\left(X^{\otimes n+1}\right), 0\right)$
with $\left(s^{-n} V\right)^{k}=V^{k-n}$ and an explicit differential.

Application to TC:

Application to TC: The initial fibration is $\Omega X \rightarrow X^{\prime} \xrightarrow{e v_{0,1}} X \times X$

Application to TC: The initial fibration is $\Omega X \rightarrow X^{\prime} \xrightarrow{e v_{0,1}} X \times X$
Let $(\Lambda V, d)$ be a minimal Sullivan model of X.

Application to TC: The initial fibration is $\Omega X \rightarrow X \xrightarrow{\prime} \xrightarrow{e V_{0,1}} X \times X$ Let $(\Lambda V, d)$ be a minimal Sullivan model of X.
A semi-free model of $e v_{0,1}$ is:

where $(s V)^{k}=V^{k+1}$ and the differential d is given by

$$
d s v=v^{\prime}-v-\sum_{i=1}^{\infty} \frac{(\zeta d)^{i}}{i!}(v)
$$

where ζ is the derivation given by $\zeta(v)=\zeta\left(v^{\prime}\right)=s v$ and $\zeta(s v)=0$.

Writing $\Lambda s V=\mathbb{Q} \oplus \Lambda^{+} s V$, we obtain:

Writing $\wedge s V=\mathbb{Q} \oplus \Lambda^{+} s V$, we obtain:

$$
\begin{array}{ccc}
A_{P L}(X \times X) & A_{P L}\left(*_{X \times X}^{n} X^{\prime}\right) \longrightarrow & A_{P L}\left(*^{n} \Omega X\right) \\
\sim \uparrow \uparrow \uparrow(A, d) \text { mod. } & \sim \uparrow \text { chain cplx } \\
\left(\Lambda\left(V \oplus V^{\prime}\right), d\right) \longmapsto & \left(J_{n}, d\right) \longrightarrow\left(\mathbb{Q} \oplus s^{-n}\left(\Lambda^{+} s V\right)^{\otimes n+1}, 0\right)
\end{array}
$$

Writing $\wedge s V=\mathbb{Q} \oplus \Lambda^{+} s V$, we obtain:

$$
\begin{array}{ccc}
A_{P L}(X \times X) & A_{P L}\left(*_{X}^{n}\right. \\
\left.\sim \uparrow X_{X} X^{\prime}\right) \longrightarrow & A_{P L}\left(*^{n} \Omega X\right) \\
\sim \uparrow(A, d)-\text { mod. } & \sim \uparrow \text { chain cplx } \\
\left(\Lambda\left(V \oplus V^{\prime}\right), d\right) & \left(J_{n}, d\right) \longrightarrow\left(\mathbb{Q} \oplus s^{-n}\left(\Lambda^{+} s V\right)^{\otimes n+1}, 0\right)
\end{array}
$$

Definition. $\operatorname{MTC}(X)$ is the least n such that the morphism

$$
\left(\Lambda\left(V \oplus V^{\prime}\right), d\right) \rightarrow\left(J_{n}, d\right)
$$

admits a retraction of $\left(\Lambda\left(V \oplus V^{\prime}\right), d\right)$-modules.

Theorem. nil $($ ker $\smile) \leq \operatorname{MTC}(X) \leq \operatorname{TC}(X)$

Theorem. nil(ker $\smile) \leq \operatorname{MTC}(X) \leq \operatorname{TC}(X)$
Proposition. If X is formal, that is $\left(H^{*}(X), 0\right)$ is a
CDGA-model of X, then

$$
\operatorname{nil}(\operatorname{ker} \smile)=\operatorname{MTC}(X)
$$

Theorem. nil(ker $\smile) \leq \operatorname{MTC}(X) \leq \operatorname{TC}(X)$
Proposition. If X is formal, that is $\left(H^{*}(X), 0\right)$ is a
CDGA-model of X, then

$$
\operatorname{nil}(\operatorname{ker} \smile)=\operatorname{MTC}(X)
$$

Theorem. There exists a (non formal) space $X=S^{3} \vee S^{3} \cup e^{8} \cup e^{8}$ for which

$$
\operatorname{nil}(\operatorname{ker}(\smile))=2 \text { and } \operatorname{MTC}(X)=3
$$

Theorem. (i) For any n, there exists a finite CW-complex X such that

$$
\operatorname{MTC}(X)-\operatorname{nil}(\text { ker } \smile) \geq n .
$$

(ii) There exists a space X with $\operatorname{MTC}(X)=\infty$ and nil(ker $\smile)<\infty$.

