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Introduction: Symplectic Reduction

Let (P,w,G,J) be a Hamiltonian space, where
e (M,w) is a symplectic manifold,

e G XP — P is asmooth and proper Hamil-
tonian action, and

e J: P — g* equivariant momentum map

wp,) =d(J,§), &€y

Symplectic Reduction: If y € g* is a regular
value of J and G, acts freely on J=1(u) then
the quotient space

Pu = J_l(ﬂ)/GM
is a smooth symplectic manifold. (Marsden
and Weinstein, 1974)



‘The reduced symplectic form w, on P, is de-
fined by

-k *

zuw — Wuw'u

where
e i, : J71(u) — P is the inclusion, and

o my I () — Py I (u)/Gy is the pro-
jection.

If u is not regular or G, does not act freely
on J=1(u) then P, is a symplectic stratified
space (it is partitioned in smooth symplectic
manifolds with reduced symplectic forms like
in the regular case).

Goal: Explain this symplectic stratification of
Pu when p is not regular (singular p).



Reduction in Mechanics and Geometry

e Symmetric Hamiltonian dynamics: The com-

ponents of J are conserved quantities (The-
orem of Noether), P, is the space of sym-
metric equivalence classes of dynamical states
with fixed momentum u.
The original dynamics on P can be dropped
to P, reducing the dimensionality of the
problem. (for example N-body problem,
P = T*(R3N), G = SO(3), J=angular mo-
mentum).

e Coadjoint orbits: P = T*G = G x g* with
action g - (¢’,v) = (g¢’,v) and momentum
J(g,v) = Ad*_,v. Then P, = Oy (coad-
joint orbit tﬁrough p and wy is the (—)
Konstant-Kirillov-Souriau form, i.e.

w/JJ(A)(adg)‘a adnA) — _<>\7 [57 T]]>7
for A € O, adg), adyA € TyOp, With &,7 € g.
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e Moduli space of flat connections: K com-
pact and ( : K — M — > a principal bun-
dle over a closed oriented surface 2. The
space A of connections of ¢ has a symplec-
tic form

w(A)(@.B) = [_r(anp),

GS acts on A by g-A = g 1Ag + g 1dg.
with momentum map J(A) = F4. Then
Po={AecA: Fy=0}/G"

has a reduced symplectic structure (Chern-
Simons theory, low-dimensional topology).

e Toric manifolds: T" x C"* — C™ as

(01, ....00)(21,...,2n) = (e2™Wnyy .. 2701, Y

Tk — T™ subtorus acting on C" by restric-
tion with momentum map J : C* — R¥ cor-
responding to w = 53 pdzy A dZ.

M = J~1(0)/G is a toric manifold for T~k
(Delzant construction).



Bifurcation Lemma

Singular reduction starts with the Bifurcation
Lemma (Arms, Marsden, Gotay 1981):

range (T>J) = (g2)°.

In other words: p is a singular value of J iff
J—1(u) contains a point with continuous sta-
bilizer.

The study of singularities of the momentum
map is equivalent to the study of singularities
of the Hamiltonian group action on P.



Slice Theorem

Associated Bundle: Let H C G compact act
on a vector space A. H acts on G x A by

h - (gaa’) — (gh_la h - CL)
We denote the quotient space as
GxgA:=(GxA)/H.

e GxpAisan associated bundleto G — G/H
over G/H with fiber A.

e Gactson GxygAbygdg-|[g,a =][dg,al.

e Slice Theorem: G x M — M proper ac-
tion. z e M, S=T,M/g-x. Then

¢IGXGxS—>M

IS an equivariant tubular neighborhood of
G -z (Palais 1961).



Symplectic Slice Theorem

(P,w,G,J) Hamiltonian G-space, J(z) = p.

o N =kerT,J/g,-z (Symplectic normal space).
(N,w|n, H,J ) Hamiltonian linear H-space,

AN (), 8) = Jwn(E v,0).

e .Y =G xqg, ((gu/92)* ®N) — P.
¢ is a G-equivariant symplectomorphism with
respect to a natural symplectic form wy .

e (Marle 1985, Guillemin and Sternberg 1984)
(Y,wy,G,Jy) is a Hamiltonian G-space with

Iy (g, v.o]) = A’y (u+ v + Iy ().

e Lerman-Bates Lemma (1997): There ex-
ists a neighborhood Yy C Y such that

I3 () NYy = (Gu xa, (0 x IFH0))) NYp.
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Stratified Spaces

X topological space. A locally finite disjoint
parition X =[] X; is a stratification of X if
i

e smoothness: X; are smooth manifolds,

e frontier condition:

Application: G x M — M proper action. Then

M/GZ HM(H)/G7 where
(H)

- (H) is the conjugacy class of H in GG, and
- My = {xe M : Gy € (H)} (orbit type).

Why?— use slices: near GG - x with G, = H,
M~GxgS~G/H xS. Then

M(H)Z(GXHS)(H)ZGXHSHZG/HXSH
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= Mgy is a G-submanifold of M.

1. smoothness: Near [z] € M()/G,

My/G = (G xy 8"y /G =8"/H =8 ~R¥.

= M)/G is a smooth manifold.

2. frontier conditions: Analogously,

(isotropy stratification of M/G)

Strategy to study the symplectic stratification:
repeat this for a Hamiltonian G-space using the
Symplectic Slice Theorem instead.



Symplectic Stratification of P

(P,w,G,J) Hamiltonian G-space. Suppose 0 is
a singular value of J : P — g*. Then J—1(0)
and Py = J~1(0)/G are singular spaces.

Theorem: (Sjamaar, Lerman 1991).

(i) Thesets J~1(0)NP gy and (J-H(0)NPy))/G
are smooth manifolds, and

Po= 11 (3720) nPy) /G
(H)
is a stratification of Pg.

(ii) Each stratum Pém = (J_l(O)ﬂP(H))/G is
symplectic with a reduced symplectic form
wc()H) defined by

igH)w = W(()H)*wC()H>, where

- i$M 1 3710) NPy — P and

- w g™ I70) NPy — P,
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- Sketch of proof of (¢): z € P with G, = H.
Using Lerman-Bates Lemma, near GG - z

J7H(0) ~ 33 (0) = G x g (0 x I (0)).

o N CIH0) ((In(),&) = Swn(€-v,v))

e Then J=1(0) NPy is @ manifold:

371(0) M (Yo) (ay

G xpg (0 x (Jyt(o)H)

G x 7 (0 x NH)

G/H x (0 x NH)

G/H x ((g/92)*" ® N) ~ Yp

[amrami

(i) smoothness: P(SH) is a manifold.

(J{/Ol(O) N (Yo)(m))/G = N"/H = N ~ RF

(ii) frontier conditions: follow from frontier
conditions for P/G since 73(() ) C Puy/G.

pSH) c op{®) o (k) < (H).
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- Sketch of proof of (ii): Sjamaar Principle:
Py is a symplectic submanifold of P. N(H)/H
acts FREELY and Hamiltonially on (Pg,w|p,,)
with momentum map Jp,. Then there is a
diffeomorphism

f:P§" = a5 0) /(N () /H).
(Sjamaar, Lerman 1991).

Then J;;I(O)/(N(H)/H) is a Marsden-Weinstein
reduced manifold with reduced symplectic form
€2. Then pull-back

WD = fre

satisfies the requirements of the Sjamaar-Lerman
Theorem:

(D), — (D7, (D)

ZO CU—7TO
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Cotangent Lifted Actions

Q smooth manifold, (7 : T"Q — Q,wq) is
canonically a symplectic manifold:
for Px € T;Qv Ve Tpx(T*Q)v

@Q(pa:)(v) — <pw,Tpr(V)>, wQ = —d@Q.

G X Q — @ base action = G xT*Q — T*Q
lifted action. A lifted action is always
Hamiltonian.

If G xQ — Q is free, proper, then
G xT*Q — T*Q is also free, proper.

Momentum map (J(pz),§) = (pz, {g(x)).
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Regular Cotangent Bundle Reduction

G X @Q — (@ free and proper action. Then
every momentum value is regular. How are the
Marsden-Weinstein reduced spaces?’— They are
bundles:

e (uw = 0): There is a symplectomorphism

(IJ71(0)/G,wp) — (T*(Q/G),wg ) (Satzer
1977).

e (u#0): There is a symplectic embedding

(W) /G wp) — (TH(Q/Gp), wQ/a,—T Bu)

onto a subbundle of T*(Q/G.).
By, is a closed differential 2-form on Q/Gy
obtained from a principal connection on

Gu— Q— Q/Gy.
(Abraham, Marsden 1978).
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Singular Cotangent Bundle Reduction

Motivation: G x Q — Q not free = 0 ¢ g¢*
singular momentum value: The smooth cotan-
gent bundle projection 7 : T*Q — (@ induces a
continuous projection g : Pg — Q/G.

e In the regular case, Pog = T*(Q/G) and 7g is
a smooth fibration (the cotangent bundle
projection o : T*(Q/G) — Q/G).

e Everything is constructible from GxQ — Q.

e In the singular case we expect 5 to be a
stratified fibration (maps strata to strata
and restricts to smooth fibrations). This
FAILS! since To(P(gH)) = Q(H)/G = Q(H)/G

Solution: Substitute the symplectic stratifica-
tion of Py with the finer coisotropic stratifi-
cation.
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Seams

Consider one orbit type submanifold Q gy C
Q. (T Q) w“Q iy G J(my) is @ Hamiltonian G-
space obtained by restriction from (T*Q,wg, G, J).

b S b S
N Q(.H) C TQ(H-)Q conormal bundle to Q(H),
inherits a G-action. Facts:

o (N*Qm)) (k) # 9 <=

0 N
.« Sy = (H)( )X(G Qun)(k) Quiny/G s

a smooth bundle.

o Sy_.g= T*(Q(H)/G) (Emmrich-Romer 1991).

We call Sy_, i with (K) < (H) a seam.
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Decomposition of the Symplectic Strata

In the cotangent bundle case we can write
the following decomposition of every symplec-
tic stratum:

Ps) =T*(Quiy/&) [I  Sw—x
(K)<(H)
Furthermore:

e PS £ oo Qu #2.
o T*(Q(K>/G) is open and dense in PSK).

e [ he reduced symplectic form wéK) IS the
unique extension of “Q(1)/G from T*(Q(K)/G)

to P(()K).

e Seams Sy _, i are coisotropicin (P(SK), w(()K)).
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The Coisotropic Stratification of Pg

Let Iop = {(H) Q) 7 g}. Take every
cotangent bundle and seam of the form

e T*(Q(r)/G), (L)€ g,

o Sk, (K),(K') € lg, (K) < (K').

then
Po=117T"Quy/G) 1l Sk—x
(L) (K)<(K')

with (L), (K), (K') € I is a stratification of Pg
(Perlmutter, Sousa-Dias, R-O 2003).

Notice: The strata are bundles over strata of
Q/G, indeed

T*(Q(r)/G) — Qr)/G
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Properties of the Coisotropic
Stratification

- The continuous projection 15 : Pg — Q/G IS
a stratified fibration with respect to the sec-
ondary stratification of Py and the isotropy
stratification of Q/G.

- The frontier conditions: (gluing cotangent
bundles):

T*(Qi)/G) COT(Qm)/G) & (H) < (K)

T*(Qr)/G) COSKk—H & (H) < (K)
Sk—n COT*(Qm)/G) & (H) < (K)
Ski—ny COSK_H & (H) < (K) < (K
Sk—m CISk g & (H) < (H) < (K)

- The strata are coisotropic submaifolds of their
respective symplectic strata.
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