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X - configuration space of a mechanical system.

Does X! A:l=[0,1]—- X
X x X (A(0), A(1)) admit a section s?

If X is path-connected then s exists.
Is it possible to define s by a formula? to find s continuous?
In general: NOT
How many “continuous formulas” are necessary?
~ Topological complexity
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Definition. (M. Farber) TC(X) is the least integer n such that
X x X can be covered by n+ 1 open sets on each of which

evo1 : X' — X x X admits a continuous section.

This is a homotopy invariant and a particular case of:

Definition. (A. Schwarz) The sectional category of a fibration
p: E — B, secat(p), is the least integer n such that B can be
covered by n+ 1 open sets on each of which p admits a section.

Another particular case of this is the Lusternik-Schnirelmann
category:
cat(X) = secat(evy : PX — X)

where PX = {\: 1 — X, \(1) = x}.



Theorem. (A. Schwarz) For a fibration p : E — B we have
nil(ker p*) < secatp < catB

where
» p*: H*(B) — H*(E) is the morphism induced by p
» nil(ker p*) < niff every product of length n+ 1 in ker p* is 0.
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secatp < catB because:

pg__ oXists
N
B
Forp=evw1: X' — X x X we get

TC(X) < cat(X x X) < 2catX.
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On the other hand, we have

X - X!
X AVOJ

X xX
so that, with H*() = H*(—, k),

nil(ker p*) = nil(ker —)
where —: H*(X) ® H*(X) — H*(X) is the cup-product.
In H*(X) ® H*(X), (a® b)(d @ b) = (—1)99()ded(d) a4 & b



Theorem. (M. Farber)

nil(ker —) 2cat(X)
cat(X) } < TC(X) < { dim(X) (Xsimply-connected)
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Examples.

1 nodd

1- (M. Farber) TC(S") = { 2 neven

» cat(S") =1 Hence1 <TC(S") <2.
» nil(ker —) =7
H*(S") =k - 1 @ kx with deg(1) = 0 and deg(x) = n.
In the kernel of — we have:
X®1-1®x and x®x
x@1-19xP2=-x2x—(—1)"x®x

{ 1 nodd

Therefore nil(ker —) = 2 neven

and TC(S") = 2if nis even.
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» If nis odd TC(S") < 1:
S" x 8" is covered by { Uo ={(x.) [ x # -y}

U ={(x.y)[x#y}

For (x,y) € Uy, go from x to y through the shortest great
circle arc.

To define the section on U; choose a continuous non-zero
vector field on S". For (x, y) € U; go from x to —x through
the meridian determined by the vector field at x and then
from —x to y by the shortest great circle arc.



2- (M. Farber, S. Tabachnikov, S. Yuzvinsky) TC(RP") is the
least integer k such that there exists an immersion of RP” in RX.



2- (M. Farber, S. Tabachnikov, S. Yuzvinsky) TC(RP") is the
least integer k such that there exists an immersion of RP” in RX.

Our objective: Find a computable lower bound of TC which is
better than nil(ker —).

nil(ker —) < < TC(X)
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The join of 2 fibrations p: E — Band p’' : E' — Bis the map

E+gE :=EI(E xgE' x[0,1)IIE'/~ — B
(e,€,t) — p(e)=p(e)

where ~ is given by (e, €,t) ~ { Z, ti 1

This map is a fibration with fibre
FxF =FIOFxF x[0,1]ITF'/ ~

where F and F’ are the respective fibres of p and p'.
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Forp: E — Band n > 1, consider

j7(p) :«BE =Exg---xg E— B
D e
n+1factors

Theorem. (A. Schwarz) If B is normal, then
secat(p) < n <= j"(p) admits a (continuous) section.
Corollary. If X is normal, then

TC(X) < n < j"(evp1) : ¥%. x X' — X x X admits a section.



Models in Rational Homotopy Theory

» Qis the ground field.



Models in Rational Homotopy Theory

» Qis the ground field.
» Sullivan functor:

Ap; : TOP — CDGA (comm. diff. grad. algebra)
[ab = (—1)9e9(a)deg(b) pg]



Models in Rational Homotopy Theory

» Qis the ground field.
» Sullivan functor:
Ap; : TOP — CDGA (comm. diff. grad. algebra)
[ab = (—1)9e9(a)deg(b) pg]

» If X is simply-connected and of finite type then Ap; (X)
contains all rational homotopy information about X.



Models in Rational Homotopy Theory

» Qis the ground field.
» Sullivan functor:
Ap; : TOP — CDGA (comm. diff. grad. algebra)
[ab = (—1)9e9(a)deg(b) pg]

» If X is simply-connected and of finite type then Ap; (X)
contains all rational homotopy information about X.
» In particular, H(Ap (X)) = H*(X; Q).



Models in Rational Homotopy Theory

» Qis the ground field.
» Sullivan functor:
Ap; : TOP — CDGA (comm. diff. grad. algebra)
[ab = (—1)9e9(a)deg(b) pg]

» If X is simply-connected and of finite type then Ap; (X)
contains all rational homotopy information about X.
» In particular, H(Ap (X)) = H*(X; Q).

» Sullivan model of a space X:
(AV.d) = Ap(X)

If d(V) c A>1(V) the model is said to be minimal. In this
case V = dual of 7.(X) ® Q.
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Example: Sullivan model of S"
H*(S";, Q) = Q- 1@ Qx with deg(1) = 0 and deg(x) = n.
Q- 1eQxeQx?®--- neven

IfV:@X,then/\V:{Q_1@Qx 1 odd

Hence a Sullivan model of S” is given by:

{ A(x) with dx =0 n odd

A(x,y) with dx = 0, deg(y) =2n—1, dy = x> neven



let F— EXR B afibration.



let F— E2 B afioration.
By applying Ap; we get:

A
Api(B) 2 ppy (E) —— Apu(F)



Ap.(F)

(H.0)









Ap(B) — Ap.(E) Api(F)
CDGAT NT NTchain cplx
(A, dy——(A® H,d) (H,0)




ApL(B) — ApL(E) Ap.(F)
CDGAT NT(A,d)—moduIes ~Tchain cplx



ApL(B) — ApL(E) Ap.(F)
CDGAT NT(A,d)—moduIes ~Tchain cplx

Such a diagram is a semi-free model of the fibration p.
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Model of «"F — 172 B
Starting with a semi-free model of p
(A, dy—— (A® H,d) — (H,0)

and writing H = Q @ X we obtained a semi-free model of j"(p)
of the form

(A, dy—= (A2 (Q& s "(X¥™)),d) — (Q& s "(X*™*1),0)

with (s7"V)k = VK=" and an explicit differential.
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Application to TC: The initial fibration is QX — X/ X x X

Let (AV, d) be a minimal Sullivan model of X.
A semi-free model of ey 1 is:

APL(X X X) APL(XI) APL(QX)

) | -

AV & V'), dy——> (AV & V') @ AsV, d) —= (AsV,0)

where (sV)¥ = V¥+1 and the differential d is given by
o0 i
dsv =V — V—Z@(V)
i—1

where ( is the derivation given by {(v) = ¢(v') = sv and
¢(sv) =0.
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Writing AsV = Q & A*TsV, we obtain:

ApL(X % X) —— Apr (x5, xX')

Ap(x"Q2X)
~T NT(A,d)—mOd. NTchain cplx
(NV @ V'), dy——— (Jp, d) (Qa& s "(ATsV)®tT,0)




Writing AsV = Q & A*TsV, we obtain:

ApL(X % X) —— Apr (x5, xX') ApL(+x"QX)
~T NT(A,d)—mOd. NTchain cplx
(A(V @ V), dp—— (Jn, d) (Q@ s (ATsV)=nH, 0)

Definition. MTC(X) is the least n such that the morphism

ANV & V), d)— (Jn,d)

admits a retraction of (A(V @ V'), d)-modules.
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Theorem. nil(ker —) < MTC(X) < TC(X)

Proposition. If X is formal, that is (H*(X),0) is a
CDGA-model of X, then

nil(ker —) = MTC(X)
Theorem. There exists a (non formal) space
X =S8 v S® U e?u ed for which

nil(ker(—)) =2 and MTC(X) = 3.



Theorem. (i) For any n, there exists a finite CW-complex X
such that

MTC(X) — nil(ker —) > n.

(i) There exists a space X with MTC(X) = oo and
nil(ker —) < oo.



