Geometry of Singular Symplectic Quotients

Miguel Rodríguez-Olmos EPFL, Switzerland

Tarde de trabalho SPM/CIM
Os Novos Horizontes da Geometria
Coimbra, 3-09-2005

Introduction: Symplectic Reduction

Let $(\mathcal{P}, \omega, G, \mathbf{J})$ be a Hamiltonian space, where

- (M, ω) is a symplectic manifold,
- ullet $G imes \mathcal{P} o \mathcal{P}$ is a smooth and proper Hamiltonian action, and
- ullet $J:\mathcal{P}
 ightarrow \mathfrak{g}^*$ equivariant momentum map

$$\omega(\xi_{\mathcal{P}},\cdot) = d\langle \mathbf{J}, \xi \rangle, \quad \xi \in \mathfrak{g}.$$

Symplectic Reduction: If $\mu \in \mathfrak{g}^*$ is a regular value of J and G_{μ} acts freely on $J^{-1}(\mu)$ then the quotient space

$$\mathcal{P}_{\mu} = \mathbf{J}^{-1}(\mu)/G_{\mu}$$

is a smooth symplectic manifold. (Marsden and Weinstein, 1974)

The reduced symplectic form ω_{μ} on \mathcal{P}_{μ} is defined by

$$i_{\mu}^*\omega = \pi_{\mu}^*\omega_{\mu}$$

where

- $i_{\mu}: \mathbf{J}^{-1}(\mu) \hookrightarrow \mathcal{P}$ is the inclusion, and
- $\pi_{\mu}: \mathbf{J}^{-1}(\mu) \to \mathcal{P}_{\mu}: \mathbf{J}^{-1}(\mu)/G_{\mu}$ is the projection.

If μ is not regular or G_{μ} does not act freely on $\mathbf{J}^{-1}(\mu)$ then \mathcal{P}_{μ} is a **symplectic stratified space** (it is partitioned in smooth symplectic manifolds with reduced symplectic forms like in the regular case).

Goal: Explain this symplectic stratification of \mathcal{P}_{μ} when μ is not regular (singular μ).

Reduction in Mechanics and Geometry

• Symmetric Hamiltonian dynamics: The components of J are conserved quantities (Theorem of Nöether), \mathcal{P}_{μ} is the space of symmetric equivalence classes of dynamical states with fixed momentum μ .

The original dynamics on \mathcal{P} can be dropped to \mathcal{P}_{μ} reducing the dimensionality of the problem. (for example N-body problem, $\mathcal{P} = T^*(\mathbb{R}^{3N})$, G = SO(3), J=angular momentum).

• Coadjoint orbits: $\mathcal{P} = T^*G = G \times \mathfrak{g}^*$ with action $g \cdot (g', \nu) = (gg', \nu)$ and momentum $\mathbf{J}(g, \nu) = \mathrm{Ad}_{g^{-1}}^* \nu$. Then $\mathcal{P}_{\mu} = \mathcal{O}_{\mu}$ (coadjoint orbit through μ and ω_{μ} is the (–) Konstant-Kirillov-Souriau form, i.e.

$$\omega_{\mu}(\lambda)(\mathrm{ad}_{\xi}\lambda,\mathrm{ad}_{\eta}\lambda) = -\langle \lambda,[\xi,\eta]\rangle,$$
 for $\lambda \in \mathcal{O}_{\mu}$, $\mathrm{ad}_{\xi}\lambda$, $\mathrm{ad}_{\eta}\lambda \in T_{\lambda}\mathcal{O}_{\mu}$, with $\xi,\eta \in \mathfrak{g}$.

• Moduli space of flat connections: K compact and $\zeta: K \to M \to \Sigma$ a principal bundle over a closed oriented surface Σ . The space $\mathcal A$ of connections of ζ has a symplectic form

$$\omega(A)(\alpha,\beta) = \int_{\Sigma} \kappa(\alpha \wedge \beta),$$

 G^{ζ} acts on \mathcal{A} by $g \cdot A = g^{-1}Ag + g^{-1}dg$. with momentum map $J(A) = F_A$. Then

$$\mathcal{P}_0 = \{ A \in \mathcal{A} : F_A = 0 \} / G^{\zeta}$$

has a reduced symplectic structure (Chern-Simons theory, low-dimensional topology).

ullet Toric manifolds: $\mathbb{T}^n \times \mathbb{C}^n \to \mathbb{C}^n$ as

$$(\theta_1,\ldots,\theta_n)\cdot(z_1,\ldots,z_n)=(e^{2\pi i\theta_n}z_1,\ldots,e^{2\pi i\theta_1}z_n).$$

 $\mathbb{T}^k \hookrightarrow \mathbb{T}^n$ subtorus acting on \mathbb{C}^n by restriction with momentum map $\mathbf{J}: \mathbb{C}^n \to \mathbb{R}^k$ corresponding to $\omega = \frac{i}{2} \Sigma_k dz_k \wedge d\overline{z_k}$.

 $M = \mathbf{J}^{-1}(0)/G$ is a toric manifold for \mathbb{T}^{n-k} (Delzant construction).

Bifurcation Lemma

Singular reduction starts with the **Bifurcation Lemma** (Arms, Marsden, Gotay 1981):

range
$$(T_z\mathbf{J}) = (\mathfrak{g}_z)^{\circ}$$
.

In other words: μ is a singular value of J iff $J^{-1}(\mu)$ contains a point with continuous stabilizer.

The study of singularities of the momentum map is equivalent to the study of singularities of the Hamiltonian group action on \mathcal{P} .

Slice Theorem

Associated Bundle: Let $H \subset G$ compact act on a vector space A. H acts on $G \times A$ by

$$h \cdot (g, a) = (gh^{-1}, h \cdot a)$$

We denote the quotient space as

$$G \times_H A := (G \times A)/H.$$

- $G \times_H A$ is an associated bundle to $G \to G/H$ over G/H with fiber A.
- G acts on $G \times_H A$ by $g' \cdot [g, a] = [g'g, a]$.
- Slice Theorem: $G \times M \to M$ proper action. $x \in M$, $S = T_x M/\mathfrak{g} \cdot x$. Then

$$\phi: G \times_{G_x} \mathbf{S} \to M$$

is an equivariant tubular neighborhood of $G \cdot x$ (Palais 1961).

Symplectic Slice Theorem

 $(\mathcal{P}, \omega, G, \mathbf{J})$ Hamiltonian G-space, $\mathbf{J}(z) = \mu$.

• $N = \ker T_z \mathbf{J}/\mathfrak{g}_{\mu} \cdot z$ (symplectic normal space). $(N, \omega|_N, H, \mathbf{J}_N)$ Hamiltonian linear H-space,

$$\langle \mathbf{J}_N(v), \xi \rangle = \frac{1}{2} \omega_N(\xi \cdot v, v).$$

- $\phi: Y := G \times_{G_z} ((\mathfrak{g}_{\mu}/\mathfrak{g}_z)^* \oplus N) \to \mathcal{P}.$ ϕ is a G-equivariant symplectomorphism with respect to a natural symplectic form ω_Y .
- (Marle 1985, Guillemin and Sternberg 1984) $(Y, \omega_Y, G, \mathbf{J}_Y)$ is a Hamiltonian G-space with $\mathbf{J}_Y([g, \nu, v]) = \mathrm{Ad}_{q^{-1}}^*(\mu + \nu + \mathbf{J}_N(v)).$
- Lerman-Bates Lemma (1997): There exists a neighborhood $Y_0 \subset Y$ such that

$$\mathbf{J}_{Y}^{-1}(\mu) \cap Y_{0} = \left(G_{\mu} \times_{G_{z}} (0 \times \mathbf{J}_{N}^{-1}(0))\right) \cap Y_{0}.$$

Stratified Spaces

X topological space. A locally finite disjoint parition $X = \coprod_i X_i$ is a **stratification** of X if

- ullet smoothness: X_i are smooth manifolds,
- frontier condition:

$$X_i \cap \overline{X_j} \neq \emptyset \Rightarrow X_i \subseteq \partial X_j \ (\partial X_j = \overline{X_j} \backslash X_j).$$

Application: $G \times M \to M$ proper action. Then

$$M/G = \coprod_{(H)} M_{(H)}/G$$
, where

- (H) is the conjugacy class of H in G, and
- $M_{(H)} = \{x \in M : G_x \in (H)\}$ (orbit type).

Why? — use slices: near $G \cdot x$ with $G_x = H$, $M \simeq G \times_H \mathbf{S} \simeq G/H \times \mathbf{S}$. Then

$$M_{(H)} \simeq (G \times_H \mathbf{S})_{(H)} = G \times_H \mathbf{S}^H \simeq G/H \times \mathbf{S}^H$$

- $\Rightarrow M_{(H)}$ is a G-submanifold of M.
- 1. smoothness: Near $[x] \in M_{(H)}/G$,

$$M_{(H)}/G \simeq (G \times_H \mathbf{S}^H)/G = \mathbf{S}^H/H = \mathbf{S}^H \simeq \mathbb{R}^k.$$

- $\Rightarrow M_{(H)}/G$ is a smooth manifold.
- 2. frontier conditions: Analogously,

$$M_{(H)}/G \subseteq \partial(M_{(K)}/G) \Leftrightarrow (K) < (H).$$

(isotropy stratification of M/G)

Strategy to study the symplectic stratification: repeat this for a Hamiltonian G-space using the Symplectic Slice Theorem instead.

Symplectic Stratification of \mathcal{P}_0

 $(\mathcal{P}, \omega, G, \mathbf{J})$ Hamiltonian G-space. Suppose 0 is a singular value of $\mathbf{J}: \mathcal{P} \to \mathfrak{g}^*$. Then $\mathbf{J}^{-1}(0)$ and $\mathcal{P}_0 = \mathbf{J}^{-1}(0)/G$ are singular spaces.

Theorem: (Sjamaar, Lerman 1991).

(i) The sets $\mathbf{J}^{-1}(0)\cap\mathcal{P}_{(H)}$ and $(\mathbf{J}^{-1}(0)\cap\mathcal{P}_{(H)})/G$ are smooth manifolds, and

$$\mathcal{P}_0 = \coprod_{(H)} \left(\mathbf{J}^{-1}(0) \cap \mathcal{P}_{(H)} \right) / G$$

is a stratification of \mathcal{P}_0 .

(ii) Each stratum $\mathcal{P}_0^{(H)}:=(\mathbf{J}^{-1}(0)\cap\mathcal{P}_{(H)})/G$ is symplectic with a reduced symplectic form $\omega_0^{(H)}$ defined by

$$i_0^{(H)}\omega = \pi_0^{(H)^*}\omega_0^{(H)}, \quad \text{where}$$

$$-i_0^{(H)}: \mathbf{J}^{-1}(0) \cap \mathcal{P}_{(H)} \hookrightarrow \mathcal{P} \text{ and}$$

$$-\pi_0^{(H)}: \mathbf{J}^{-1}(0) \cap \mathcal{P}_{(H)} \to \mathcal{P}_0^{(H)}.$$

- Sketch of proof of (i): $z \in \mathcal{P}$ with $G_z = H$. Using Lerman-Bates Lemma, near $G \cdot z$

$$\mathbf{J}^{-1}(0) \simeq \mathbf{J}_{Y_0}^{-1}(0) = G \times_H (0 \times \mathbf{J}_N^{-1}(0)).$$

- $N^H \subseteq \mathbf{J}_N^{-1}(0) \ (\langle \mathbf{J}_N(v), \xi \rangle = \frac{1}{2}\omega_N(\xi \cdot v, v))$
- Then $J^{-1}(0) \cap \mathcal{P}_{(H)}$ is a manifold:

$$\mathbf{J}_{Y_0}^{-1}(0) \cap (Y_0)_{(H)} = G \times_H (0 \times (\mathbf{J}_N^{-1}(0))^H)$$

$$= G \times_H (0 \times N^H)$$

$$\simeq G/H \times (0 \times N^H)$$

$$\subseteq G/H \times ((\mathfrak{g}/\mathfrak{g}_z)^* \oplus N) \simeq Y_0$$

- (i) **smoothness:** $\mathcal{P}_0^{(H)}$ is a manifold. $(\mathbf{J}_{Y_0}^{-1}(0) \cap (Y_0)_{(H)})/G = N^H/H = N^H \simeq \mathbb{R}^k$
- (ii) **frontier conditions:** follow from frontier conditions for \mathcal{P}/G since $\mathcal{P}_0^{(H)} \subseteq \mathcal{P}_{(H)}/G$.

$$\mathcal{P}_0^{(H)} \subseteq \partial \mathcal{P}_0^{(K)} \Leftrightarrow (K) < (H).$$

- Sketch of proof of (ii): Sjamaar Principle: \mathcal{P}_H is a symplectic submanifold of \mathcal{P} . N(H)/H acts FREELY and Hamiltonially on $(\mathcal{P}_H, \omega|_{\mathcal{P}_H})$ with momentum map $\mathbf{J}_{\mathcal{P}_H}$. Then there is a diffeomorphism

$$f: \mathcal{P}_0^{(H)} \to \mathbf{J}_{\mathcal{P}_H}^{-1}(0)/(N(H)/H).$$

(Sjamaar, Lerman 1991).

Then $\mathbf{J}_{\mathcal{P}_H}^{-1}(0)/(N(H)/H)$ is a Marsden-Weinstein reduced manifold with reduced symplectic form Ω . Then pull-back

$$\omega_0^{(H)} := f^*\Omega$$

satisfies the requirements of the Sjamaar-Lerman Theorem:

$$i_0^{(H)}\omega = \pi_0^{(H)^*}\omega_0^{(H)}.$$

Cotangent Lifted Actions

ullet Q smooth manifold, $(\tau:T^*Q\to Q,\omega_Q)$ is canonically a symplectic manifold:

for
$$p_x \in T_x^*Q$$
, $V \in T_{p_x}(T^*Q)$,

$$\Theta_Q(p_x)(V) = \langle p_x, T_{p_x}\tau(V) \rangle, \quad \omega_Q = -\mathbf{d}\Theta_Q.$$

- $G \times Q \to Q$ base action $\Rightarrow G \times T^*Q \to T^*Q$ lifted action. **A lifted action is always Hamiltonian**.
- If $G \times Q \to Q$ is free, proper, then $G \times T^*Q \to T^*Q$ is also free, proper.
- Momentum map $\langle \mathbf{J}(p_x), \xi \rangle = \langle p_x, \xi_Q(x) \rangle$.

Regular Cotangent Bundle Reduction

 $G \times Q \to Q$ free and proper action. Then every momentum value is regular. How are the Marsden-Weinstein reduced spaces? \to **They are bundles:**

- $(\mu=0)$: There is a symplectomorphism $(\mathbf{J}^{-1}(0)/G,\omega_0) \to (T^*(Q/G),\omega_{Q/G})$ (Satzer 1977).
- $(\mu \neq 0)$: There is a symplectic embedding $(\mathbf{J}^{-1}(\mu)/G, \omega_{\mu}) \to (T^*(Q/G_{\mu}), \omega_{Q/G_{\mu}} \tau^* B_{\mu})$ onto a subbundle of $T^*(Q/G_{\mu})$. B_{μ} is a closed differential 2-form on Q/G_{μ} obtained from a principal connection on

$$G_{\mu} \to Q \to Q/G_{\mu}$$
.

(Abraham, Marsden 1978).

Singular Cotangent Bundle Reduction

Motivation: $G \times Q \to Q$ not free $\Rightarrow 0 \in \mathfrak{g}^*$ singular momentum value: The smooth cotangent bundle projection $\tau: T^*Q \to Q$ induces a continuous projection $\tau_0: \mathcal{P}_0 \to Q/G$.

- In the regular case, $\mathcal{P}_0 = T^*(Q/G)$ and τ_0 is a smooth fibration (the cotangent bundle projection $\tau_0 : T^*(Q/G) \to Q/G$).
- Everything is constructible from $G \times Q \to Q$.
- In the singular case we expect τ_0 to be a **stratified fibration** (maps strata to strata and restricts to smooth fibrations). This FAILS! since $\tau_0(\mathcal{P}_0^{(H)}) = \overline{Q_{(H)}/G} \neq Q_{(H)}/G$.

Solution: Substitute the symplectic stratification of \mathcal{P}_0 with the finer **coisotropic stratification**.

Seams

Consider one orbit type submanifold $Q_{(H)} \subset Q$. $(T^*Q_{(H)}, \omega_{Q_{(H)}}, G, \mathbf{J}_{(H)})$ is a Hamiltonian G-space obtained by restriction from $(T^*Q, \omega_Q, G, \mathbf{J})$.

 $N^*Q_{(H)}\subset T_{Q_{(H)}}^*Q$ conormal bundle to $Q_{(H)}$, inherits a G-action. Facts:

•
$$(N^*Q_{(H)})_{(K)} \neq \emptyset \Leftrightarrow$$

$$Q_{(K)} \neq \emptyset \quad \text{and} \quad (K) \leq (H).$$

- $S_{H\to K}:=\frac{\mathbf{J}_{(H)}^{-1}(0)\times(N^*Q_{(H)})_{(K)}}{G}\to Q_{(H)}/G$ is a smooth bundle.
- $S_{H\to H} = T^*(Q_{(H)}/G)$ (Emmrich-Romer 1991).

We call $S_{H\to K}$ with (K)<(H) a **seam**.

Decomposition of the Symplectic Strata

In the cotangent bundle case we can write the following decomposition of every symplectic stratum:

$$\mathcal{P}_0^{(K)} = T^*(Q_{(K)}/G) \coprod_{(K)<(H)} S_{H\to K}$$

Furthermore:

•
$$\mathcal{P}_0^{(K)} \neq \emptyset \Leftrightarrow Q_{(K)} \neq \emptyset$$
.

- $T^*(Q_{(K)}/G)$ is open and dense in $\mathcal{P}_0^{(K)}$.
- The reduced symplectic form $\omega_0^{(K)}$ is the unique extension of $\omega_{Q_{(K)}/G}$ from $T^*(Q_{(K)}/G)$ to $\mathcal{P}_0^{(K)}$.
- Seams $S_{H\to K}$ are coisotropic in $(\mathcal{P}_0^{(K)}, \omega_0^{(K)})$.

The Coisotropic Stratification of \mathcal{P}_0

Let $I_Q = \{(H) : Q_{(H)} \neq \emptyset\}$. Take every cotangent bundle and seam of the form

•
$$T^*(Q_{(L)}/G)$$
, $(L) \in I_Q$,

•
$$S_{K'\to K}$$
, $(K), (K') \in I_Q$, $(K) < (K')$.

then

$$\mathcal{P}_0 = \coprod_{(L)} T^*(Q_{(L)}/G) \coprod_{(K) < (K')} S_{K \to K'}$$

with $(L), (K), (K') \in I_Q$ is a stratification of \mathcal{P}_0 (Perlmutter, Sousa-Dias, R-O 2003).

Notice: The strata are bundles over strata of Q/G, indeed

$$T^*(Q_{(L)}/G) \longrightarrow Q_{(L)}/G$$

 $S_{K\to K'} \longrightarrow Q_{(K)}/G.$

Properties of the Coisotropic Stratification

- The continuous projection $\tau_0: \mathcal{P}_0 \to Q/G$ IS a stratified fibration with respect to the secondary stratification of \mathcal{P}_0 and the isotropy stratification of Q/G.
- The frontier conditions: (**gluing cotangent bundles**):

$$T^*(Q_{(K)}/G) \subset \partial T^*(Q_{(H)}/G) \iff (H) < (K)$$

$$T^*(Q_{(K)}/G) \subset \partial S_{K \to H} \iff (H) < (K)$$

$$S_{K \to H} \subset \partial T^*(Q_{(H)}/G) \iff (H) < (K)$$

$$S_{K' \to H} \subset \partial S_{K \to H} \iff (H) < (K) < (K')$$

$$S_{K \to H'} \subset \partial S_{K \to H} \iff (H) < (H') < (K)$$

- The strata are coisotropic submaifolds of their respective symplectic strata.