Análise de estruturas laminadas compósitas por funções de base radial

> A. J. M. Ferreira Prof. Associado com Agregação

Departamento de Engenharia Mecânica e Gestão Industrial Faculdade de Engenharia da Universidade do Porto Porto, Portugal

Tarde de trabalho SPM/CIM - Mecânica Computacional

(日) (四) (日) (日) (日)

Materiais compósitos, sandwich, funcionais gradativos

- Teorias de deformação de placa e casca
- Colocação por funções de base radial
 - Formulação básica
 - Funções de base radial num ambiente pseudo-espectral
 - Modelos adaptativos

Alguns exemplos

- 31

・ロト ・ 日本 ・ 日本 ・ 日本

- Materiais compósitos, sandwich, funcionais gradativos
- Teorias de deformação de placa e casca
- Colocação por funções de base radial
 - Formulação básica
 - Funções de base radial num ambiente pseudo-espectral
 - Modelos adaptativos
- Alguns exemplos

- Materiais compósitos, sandwich, funcionais gradativos
- Teorias de deformação de placa e casca
- Colocação por funções de base radial
 - Formulação básica
 - Funções de base radial num ambiente pseudo-espectral
 - Modelos adaptativos
- Alguns exemplos

・ロット 本語 アイヨア トロア

- Materiais compósitos, sandwich, funcionais gradativos
- Teorias de deformação de placa e casca
- Colocação por funções de base radial
 - ► Formulação básica
 - Funções de base radial num ambiente pseudo-espectral
 - Modelos adaptativos
- Alguns exemplos

・ロット (雪) (き) (き) (し)

- Materiais compósitos, sandwich, funcionais gradativos
- Teorias de deformação de placa e casca
- Colocação por funções de base radial
 - Formulação básica
 - ► Funções de base radial num ambiente pseudo-espectral
 - Modelos adaptativos
- Alguns exemplos

・ロット (雪) (き) (き) (し)

- Materiais compósitos, sandwich, funcionais gradativos
- Teorias de deformação de placa e casca
- Colocação por funções de base radial
 - Formulação básica
 - Funções de base radial num ambiente pseudo-espectral
 - Modelos adaptativos
- Alguns exemplos

(日) (間) (目) (日) (日)

- Materiais compósitos, sandwich, funcionais gradativos
- Teorias de deformação de placa e casca
- Colocação por funções de base radial
 - Formulação básica
 - Funções de base radial num ambiente pseudo-espectral
 - Modelos adaptativos
- Alguns exemplos

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Placa compósita

æ

・ロト ・ 個 ト ・ ヨト ・ ヨト

Placa sandwich

æ

・ロト ・ 個 ト ・ ヨト ・ ヨト

Placa funcional gradativa

- 2

・ロト ・聞ト ・ヨト ・ヨト

Outline Materiais

> Materiais e laminados compósitos Laminados sandwich Materiais funcionais gradativos

Teorias de deformação

Generalidades

Teorias single-layer

Teorias layerwise

Solução por funções de base radial

Método de Kansa Exemplos diversos Problemas de fluidos

Problemas de sólidos

Optimização do parâmetro de forma

O problema

Métodos adaptativos

Estratégia

Conclusões

- 2

・ロット 全部 マート・ キョン

Materiais

Materiais e laminados compósitos Laminados sandwich Materiais funcionais gradativos

Teorias de deformação

Generalidades Teorias single-layer Teorias layerwise

Solução por funções de base radia

Método de Kansa Exemplos diversos Problemas de fluidos Problemas de sólidos

Optimização do parâmetro de forma O problema Métodos adaptativos Estratégia

Conclusões

- 2

・ロット 全部 マート・ キョン

Materiais

Materiais e laminados compósitos Laminados sandwich Materiais funcionais gradativos

Teorias de deformação

Generalidades Teorias single-layer Teorias layerwise

Solução por funções de base radial

Método de Kansa Exemplos diversos Problemas de fluidos Problemas de sólidos

Optimização do parâmetro de forma O problema Métodos adaptativos Estratégia Conclusões

Materiais

Materiais e laminados compósitos Laminados sandwich Materiais funcionais gradativos

Teorias de deformação

Generalidades Teorias single-layer

Teorias layerwise

Solução por funções de base radial

Método de Kansa Exemplos diversos Problemas de fluidos Problemas de sólidos

Optimização do parâmetro de forma

O problema

Métodos adaptativos

Estratégi

Conclusões

Materiais

Materiais e laminados compósitos Laminados sandwich Materiais funcionais gradativos

Teorias de deformação

Generalidades Teorias single-layer

Teorias layerwise

Solução por funções de base radial

Método de Kansa Exemplos diversos Problemas de fluidos Problemas de sólidos

Optimização do parâmetro de forma

0 problema

Métodos adaptativos

Estratégia

Conclusões

Materiais

Materiais e laminados compósitos Laminados sandwich Materiais funcionais gradativos

Teorias de deformação

Generalidades Teorias single-layer Teorias layerwise

Solução por funções de base radial

Método de Kansa Exemplos diversos Problemas de fluidos Problemas de sólidos

Optimização do parâmetro de forma

O problema Métodos adaptativos Estratégia

Conclusões

Materiais e laminados

- Compósitos (n camadas ortotrópicas) : Matriz polimérica, reforçada com fibras, materiais ortotrópicos, variação discreta de propriedades
- Sandwich (3 camadas ortotrópicas) : Qualquer material peles, núcleos vários, grande diferença entre propriedades de peles e núcleos, modos de deformação próprios, materiais ortotrópicos, variação discreta de propriedades
- Funcionais (Functionally graded materials) : Metal-cerâmica, Prevenção de delaminações, materiais isotrópicos, Variação contínua de propriedades

- 日本 (雪本 (日本 (日本))

Materiais e laminados

- Compósitos (n camadas ortotrópicas) : Matriz polimérica, reforçada com fibras, materiais ortotrópicos, variação discreta de propriedades
- Sandwich (3 camadas ortotrópicas) : Qualquer material peles, núcleos vários, grande diferença entre propriedades de peles e núcleos, modos de deformação próprios, materiais ortotrópicos, variação discreta de propriedades
- Funcionais (Functionally graded materials) : Metal-cerâmica, Prevenção de delaminações, materiais isotrópicos, Variação contínua de propriedades

(日本) (四本) (日本) (日本)

Materiais e laminados

- Compósitos (n camadas ortotrópicas) : Matriz polimérica, reforçada com fibras, materiais ortotrópicos, variação discreta de propriedades
- Sandwich (3 camadas ortotrópicas) : Qualquer material peles, núcleos vários, grande diferença entre propriedades de peles e núcleos, modos de deformação próprios, materiais ortotrópicos, variação discreta de propriedades
- Funcionais (Functionally graded materials) : Metal-cerâmica, Prevenção de delaminações, materiais isotrópicos, Variação contínua de propriedades

・ロット (雪) (日) (日) (日)

Outline Materiais

Materiais e laminados compósitos

Método de Kansa

・ロット 全部 マート・ キョン

Definições de materiais compósitos

- Materiais compostos por duas ou mais fases materiais;
- Imensas opções; grande número de tipos de compósitos;
- Matrizes : poliméricas; cerâmicas; cimentícias; metálicas;

- Fibras : vidro; carbono; aramidas;
- ► Material ⇔ camada; Estrutura ⇔ Laminado

Aplicações

Propriedades Matriz,fibra,camada,rigidez material e global

Micromecânica: prop. fases básicas \rightarrow prop. camada

- Fibra (f) e matriz (m), módulo longitudinal :E₁ = V_f E_f + V_mE_M
- ► Camada ortotrópica (mais comum) $E_1 \neq E_2$; $G_{12} \neq E/(2+2\nu)$
- ► Eixos materiais → eixos estruturais
- Rigidez membrana, flexão, membrana-flexão, corte plano, corte transverso, correcção de corte transverso

- 2

・ロト ・ 一下・ ・ ヨト ・ ヨト

Propriedades (2) Relações constitutivas, Eixos materiais ortotrópicos

¢

$$\begin{cases} \sigma_1 \\ \sigma_2 \\ \tau_{12} \\ \tau_{23} \\ \tau_{31} \end{cases} = \begin{bmatrix} Q_{11} & Q_{12} & 0 & 0 & 0 \\ Q_{12} & Q_{22} & 0 & 0 & 0 \\ 0 & 0 & Q_{33} & 0 & 0 \\ 0 & 0 & 0 & Q_{44} & 0 \\ 0 & 0 & 0 & 0 & Q_{55} \end{bmatrix} \begin{cases} \varepsilon_1 \\ \varepsilon_2 \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{31} \end{cases}$$

$$\begin{aligned} Q_{11} &= \frac{E_1}{1 - \nu_{12}\nu_{21}} & Q_{22} = \frac{E_2}{1 - \nu_{12}\nu_{21}} & Q_{12} = \nu_{21}Q_{11} \\ Q_{33} &= G_{12} & Q_{44} = G_{23} & Q_{55} = G_{31} \\ \nu_{21} &= \nu_{12}\frac{E_2}{E_1} \end{aligned}$$

- 2

・ロト ・ 個 ト ・ ヨト ・ ヨト

Propriedades (2) Relações constitutivas, Eixos estruturais

$$\left\{ \begin{array}{c} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{zx} \end{array} \right\} = \left[\begin{array}{cccc} \overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} & 0 & 0 \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} & 0 & 0 \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} & 0 & 0 \\ 0 & 0 & 0 & \overline{Q}_{44} & \overline{Q}_{45} \\ 0 & 0 & 0 & \overline{Q}_{45} & \overline{Q}_{55} \end{array} \right] \left\{ \begin{array}{c} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{array} \right\}$$

・ロト ・ 日 ・ ・ ヨ ト

Mecânica de laminados _{Camadas} → Laminado

- camadas perfeitamente ligadas
- material ortotrópico
- espessura uniforme
- deslocamentos e deformações pequenos
- variação discreta de propriedades (interfaces → delaminagens)

・ロト ・ 戸 ・ ・ ヨ ・ ・

Mecânica de laminados _{Camadas} → _{Laminado}

Variação contínua das deformações e discreta das tensões normais.

$$(N_i, M_i) = \sum_{k=1}^{NL} \int_{z_{k-1}}^{z_k} \sigma_i^{(k)}(1, z) dz \qquad (i = xx, yy, xy)$$
$$(Q_x, Q_y) = \sum_{k=1}^{NL} \int_{z_{k-1}}^{z_k} (\sigma_{xz}^{(k)}, \sigma_{yz}^{(k)}) dz; \quad (z \in [-h/2, h/2])$$

Outline Materiais

Materiais e laminados compósitos Laminados sandwich

Método de Kansa

- 31

・ロット 全部 マート・ キョン

Laminados sandwich

Figure 9.3 Examples of sandwick panel design in modern spectring equipment, (a) A seriors from a downhill ski made with daminians skins separated by a polyarethane form core. (b) A section from the dask of a suilbeat made with threeglass skins and a balas wood core.

ANG

Figure 9.4 Examples of sead-field construction in nonze, 10.3 section freesa barron deal, societar freesa barron deal, societar field barron deal, compact bose separated by a layer of spongy, concellon bowe (after Hodgoon, 1973, Fig. 16, controjo of Horman Presai, (b) A section Through a bird's wing (after Thompson, 1994, Fig. 103, controj of Cambridge

Laminados sandwich

Colaboração com INETI

Colaboração com INEGI-CETECOFF

Laminados sandwich Dificuldades

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

Outline Materiais

Materiais e laminados compósitos Laminados sandwich

Materiais funcionais gradativos

Método de Kansa

Materiais funcionais

- Materiais funcionais gradativos [Functionally graded materials (FGM)] - mistura adequada de materiais metálicos e cerâmicos, por forma a formar barreiras térmicas, eliminar delaminações
- Variação contínua (gradientes) de propriedades
- ▶ Diferenças de coeficientes de dil. térmica → tensões residuais

(日) (四) (日) (日)

Materiais funcionais

- Materiais funcionais gradativos [Functionally graded materials (FGM)] - mistura adequada de materiais metálicos e cerâmicos, por forma a formar barreiras térmicas, eliminar delaminações
- Variação contínua (gradientes) de propriedades
- ▶ Diferenças de coeficientes de dil. térmica → tensões residuais

・ロト ・ 一下・ ・ ヨト ・ ヨト

Materiais funcionais

- Materiais funcionais gradativos [Functionally graded materials (FGM)] - mistura adequada de materiais metálicos e cerâmicos, por forma a formar barreiras térmicas, eliminar delaminações
- Variação contínua (gradientes) de propriedades
- ► Diferenças de coeficientes de dil. térmica → tensões residuais

(日) (四) (日) (日)
Homogeneização de propriedades Evolução da fracção volúmica na espessura

Fracção volúmica de material 1 (cerâmico) $V_1 = \left(\frac{1}{2} + \frac{z}{h}\right)^p$., $V_1(-h/2) = 0$, $V_1(h/2) = 1$ p = 0: Cerâmico; $p \to \infty$: metal

Homogeneização de propriedades Lei de misturas e Mori-Tanaka

Lei das misturas

$$E(z) = E_{metal} V_2 + E_{ceramica} V_1$$
$$\nu(z) = \nu_{metal} V_2 + \nu_{ceramica} V_1$$
$$G(z) = \frac{E}{2 + 2\nu}$$

Mori-Tanaka

$$\frac{K - K_1}{K_2 - K_1} = \frac{V_2}{1 + (1 - V_2)\frac{K_2 - K_1}{K_1 + \frac{4}{3}G_1}}$$
$$\frac{G - G_1}{G_2 - G_1} = \frac{V_2}{1 + (1 - V_2)\frac{G_2 - G_1}{G_1 + f_1}}$$

com f₁ =
$$\frac{G_1(9K_1 + 8G_1)}{6(K_1 + 2G_1)}$$
.
 $E(z) = \frac{9KG}{3K + G}$, $\nu(z) = \frac{3K - 2G}{2(3K + G)}$

Outline

Materiais

Materiais e laminados compósitos Laminados sandwich Materiais funcionais gradativos

Teorias de deformação

Generalidades

Método de Kansa

・ロト ・ 日本 ・ 日本 ・ 日本

Objectivos

- Capturar deslocamentos transversais (e outros)
- Capturar tensões normais (descontínuas)
- Capturar tensões de corte transverso (contínuas)
- Correcção de corte transverso (a evitar)
- Mudança de inclinação da normal à s. média (nas layerwises)
- ▶ Anulação de tensões nas superficies $\pm h/2$

- 31

・ロト ・ 一下・ ・ ヨト

Objectivos

- Capturar deslocamentos transversais (e outros)
- Capturar tensões normais (descontínuas)
- Capturar tensões de corte transverso (contínuas)
- Correcção de corte transverso (a evitar)
- Mudança de inclinação da normal à s. média (nas layerwises)
- ▶ Anulação de tensões nas superficies $\pm h/2$

- 2

・ロト ・ 日本 ・ 日本 ・ 日本

Objectivos

- Capturar deslocamentos transversais (e outros)
- Capturar tensões normais (descontínuas)
- Capturar tensões de corte transverso (contínuas)
- Correcção de corte transverso (a evitar)
- Mudança de inclinação da normal à s. média (nas layerwises)
- ▶ Anulação de tensões nas superficies $\pm h/2$

Objectivos

- Capturar deslocamentos transversais (e outros)
- Capturar tensões normais (descontínuas)
- Capturar tensões de corte transverso (contínuas)
- Correcção de corte transverso (a evitar)
- Mudança de inclinação da normal à s. média (nas layerwises)
- ▶ Anulação de tensões nas superficies $\pm h/2$

Objectivos

- Capturar deslocamentos transversais (e outros)
- Capturar tensões normais (descontínuas)
- Capturar tensões de corte transverso (contínuas)
- Correcção de corte transverso (a evitar)
- Mudança de inclinação da normal à s. média (nas layerwises)
- ▶ Anulação de tensões nas superficies $\pm h/2$

Objectivos

- Capturar deslocamentos transversais (e outros)
- Capturar tensões normais (descontínuas)
- Capturar tensões de corte transverso (contínuas)
- Correcção de corte transverso (a evitar)
- Mudança de inclinação da normal à s. média (nas layerwises)
- Anulação de tensões nas superficies $\pm h/2$

- Camada única: graus de liberdade afectos a todas as camadas (ou seja ao laminado); vantagem de nº constante de g.d.l.
- Layerwise (zig-zag): graus de liberdade ligados a cada camada; desvantagem do grande n° de g.d.l.

Escolha de teoria

Camada única: mais adaptado para laminados monolíticos
 Layerwise (zig-zag): melhor para sandwich ou piezoelétricos

- Camada única: graus de liberdade afectos a todas as camadas (ou seja ao laminado); vantagem de nº constante de g.d.l.
- Layerwise (zig-zag): graus de liberdade ligados a cada camada; desvantagem do grande nº de g.d.l.

Escolha de teoria

Camada única: mais adaptado para laminados monolíticos
 Layerwise (zig-zag): melhor para sandwich ou piezoelétricos

- Camada única: graus de liberdade afectos a todas as camadas (ou seja ao laminado); vantagem de nº constante de g.d.l.
- Layerwise (zig-zag): graus de liberdade ligados a cada camada; desvantagem do grande n° de g.d.l.

Escolha de teoria

Camada única: mais adaptado para laminados monolíticos
 Layerwise (zig-zag): melhor para sandwich ou piezoelétricos

・ロット (雪) (き) (き) (し)

- Camada única: graus de liberdade afectos a todas as camadas (ou seja ao laminado); vantagem de nº constante de g.d.l.
- Layerwise (zig-zag): graus de liberdade ligados a cada camada; desvantagem do grande n° de g.d.l.

Escolha de teoria

- Camada única: mais adaptado para laminados monolíticos
- Layerwise (zig-zag): melhor para sandwich ou piezoelétricos

Outline

Materiais

Materiais e laminados compósitos Laminados sandwich Materiais funcionais gradativos

Teorias de deformação

Generalidades

Teorias single-layer

Método de Kansa

Clássica

- Primeira ordem : Mindlin/Reissner, Ferreira ¹
- Terceira (+) ordem : Reddy, Kant, Lo; Ferreira et al.²
- Trigonométrica : Naik, Arya, Shimpi (Vigas), Ferreira et al.³

¹Ferreira, Composite Structures, 2003
 ²Ferreira/Roque/Martins, Composites Part B: Engineering, 2003
 ³Ferreira/Roque/Jorge, Computers & Structures, 2005

► Clássica

Primeira ordem : Mindlin/Reissner, Ferreira ¹

- Terceira (+) ordem : Reddy, Kant, Lo; Ferreira et al.²
- Trigonométrica : Naik, Arya, Shimpi (Vigas), Ferreira et al.³

¹Ferreira, Composite Structures, 2003

²Ferreira/Roque/Martins, Composites Part B: Engineering, 2003 ³Ferreira/Roque/Jorge, Computers & Structures, 2**a**05 < **a** → < **a** → < **a** →

- 22

- Clássica
- Primeira ordem : Mindlin/Reissner, Ferreira¹
- Terceira (+) ordem : Reddy, Kant, Lo; Ferreira et al.²
- Trigonométrica : Naik, Arya, Shimpi (Vigas), Ferreira et al. ³

¹Ferreira, Composite Structures, 2003
 ²Ferreira/Roque/Martins, Composites Part B: Engineering, 2003
 ³Ferreira/Roque/Jorge, Computers & Structures, 2805 (B + 12) (B + 12)

- 32

- Clássica
- Primeira ordem : Mindlin/Reissner, Ferreira ¹
- Terceira (+) ordem : Reddy, Kant, Lo; Ferreira et al.²
- ▶ Trigonométrica : Naik, Arya, Shimpi (Vigas), Ferreira et al. ³

¹Ferreira, Composite Structures, 2003
 ²Ferreira/Roque/Martins, Composites Part B: Engineering, 2003
 ³Ferreira/Roque/Jorge, Computers & Structures, 2005

- 22

Teoria clássica e de 1^a ordem

Objectivos

► TCL (3dof):

$$u^{k}(x, y, z) = u_{0}(x, y) - z \frac{\partial w_{0}(x, y)}{\partial x}$$
$$v^{k}(x, y, z) = v_{0}(x, y) - z \frac{\partial w_{0}(x, y)}{\partial y}$$
$$w(x, y, z) = w_{0}(x, y)$$

▶ 1^{*a*} ordem (5dof):

$$u^{k}(x, y, z) = u_{0}(x, y) - z\theta_{x}(x, y)$$

$$v^{k}(x, y, z) = v_{0}(x, y) - z\theta_{y}(x, y)$$

$$w(x, y, z) = w_{0}(x, y)$$

Teoria clássica e de 1^a ordem

Objectivos

► TCL (3dof):

$$u^{k}(x, y, z) = u_{0}(x, y) - z \frac{\partial w_{0}(x, y)}{\partial x}$$
$$v^{k}(x, y, z) = v_{0}(x, y) - z \frac{\partial w_{0}(x, y)}{\partial y}$$
$$w(x, y, z) = w_{0}(x, y)$$

▶ 1^a ordem (5dof):

$$u^{k}(x, y, z) = u_{0}(x, y) - z\theta_{x}(x, y)$$

$$v^{k}(x, y, z) = v_{0}(x, y) - z\theta_{y}(x, y)$$

$$w(x, y, z) = w_{0}(x, y)$$

Teorias de ordem superior Reddy, Kant

Teoria de terceira ordem (Reddy)(5dof)

$$u(x, y, z) = u_0(x, y) + z\theta_x - c_1 z^3 \left(\theta_x + \frac{\partial w}{\partial x}\right),$$

$$v(x, y, z) = v_0(x, y) + z\theta_y - c_1 z^3 \left(\theta_y + \frac{\partial w}{\partial y}\right),$$

$$w(x, y, z) = w_0(x, y),$$

Teoria de terceira ordem (Kant)(7dof)

$$u(x, y, z) = u_0(x, y) + z\theta_x(x, y) + z^3\theta_x^*(x, y)$$

$$v(x, y, z) = v_0(x, y) + z\theta_y(x, y) + z^3\theta_y^*(x, y)$$

$$w(x, y, z) = w_0(x, y)$$

◆□▶ ◆圖▶ ◆注▶ ◆注▶ 「注□

Teorias de ordem superior Reddy, Kant

Teoria de terceira ordem (Reddy)(5dof)

$$u(x, y, z) = u_0(x, y) + z\theta_x - c_1 z^3 \left(\theta_x + \frac{\partial w}{\partial x}\right),$$

$$v(x, y, z) = v_0(x, y) + z\theta_y - c_1 z^3 \left(\theta_y + \frac{\partial w}{\partial y}\right),$$

$$w(x, y, z) = w_0(x, y),$$

► Teoria de terceira ordem (Kant)(7dof)

$$u(x, y, z) = u_0(x, y) + z\theta_x(x, y) + z^3\theta_x^*(x, y)$$

$$v(x, y, z) = v_0(x, y) + z\theta_y(x, y) + z^3\theta_y^*(x, y)$$

$$w(x, y, z) = w_0(x, y)$$

- Clássica (sem corte transverso) : pouco usada em situações de placa ou casca espessa
- 1^a ordem : necessita correcção de corte transverso
- ▶ 3ª ordem : não necessita de correcção de corte anula tensões de corte transverso em ±h/2
- Trigonométricas : não corrige o corte; anula tensões de corte transverso em ±h/2

Figure 11.4–6: Plots of constitutively derived (C) and equilibrium-derived (E) transverse shear stresses $\bar{\sigma}_{xx}$ as functions of thickness coordinate.

- Clássica (sem corte transverso) : pouco usada em situações de placa ou casca espessa
- ▶ 1^a ordem : necessita correcção de corte transverso
- ▶ 3ª ordem : não necessita de correcção de corte anula tensões de corte transverso em ±h/2
- Trigonométricas : não corrige o corte; anula tensões de corte transverso em ±h/2

Figure 11.4–6: Plots of constitutively derived (C) and equilibrium-derived (E) transverse shear stresses $\bar{\sigma}_{xx}$ as functions of thickness coordinate.

- Clássica (sem corte transverso) : pouco usada em situações de placa ou casca espessa
- ▶ 1^a ordem : necessita correcção de corte transverso
- ► 3^a ordem : não necessita de correcção de corte anula tensões de corte transverso em ±h/2
- Trigonométricas : não corrige o corte; anula tensões de corte transverso em ±h/2

Figure 11.4–6: Plots of constitutively derived (C) and equilibrium-derived (E) transverse shear stresses σ_{xx} as functions of thickness coordinate.

- Clássica (sem corte transverso) : pouco usada em situações de placa ou casca espessa
- ▶ 1^a ordem : necessita correcção de corte transverso
- ▶ 3ª ordem : não necessita de correcção de corte anula tensões de corte transverso em ±h/2
- Trigonométricas : não corrige o corte; anula tensões de corte transverso em ±h/2

Figure 11.4–6: Plots of constitutively derived (C) and equilibrium-derived (E) transverse shear stresses σ_{xx} as functions of thickness coordinate.

Trigonométrica: deslocamentos e deformações de corte transverso⁴

$$u^{k}(x, y, z) = u_{0}(x, y) - z \frac{\partial w_{0}(x, y)}{\partial x} + (\sin \frac{\pi z}{h} \theta_{x}(x, y))$$
$$v^{k}(x, y, z) = v_{0}(x, y) - z \frac{\partial w_{0}(x, y)}{\partial y} + (\sin \frac{\pi z}{h} \theta_{y}(x, y))$$
$$w(x, y, z) = w_{0}(x, y)$$

 $\left\{ \begin{array}{c} \gamma_{\mathbf{y}\mathbf{z}} \\ \gamma_{\mathbf{x}\mathbf{z}} \end{array} \right\} = \frac{\pi}{h}\cos\frac{\pi z}{h} \left\{ \begin{array}{c} \theta_{\mathbf{y}} \\ \theta_{\mathbf{x}} \end{array} \right\}$

Fig. 2. Normalized stresses, ($\hat{\sigma}_m, \hat{\tau}_m$) and in-plane displacement, \bar{w} for an isotropic square plate, with N = 15, aih = 10,

Trigonométrica: deslocamentos e deformações de corte transverso⁵

Fig. 3. Normalized stresses, (6,, 6,) and in-plane displacement, a for [0980990909] square plate with N = 15, als = 10

Fig. 4. Normalized streams, (d₁₀, T₁₀) and displacement, 9 for a sandwich square plate with N = 15, a/e = 10, R = 1:

- 32

⁵Ferreira/Roque/Jorge, Computers & Structures, 2005 () () () ()

Outline

Materiais

Materiais e laminados compósitos Laminados sandwich Materiais funcionais gradativos

Teorias de deformação

Generalidades

Teorias single-layer

Teorias layerwise

Solução por funções de base radial Método de Kansa Exemplos diversos Problemas de fluidos Problemas de sólidos Optimização do parâmetro de forma O problema Métodos adaptativos Estratégia Conclusões

- 31

・ロト ・ 日本 ・ 日本 ・ 日本

Abordagens

Polinomiais (Owen+Li, Oñate+Botello, Ferreira ⁶,⁷)
 Trigonométricas (Naik, Shimpi, Roque et al.⁸)

⁶ Mechanics of Advanced Materials and Structures, 2005
⁷ I. J. Mechanical Sciences, 2004
⁸ Composites: part B, 2005

Abordagens

- Polinomiais (Owen+Li, Oñate+Botello, Ferreira ⁶,⁷)
- Trigonométricas (Naik, Shimpi, Roque et al.⁸)

 Graus de liberdade por camada, evolução em zig-zag dos deslocamentos, potencial grande número de graus de liberdade por nó

 \blacktriangleright Pode (ou não) anular tensões de corte transverso em $\pm h/2$

- Graus de liberdade por camada, evolução em zig-zag dos deslocamentos, potencial grande número de graus de liberdade por nó
- Pode (ou não) anular tensões de corte transverso em $\pm h/2$

Deslocamentos nas peles e núcleo Imposição de continuidade nas interfaces, Ferreira, MAMS, 2003, 2005

CORE (camada central)

$$\begin{split} & u^{(2)}(x, y, z) = u_0(x, y) + z^{(2)} \theta_x^{(2)} \\ & v^{(2)}(x, y, z) = v_0(x, y) + z^{(2)} \theta_y^{(2)} \\ & w^{(2)}(x, y, z) = w_0(x, y) \end{split}$$

Peles superior e inferior

$$u^{(3)}(x, y, z) = u_0(x, y) + \frac{h_2}{2} \theta_x^{(2)} + \frac{h_3}{2} \theta_x^{(3)} + z^{(3)} \theta_x^{(3)}$$
$$v^{(3)}(x, y, z) = v_0(x, y) + \frac{h_2}{2} \theta_y^{(2)} + \frac{h_3}{2} \theta_y^{(3)} + z^{(3)} \theta_y^{(3)}$$
$$w^{(3)}(x, y, z) = w_0(x, y)$$

(日) (四) (日) (日)

FIG. 1. One-dimensional representation of the laverwise kinematics.

Outline

Materiais

Materiais e laminados compósitos Laminados sandwich Materiais funcionais gradativos Teorias de deformação Generalidades Teorias single-layer Teorias layerwise

Solução por funções de base radial

Método de Kansa

Exemplos diversos Problemas de fluidos Problemas de sólidos

Optimização do parâmetro de forma

O problema

Métodos adaptativos

Estratégia

Conclusões

- 31

・ロト ・ 日本 ・ 日本 ・ 日本

Opções actuais

► Formulações fracas, Elementos finitos, EFG, MLPG, ...

- Formulações fortes (PDEs), Funções de base radial e pseudoespectrais
- Método hibrido (RBF-PS) : Ferreira e Fasshauer, 2005

<ロ> (四) (四) (三) (三) (三)
- ► Formulações fracas, Elementos finitos, EFG, MLPG, ...
- Formulações fortes (PDEs), Funções de base radial e pseudoespectrais
- Método hibrido (RBF-PS) : Ferreira e Fasshauer, 2005

- ► Formulações fracas, Elementos finitos, EFG, MLPG, ...
- Formulações fortes (PDEs), Funções de base radial e pseudoespectrais
- ▶ Método hibrido (RBF-PS) : Ferreira e Fasshauer, 2005

・ロット 本語 マート キョット 日マ

• Conjunto de nós $x_1, x_2, ..., x_N \in \Omega \subset \mathbb{R}^n$.

- Funções de base radial centradas em
 x_j : φ_j(x) ≡ φ(||x − x_j||) ∈ ℝⁿ, j = 1, ..., N
- ▶ $\|\mathbf{x} \mathbf{x}_j\|$: Norma Euclidiana
- Multiquadrics : $\phi_j(\mathbf{x}) = (\|\mathbf{x} \mathbf{x}_j\|^2 + c^2)^{\frac{1}{2}}$

- ► Conjunto de nós $x_1, x_2, ..., x_N \in \Omega \subset \mathbb{R}^n$.
- Funções de base radial centradas em
 x_j : φ_j(x) ≡ φ(||x − x_j||) ∈ ℝⁿ, j = 1, ..., N
- ▶ $\|\mathbf{x} \mathbf{x}_j\|$: Norma Euclidiana
- Multiquadrics : $\phi_j(\mathbf{x}) = (\|\mathbf{x} \mathbf{x}_j\|^2 + c^2)^{\frac{1}{2}}$

- Conjunto de nós $x_1, x_2, ..., x_N \in \Omega \subset \mathbb{R}^n$.
- Funções de base radial centradas em
 x_j : φ_j(x) ≡ φ(||x − x_j||) ∈ ℝⁿ, j = 1, ..., N

► ||x - x_j||: Norma Euclidiana

• Multiquadrics : $\phi_j(\mathbf{x}) = (\|\mathbf{x} - \mathbf{x}_j\|^2 + c^2)^{\frac{1}{2}}$

- ► Conjunto de nós $x_1, x_2, ..., x_N \in \Omega \subset \mathbb{R}^n$.
- Funções de base radial centradas em
 x_j : φ_j(x) ≡ φ(||x − x_j||) ∈ ℝⁿ, j = 1, ..., N
- ▶ ||x x_j||: Norma Euclidiana
- Multiquadrics : $\phi_j(\mathbf{x}) = (\|\mathbf{x} \mathbf{x}_j\|^2 + c^2)^{\frac{1}{2}}$

Algumas RBFs

 $\begin{aligned} & \text{Multiquadrics: } \phi_j(\mathbf{x}) = (\|\mathbf{x} - \mathbf{x}^{(j)}\|^2 + c^2)^{1/2}, \\ & \text{Inverse Multiquadrics: } \phi_j(\mathbf{x}) = (\|\mathbf{x} - \mathbf{x}^{(j)}\|^2 + c^2)^{-1/2}, \\ & \text{Gaussians: } \phi_j(\mathbf{x}) = e^{-c^2 \|\mathbf{x} - \mathbf{x}^{(j)}\|^2}, \\ & \text{Thin plate splines': } \phi_j(\mathbf{x}) = \|\mathbf{x} - \mathbf{x}^{(j)}\|^2 \log \|\mathbf{x} - \mathbf{x}^{(j)}\| \\ & \text{Shifted Thin plate splines': } \phi_j(\mathbf{x}) = (\|\mathbf{x} - \mathbf{x}^{(j)}\|^2 + c^2)^{2m} \log(\|\mathbf{x} - \mathbf{x}^{(j)}\|^2 + c^2) \end{aligned}$

BVP

- Domínio: $Lu(x) = s(x) \subset \mathbb{R}^n$
- Fronteira: $Bu(x)_{|\partial\Omega} = f(x) \in \mathbb{R}^n$

Interpolação

- Interpolante $u^h(\mathsf{x},c) = \sum_{j=1}^N a_j \phi(\|\mathsf{x}-\mathsf{x}_j\|,c)$
- Derivadas (∞): $\frac{d^n u^h}{dx^n} = \sum_{j=1}^N a_j \frac{d^n \phi}{dx^n} (\|\mathbf{x} \mathbf{x}_j\|, c)$

- Colocação no Dominio: $u_L^h(\mathbf{x}, c) \equiv \sum_{j=1}^N a_j L\phi(||\mathbf{x} - \mathbf{x}_j||, c) = \mathbf{S}(\mathbf{x}_i), i = N_{B+1}, ..., N$
 - Colocação na Fronteira: $u_B^h(\mathbf{x}, c) \equiv \sum_{j=1}^N a_j B\phi(||\mathbf{x} - \mathbf{x}_j||, c) = F(\mathbf{x}_i), i = 1, ..., N_B$

BVP

- Domínio: $Lu(x) = s(x) \subset \mathbb{R}^n$
- Fronteira: $Bu(x)_{|\partial\Omega} = f(x) \in \mathbb{R}^n$

Interpolação

- Interpolante $u^h(\mathsf{x},c) = \sum_{j=1}^N a_j \phi(\|\mathsf{x}-\mathsf{x}_j\|,c)$
- Derivadas (∞): $\frac{d^n u^h}{dx^n} = \sum_{j=1}^N a_j \frac{d^n \phi}{dx^n} (\|\mathbf{x} \mathbf{x}_j\|, c)$

- ► Colocação no Dominio: $u_L^h(\mathbf{x}, c) \equiv \sum_{j=1}^N a_j L\phi(||\mathbf{x} - \mathbf{x}_j||, c) = \mathbf{S}(\mathbf{x}_i), i = N_{B+1}, ..., N$ ► Colocação na Fronteira:
 - $u_B^h(\mathbf{x}, c) \equiv \sum_{j=1}^N a_j B\phi(\|\mathbf{x} \mathbf{x}_j\|, c) = \mathsf{F}(\mathbf{x}_i), i = 1, \dots, N_B$

BVP

- Domínio: $Lu(x) = s(x) \subset \mathbb{R}^n$
- Fronteira: $Bu(x)_{|\partial\Omega} = f(x) \in \mathbb{R}^n$

Interpolação

- Interpolante $u^h(\mathsf{x},c) = \sum_{j=1}^N a_j \phi(\|\mathsf{x}-\mathsf{x}_j\|,c)$
- Derivadas (∞): $\frac{d^n u^h}{dx^n} = \sum_{j=1}^N a_j \frac{d^n \phi}{dx^n} (\|\mathbf{x} \mathbf{x}_j\|, c)$

- Colocação no Dominio: $u_L^h(\mathbf{x}, c) \equiv \sum_{j=1}^N a_j L\phi(\|\mathbf{x} - \mathbf{x}_j\|, c) = \mathbf{S}(\mathbf{x}_i), i = N_{B+1}, ..., N$ • Colocação na Econteira:
 - $u_B^h(\mathbf{x}, c) \equiv \sum_{j=1}^N a_j B\phi(||\mathbf{x} \mathbf{x}_j||, c) = F(\mathbf{x}_i), i = 1, \dots, N_B$

BVP

- Domínio: $Lu(x) = s(x) \subset \mathbb{R}^n$
- Fronteira: $Bu(x)_{|\partial\Omega} = f(x) \in \mathbb{R}^n$

Interpolação

- Interpolante $u^h(\mathbf{x}, c) = \sum_{j=1}^N a_j \phi(\|\mathbf{x} \mathbf{x}_j\|, c)$
- ▶ Derivadas (∞): $\frac{d^n u^h}{dx^n} = \sum_{j=1}^N a_j \frac{d^n \phi}{dx^n} (\|\mathbf{x} \mathbf{x}_j\|, c)$

- ► Colocação no Domínio: $u_L^h(\mathbf{x}, c) \equiv \sum_{j=1}^N a_j L\phi(\|\mathbf{x} - \mathbf{x}_j\|, c) = \mathbf{S}(\mathbf{x}_i), i = N_{B+1}, ..., N$
 - Colocação na Fronteira: $u_B^h(\mathbf{x}, c) \equiv \sum_{j=1}^N a_j B\phi(||\mathbf{x} - \mathbf{x}_j||, c) = F(\mathbf{x}_i), i = 1, ..., N_B$

BVP

- Domínio: $Lu(x) = s(x) \subset \mathbb{R}^n$
- Fronteira: $Bu(x)_{|\partial\Omega} = f(x) \in \mathbb{R}^n$

Interpolação

- Interpolante $u^h(\mathbf{x}, c) = \sum_{j=1}^N a_j \phi(\|\mathbf{x} \mathbf{x}_j\|, c)$
- ▶ Derivadas (∞): $\frac{d^n u^h}{dx^n} = \sum_{j=1}^N a_j \frac{d^n \phi}{dx^n} (\|\mathbf{x} \mathbf{x}_j\|, c)$

- ► Colocação no Domínio: $u_L^h(\mathbf{x}, c) \equiv \sum_{j=1}^N a_j L\phi(\|\mathbf{x} - \mathbf{x}_j\|, c) = \mathbf{S}(\mathbf{x}_i), i = N_{B+1}, ..., N$ ► Colocação no Fronteira:
 - $u_B^h(\mathbf{x}, c) \equiv \sum_{j=1}^N a_j B\phi(\|\mathbf{x} \mathbf{x}_j\|, c) = \mathsf{F}(\mathbf{x}_i), i = 1, \dots, N_B$

BVP

- Domínio: $Lu(x) = s(x) \subset \mathbb{R}^n$
- Fronteira: $Bu(x)_{|\partial\Omega} = f(x) \in \mathbb{R}^n$

Interpolação

- Interpolante $u^{h}(\mathbf{x}, c) = \sum_{j=1}^{N} a_{j} \phi(\|\mathbf{x} \mathbf{x}_{j}\|, c)$
- Derivadas (∞): $\frac{d^n u^h}{dx^n} = \sum_{j=1}^N a_j \frac{d^n \phi}{dx^n} (\|\mathbf{x} \mathbf{x}_j\|, c)$

- ► Colocação no Dominio: $u_L^h(\mathbf{x}, c) \equiv \sum_{j=1}^N a_j L\phi(\|\mathbf{x} - \mathbf{x}_j\|, c) = \mathbf{S}(\mathbf{x}_i), i = N_{B+1}, ..., N$ ► Colocação no Exertaire:
 - $u_B^h(\mathbf{x}, c) \equiv \sum_{j=1}^N a_j B\phi(||\mathbf{x} \mathbf{x}_j||, c) = F(\mathbf{x}_i), i = 1, \dots, N_B$

BVP

- Domínio: $Lu(x) = s(x) \subset \mathbb{R}^n$
- Fronteira: $Bu(x)_{|\partial\Omega} = f(x) \in \mathbb{R}^n$

Interpolação

- Interpolante $u^h(\mathbf{x}, c) = \sum_{j=1}^N a_j \phi(\|\mathbf{x} \mathbf{x}_j\|, c)$
- Derivadas (∞): $\frac{d^n u^h}{dx^n} = \sum_{j=1}^N a_j \frac{d^n \phi}{dx^n} (\|\mathbf{x} \mathbf{x}_j\|, c)$

Colocação

Colocação no Domínio: $u_L^h(\mathbf{x}, c) \equiv \sum_{j=1}^N a_j L\phi(||\mathbf{x} - \mathbf{x}_j||, c) = \mathbf{S}(\mathbf{x}_i), i = N_{B+1}, ..., N$ Colocação na Fronteira: $u_B^h(\mathbf{x}, c) \equiv \sum_{j=1}^N a_j B\phi(||\mathbf{x} - \mathbf{x}_j||, c) = \mathbf{F}(\mathbf{x}_i), i = 1, ..., N_B$

BVP

- Domínio: $Lu(x) = s(x) \subset \mathbb{R}^n$
- Fronteira: $Bu(x)_{|\partial\Omega} = f(x) \in \mathbb{R}^n$

Interpolação

- Interpolante $u^{h}(\mathbf{x}, c) = \sum_{j=1}^{N} a_{j} \phi(\|\mathbf{x} \mathbf{x}_{j}\|, c)$
- Derivadas (∞): $\frac{d^n u^h}{dx^n} = \sum_{j=1}^N a_j \frac{d^n \phi}{dx^n} (\|\mathbf{x} \mathbf{x}_j\|, c)$

- ► Colocação no Domínio: $u_L^h(\mathbf{x}, c) \equiv \sum_{j=1}^N a_j L\phi(\|\mathbf{x} - \mathbf{x}_j\|, c) = \mathbf{S}(\mathbf{x}_i), i = N_{B+1}, ..., N$
- ► Colocação na Fronteira: $u_B^h(\mathbf{x}, c) \equiv \sum_{j=1}^N a_j B\phi(\|\mathbf{x} - \mathbf{x}_j\|, c) = \mathbf{F}(\mathbf{x}_i), i = 1, ..., N_B$

BVP

- Domínio: $Lu(x) = s(x) \subset \mathbb{R}^n$
- Fronteira: $Bu(x)_{|\partial\Omega} = f(x) \in \mathbb{R}^n$

Interpolação

- Interpolante $u^{h}(\mathbf{x}, c) = \sum_{j=1}^{N} a_{j} \phi(\|\mathbf{x} \mathbf{x}_{j}\|, c)$
- Derivadas (∞): $\frac{d^n u^h}{dx^n} = \sum_{j=1}^N a_j \frac{d^n \phi}{dx^n} (\|\mathbf{x} \mathbf{x}_j\|, c)$

Colocação

 Colocação no Domínio: $u_L^h(\mathbf{x}, c) \equiv \sum_{j=1}^N a_j L\phi(\|\mathbf{x} - \mathbf{x}_j\|, c) = \mathbf{S}(\mathbf{x}_i), i = N_{B+1}, ..., N$
 Colocação na Fronteira: $u_B^h(\mathbf{x}, c) \equiv \sum_{i=1}^N a_i B\phi(\|\mathbf{x} - \mathbf{x}_i\|, c) = \mathbf{F}(\mathbf{x}_i), i = 1, ..., N_B$

RBFs - Sistema global

$$G_L = \begin{bmatrix} L\phi_1(x_1) & \dots & L\phi_N(x_1) \\ \vdots & \vdots & \vdots \\ L\phi_1(x_{N-M}) & \dots & L\phi_N(x_{N-M}) \end{bmatrix}$$
$$G_B = \begin{bmatrix} B\phi_1(x_{N-M+1}) & \dots & B\phi_N(x_{N-M+1}) \\ \vdots & \vdots & \vdots \\ B\phi_1(x_N) & \dots & B\phi_N(x_N) \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} G_L \\ G_B \end{bmatrix} \in \mathbb{R}^{N \times N}, \mathbf{b} = (s(x_1), ..., s(x_{N-M}), f(x_{N-M+1}), ..., f(x_N)) \in \mathbb{R}^N$$

 $Wa = b; a = W^{-1}b$

$$u^{h}(\mathbf{x},c) = \sum_{j=1}^{N} a_{j}\phi(\|\mathbf{x}-\mathbf{x}_{j}\|,c)$$

Domínio

$$\sum_{i=1}^{N} \alpha_i L\phi(\|\mathbf{x} - \mathbf{y}_i\|) = \lambda \widetilde{\mathbf{u}}(\mathbf{x}_j), j = 1, 2, ..., N_I$$

$$L^I \underline{\alpha} = \lambda \widetilde{\mathbf{u}}^I$$

$$L^I = [L\phi(\|\mathbf{x} - \mathbf{y}_i\|)]_{A_i \to A_i}$$

Fronteira

$$\sum_{i=1}^{N} \alpha_i L_B \phi \left(\| x - y_i \| \right) = 0, j = N_I + 1, ..., N$$

$$\mathbf{B} \underline{\alpha} = 0$$

Problema generalizado VVP

$$\begin{bmatrix} L' \\ \mathbf{B} \end{bmatrix} \underline{\alpha} = \lambda \begin{bmatrix} \mathbf{A}' \\ \mathbf{0} \end{bmatrix} \underline{\alpha}$$

Domínio

$$\sum_{i=1}^{N} \alpha_i L\phi(\|x - y_i\|) = \lambda \widetilde{\mathbf{u}}(x_j), j = 1, 2, ..., N_I$$

$$L' \underline{\alpha} = \lambda \widetilde{\mathbf{u}}'$$

$$L' = [L\phi(\|x - y_i\|)]_{N_I \times N_I}$$

Fronteira

$$\sum_{i=1}^{N} \alpha_i L_B \phi\left(\|x - y_i\| \right) = 0, j = N_I + 1, ..., N$$

$$\mathbf{B} \underline{\alpha} = 0$$

Problema generalizado VVP

$$\begin{bmatrix} L' \\ \mathbf{B} \end{bmatrix} \underline{\alpha} = \lambda \begin{bmatrix} \mathbf{A}' \\ \mathbf{0} \end{bmatrix} \underline{\alpha}$$

Domínio

$$\sum_{i=1}^{N} \alpha_i L\phi(\|x - y_i\|) = \lambda \widetilde{\mathbf{u}}(x_j), j = 1, 2, ..., N_l$$

$$L^I \underline{\alpha} = \lambda \widetilde{\mathbf{u}}^I$$

$$L^I = [L\phi(\|x - y_i\|)]_{N_l \times N_l}$$

Fronteira

$$\sum_{i=1}^{N} \alpha_i L_B \phi\left(\|x - y_i\| \right) = 0, j = N_I + 1, ..., N$$

$$\mathbf{B} \underline{\alpha} = 0$$

Problema generalizado VVP

$$\begin{bmatrix} L' \\ \mathbf{B} \end{bmatrix} \underline{\alpha} = \lambda \begin{bmatrix} \mathbf{A}' \\ \mathbf{0} \end{bmatrix} \underline{\alpha}$$

Domínio

$$\sum_{i=1}^{N} \alpha_i L\phi(\|x - y_i\|) = \lambda \widetilde{u}(x_j), j = 1, 2, ..., N_l$$

$$L^I \underline{\alpha} = \lambda \widetilde{u}^I$$

$$L^I = [L\phi(\|x - y_i\|)]_{N_l \times N_j}$$

Fronteira

$$\sum_{i=1}^{N} \alpha_i L_B \phi \left(\| x - y_i \| \right) = 0, j = N_I + 1, ..., N$$

$$\mathbf{B} \underline{\alpha} = 0$$

Problema generalizado VVP

$$\begin{bmatrix} L' \\ \mathbf{B} \end{bmatrix} \underline{\alpha} = \lambda \begin{bmatrix} \mathbf{A}' \\ \mathbf{0} \end{bmatrix} \underline{\alpha}$$

Domínio

$$\sum_{i=1}^{N} \alpha_i L\phi (\|x - y_i\|) = \lambda \widetilde{\mathbf{u}}(x_j), j = 1, 2, ..., N_l$$

$$L^I \underline{\alpha} = \lambda \widetilde{\mathbf{u}}^I$$

$$L^I = [L\phi (\|x - y_i\|)]_{N_l \times N},$$

Fronteira

$$\sum_{i=1}^{N} \alpha_i L_B \phi \left(\| x - y_i \| \right) = 0, j = N_I + 1, \dots, N$$

$$\mathbf{B} \underline{\alpha} = 0$$

Problema generalizado VVP

$$\begin{bmatrix} L' \\ \mathbf{B} \end{bmatrix} \underline{\alpha} = \lambda \begin{bmatrix} \mathbf{A}' \\ \mathbf{0} \end{bmatrix} \underline{\alpha}$$

Domínio

$$\sum_{i=1}^{N} \alpha_i L\phi (\|x - y_i\|) = \lambda \widetilde{\mathbf{u}}(x_j), j = 1, 2, ..., N_l$$

$$L^I \underline{\alpha} = \lambda \widetilde{\mathbf{u}}^I$$

$$L^I = [L\phi (\|x - y_i\|)]_{N_l \times N},$$

Fronteira

$$\sum_{i=1}^{N} \alpha_i L_B \phi(\|x - y_i\|) = 0, j = N_I + 1, ..., N$$

$$B \alpha = 0$$

Problema generalizado VVP

$$\begin{bmatrix} L^{I} \\ \mathbf{B} \end{bmatrix} \underline{\alpha} = \lambda \begin{bmatrix} \mathbf{A}^{I} \\ \mathbf{0} \end{bmatrix} \underline{\alpha}$$

Domínio

$$\sum_{i=1}^{N} \alpha_i L\phi (\|x - y_i\|) = \lambda \widetilde{\mathbf{u}}(x_j), j = 1, 2, ..., N_l$$

$$L' \underline{\alpha} = \lambda \widetilde{\mathbf{u}}'$$

$$L' = [L\phi (\|x - y_i\|)]_{N_l \times N},$$

Fronteira

•
$$\sum_{i=1}^{N} \alpha_i L_B \phi(\|x - y_i\|) = 0, j = N_I + 1, ..., N$$

• $\mathbf{B} \underline{\alpha} = 0$

Problema generalizado VVP

$$\begin{bmatrix} L' \\ \mathbf{B} \end{bmatrix} \underline{\alpha} = \lambda \begin{bmatrix} \mathbf{A}' \\ \mathbf{0} \end{bmatrix} \underline{\alpha}$$

Domínio

$$\sum_{i=1}^{N} \alpha_i L\phi (\|x - y_i\|) = \lambda \widetilde{\mathbf{u}}(x_j), j = 1, 2, ..., N_l$$

$$L' \underline{\alpha} = \lambda \widetilde{\mathbf{u}}'$$

$$L' = [L\phi (\|x - y_i\|)]_{N_l \times N},$$

Fronteira

•
$$\sum_{i=1}^{N} \alpha_i L_B \phi(\|x - y_i\|) = 0, j = N_I + 1, ..., N$$

• $\mathbf{B} \underline{\alpha} = 0$

Problema generalizado VVP

$$\begin{bmatrix} L' \\ \mathbf{B} \end{bmatrix} \underline{\alpha} = \lambda \begin{bmatrix} \mathbf{A}' \\ \mathbf{0} \end{bmatrix} \underline{\alpha}$$

Outline

Materiais

Materiais e laminados compósitos Laminados sandwich Materiais funcionais gradativos Teorias de deformação Generalidades Teorias single-layer Teorias layerwise

Solução por funções de base radial

Método de Kansa

Exemplos diversos

Problemas de fluidos Problemas de sólidos

Optimização do parâmetro de forma O problema Métodos adaptativos Estratégia

Conclusões

- 31

・ロト ・ 日本 ・ 日本 ・ 日本

Problema dinâmico, 1D equação de calor 1D heat-conduction problem-A comparison of the present model (N=5, 10 and 15) with

exact solution and finite element solution of Reddy, Ferreira et al. J. of Sound and Vibration, 2005

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0; \quad 0 < x < 1; \quad u(0, t) = 0, \ \frac{\partial u}{\partial x}(1, t) = 0$$

Initial condition: u(x, 0) = 1.

Fig. 2. 1D heat equation results; _____, N = 5; _____, N = 10; _____, N = 15.

Problema dinâmico, 1D equação de calor

1D heat-conduction problem-A comparison of the present model (N=5, 10 and 15) with exact solution and finite element solution of Reddy Ferreira et al. J. of Sound and Vibration, 2005

Time					
t	Reddy	Exact solution	N = 5	N = 10	N = 15
0.00	1.0000	1.0000	1.1103	1.0000	1.0000
0.10	0.9549	0.9493	0.9607	0.9520	0.9502
0.20	0.7731	0.7723	0.7541	0.7749	0.7726
0.30	0.6006	0.6068	0.5786	0.6097	0.6069
0.40	0.4741	0.4745	0.4430	0.4775	0.4746
0.50	0.3701	0.3708	0.3392	0.3738	0.3709
0.60	0.2890	0.2897	0.2596	0.2926	0.2898
0.70	0.2258	0.2264	0.1987	0.2290	0.2265
0.80	0.1764	0.1769	0.1522	0.1793	0.1769
0.90	0.1378	0.1382	0.1165	0.1403	0.1383
1.00	0.1076	0.1080	0.0892	0.1098	0.1081

Problema dinâmico, Bernoulli beam

Transient Bernoulli beam-A comparison of the present model (N=9,11 and 15) with exact (Galerkin) solution and finite element solution of Reddy Ferreira et al. J. of Sound and Vibration, 2005

$$\frac{\partial^2 w}{\partial t^2} - \frac{\partial^4 w}{\partial x^4} = 0; \quad 0 < x < 1; \quad w(0, t) = 0, \\ \frac{\partial w}{\partial x}(0, t) = 0, \\ w(1, t) = 0, \\ \frac{\partial w}{\partial x}(1, t) = 0, \\ \frac{\partial w}{\partial x$$

Initial condition: $w(x,0) = \sin \pi x - \pi x (1-x); \frac{\partial w}{\partial t}(x,0) = 0.$

A.J.M. Ferreira et al. / Journal of Sound and Vibration 280 (2005) 595-610

-0. -0.15

-0.2

-0.25

ig. 4. Bernoulli beam results; *, Reddy [41]: -#-, Exact: -4-

A.J.M. Ferreira et al. / Journal of Sound and Vibration 280 (2005) 595-610

Problema dinâmico, Bernoulli beam

Transient Bernoulli beam-A comparison of the present model (N=9,11 and 15) with exact (Galerkin) solution and finite element solution of Reddy Ferreira et al. J. of Sound and Vibration, 2005

Time					
t	Reddy [FEM]	Exact solution	N = 9	N = 11	N = 15
0.00	0.2146	0.2146	0.2146	0.2146	0.2146
0.01	0.2098	0.2157	0.2106	0.2095	0.2089
0.02	0.1951	0.1988	0.2005	0.2001	0.1985
0.03	0.1698	0.1716	0.1655	0.1674	0.1691
0.04	0.1350	0.1356	0.1186	0.1252	0.1304
0.05	0.0935	0.0925	0.0654	0.0738	0.0818
0.06	0.0483	0.0447	0.0214	0.0306	0.0384
0.07	0.0018	-0.0055	-0.0292	-0.0189	-0.0107
0.08	-0.0455	-0.0553	-0.0830	-0.0693	-0.0586
0.09	-0.0923	-0.1023	-0.1397	-0.1245	-0.1111
0.10	-0.1336	-0.1441	-0.1760	-0.1644	-0.1520
0.11	-0.1682	-0.1783	-0.1986	-0.1917	-0.1834
0.12	-0.1932	-0.2034	-0.2091	-0.2048	-0.1996
0.13	-0.2087	-0.2179	-0.2202	-0.2172	-0.2136
0.14	-0.2148	-0.2211	-0.2144	-0.2171	-0.2164
0.15	-0.2111	-0.2129	-0.1904	-0.2022	-0.2094

Problema dinâmico, Timoshenko beam

Transient Timoshenko beam-A comparison of the present model (N=7,9 and 15) with exact solution and finite element solution of Reddy Ferreira et al. J. of Sound and Vibration, 2005

$$\rho A \frac{\partial^2 w}{\partial t^2} - \frac{\partial}{\partial x} \left[GAk \left(\frac{\partial w}{\partial x} + \phi \right) \right] = 0$$
(1)

$$\rho I \frac{\partial^2 \phi}{\partial t^2} - \frac{\partial}{\partial x} \left[E I \frac{\partial \phi}{\partial x} \right] + GAk \left(\frac{\partial w}{\partial x} + \phi \right) = 0$$
(2)

Fig. 6. Timoshenko beam results. $\bullet \bullet$, Reddy [41]; $\bullet \bullet \bullet$, Galerkin; $\cdot \bullet \cdot \cdot , h = 0.01, N = 7; \cdot + \cdot , h = 0.01, N = 9; \cdot \cdot \cdot , h = 0.01, N = 11;$ $h = 0.01, N = 11; \rightarrow \bullet \bullet , h = 0.1, N = 7; \rightarrow \bullet \bullet , h = 0.1, N = 9; \cdot \cdot \cdot , h = 0.1, N = 11.$

Problema dinâmico, Timoshenko beam

Transient Timoshenko beam-A comparison of the present model (N=7,9 and 15) with exact solution and finite element solution of Reddy Ferreira et al. J. of Sound and Vibration, 2005

Time	Time			h = 0.01			h = 0.1		
t	Reddy [FEM]	Galerkin	N = 7	N = 9	N = 11	$\overline{N} =$	7 N = 9	N = 11	
0.00	0.2146	0.2146	0.2146	0.2146	0.2146	0.214	6 0.2146	0.2146	
0.01	0.2098	0.2157	0.2185	0.2113	0.2096	0.208	0 0.2077	0.2079	
0.02	0.1951	0.1988	0.1922	0.1972	0.1974	0.188	7 0.1883	0.1875	
0.03	0.1698	0.1716	0.1436	0.1659	0.1684	0.162	2 0.1636	0.1652	
0.04	0.1350	0.1356	0.1070	0.1207	0.1294	0.134	7 0.1375	0.1379	
0.05	0.0935	0.0925	0.0440	0.0723	0.0824	0.102	8 0.1059	0.1064	
0.06	0.0483	0.0447	-0.0236	0.0258	0.0379	0.062	0 0.0663	0.0682	
0.07	0.0018	-0.0055	-0.0699	-0.0235	-0.0102	0.014	0 0.0202	0.0217	
0.08	-0.0455	-0.0553	-0.1323	0.0784	-0.0590	-0.035	8 -0.0301	-0.0293	
0.09	-0.0923	-0.1023	0 1792	-0.1304	-0.1103	-0.081	5 -0.0754	-0.0726	
0.10	-0.1336	-0.1441	-0.1981	-0.1684	-0.1515	-0.118	5 -0.1093	-0.1061	
0.11	-0.1682	0 1783	-0.2297	-0 1919	-0.1826	0 147	2 0.1402	-0.1399	
0.12	-0.1932	-0.2034	-0.2224	-0.2086	-0.2006	-0.173	5 -0.1693	-0.1666	
0.13	-0.2087	-0.2179	-0.1952	-0.2202	-0.2141	-0.197	9 -0.1934	-0.1922	
0.14	-0.2148	0 2211	0 1744	0.2169	-0.2169	0.212	9 -0.2108	-0.2118	
0.15	-0.2111	-0.2129	-0.1242	-0.1923	-0.2079	-0.214	2 -0.2161	-0.2157	

$\begin{array}{l} \mbox{Problema de fronteira (BVP)} \\ \mbox{Teoria de 1° ordem, laminados compósitos, equações de movimento,[Ferreira et al. , CMAME, 2005]} \end{array}$

$$D_{11} \frac{\partial^2 \theta_x}{\partial x^2} + D_{16} \frac{\partial^2 \theta_y}{\partial x^2} + (D_{12} + D_{66}) \frac{\partial^2 \theta_y}{\partial x \partial y} + 2D_{16} \frac{\partial^2 \theta_x}{\partial x \partial y} + D_{66} \frac{\partial^2 \theta_x}{\partial y^2} + D_{26} \frac{\partial^2 \theta_y}{\partial y^2} + kA_{45} \left(\theta_y + \frac{\partial w}{\partial y}\right) - kA_{55} \left(\theta_x + \frac{\partial w}{\partial x}\right) = I_2 \frac{\partial^2 \theta_x}{\partial t^2}$$

$$D_{16}\frac{\partial^2 \theta_x}{\partial x^2} + D_{66}\frac{\partial^2 \theta_y}{\partial x^2} + (D_{12} + D_{66})\frac{\partial^2 \theta_x}{\partial x \partial y} + 2D_{26}\frac{\partial^2 \theta_y}{\partial x \partial y} + D_{26}\frac{\partial^2 \theta_x}{\partial y^2} + D_{22}\frac{\partial^2 \theta_y}{\partial y^2} + kA_{44}\left(\theta_y + \frac{\partial w}{\partial y}\right) - kA_{45}\left(\theta_x + \frac{\partial w}{\partial x}\right) = l_2\frac{\partial^2 \theta_y}{\partial t^2}$$

$$\frac{\partial}{\partial x} \left[kA_{45} \left(\theta_{y} + \frac{\partial w}{\partial y} \right) + kA_{55} \left(\theta_{x} + \frac{\partial w}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[kA_{44} \left(\theta_{y} + \frac{\partial w}{\partial y} \right) + kA_{45} \left(\theta_{x} + \frac{\partial w}{\partial x} \right) \right] = l_{0} \frac{\partial^{2} w}{\partial t^{2}}$$

・ロト ・ 日本 ・ モト ・ モト ・ モ

Problema de fronteira (BVP) Teoria de 1° ordem, laminados compósitos, equações de movimento:interpolação por RBFs

$$D_{11} \sum_{j=1}^{N} \alpha_{j}^{\Psi_{X}} \frac{\partial^{2} \theta_{j}}{\partial x^{2}} + D_{16} \sum_{j=1}^{N} \alpha_{j}^{\Psi_{y}} \frac{\partial^{2} \theta_{j}}{\partial x^{2}} + (D_{12} + D_{66}) \sum_{j=1}^{N} \alpha_{j}^{\Psi_{y}} \frac{\partial^{2} \theta_{j}}{\partial x \partial y} + 2D_{16} \sum_{j=1}^{N} \alpha_{j}^{\Psi_{x}} \frac{\partial^{2} \theta_{j}}{\partial x \partial y} + D_{66} \sum_{j=1}^{N} \alpha_{j}^{\Psi_{x}} \frac{\partial^{2} \theta_{j}}{\partial y^{2}} + D_{26} \sum_{j=1}^{N} \alpha_{j}^{\Psi_{y}} \frac{\partial^{2} \theta_{j}}{\partial y^{2}} - kA_{45} \left(\sum_{j=1}^{N} \alpha_{j}^{\Psi_{y}} \theta_{j} + \sum_{j=1}^{N} \alpha_{j}^{W} \frac{\partial \theta_{j}}{\partial y} \right) - kA_{55} \left(\sum_{j=1}^{N} \alpha_{j}^{\Psi_{x}} \theta_{j} + \sum_{j=1}^{N} \alpha_{j}^{W} \frac{\partial \theta_{j}}{\partial x} \right) = -l_{2} \omega^{2} \sum_{j=1}^{N} \alpha_{j}^{\Psi_{x}} \theta_{j} \quad (3)$$

◆□→ ◆□→ ◆三→ ◆三→ 三三

Problema de fronteira (BVP) Interpolação na fronteira

(a) Bordo simplesmente apoiado $\begin{array}{c} \text{SS1, } w = 0; M_n = 0; M_{ns} = 0 \\ \text{SS2, } w = 0; M_n = 0; \theta_s = 0 \end{array} \\ \text{(b) Bordo encastrado, } w = 0; \theta_n = 0; \theta_s = 0 \\ \text{(c) Bordo Livre, } Q_n = 0; M_n = 0; M_n = 0 \\ \end{array}$

$$\mathbf{w} = \mathbf{0}
ightarrow \sum_{j=1}^{N} \alpha_j^{W} \phi_j = \mathbf{0}$$

$$\begin{split} M_{n} &= 0 \rightarrow n_{x}^{2} \left(D_{11} \sum_{j=1}^{N} \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial x} + D_{12} \sum_{j=1}^{N} \alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + D_{16} \sum_{j=1}^{N} \left(\alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial y} \right) \right) + \\ & 2n_{x}n_{y} \left(D_{12} \sum_{j=1}^{N} \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial x} + D_{22} \sum_{j=1}^{N} \alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + D_{26} \sum_{j=1}^{N} \left(\alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial y} \right) \right) + \\ & n_{y}^{2} \left(D_{16} \sum_{j=1}^{N} \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial x} + D_{26} \sum_{j=1}^{N} \alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + D_{66} \sum_{j=1}^{N} \left(\alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial y} \right) \right) = 0 \end{split}$$

Problema de fronteira (BVP) Interpolação na fronteira

(a) Bordo simplesmente apoiado
 SS1, w = 0; M_n = 0; M_{ns} = 0
 SS2, w = 0; M_n = 0; θ_s = 0
 (b) Bordo encastrado, w = 0; θ_n = 0; θ_s =
 (c) Bordo Livro Q = 0; M = 0; M = 0; M = 0

$$\mathbf{w} = \mathbf{0} \to \sum_{j=1}^{N} \alpha_j^{W} \phi_j = \mathbf{0}$$

$$\begin{split} M_{n} &= 0 \rightarrow n_{x}^{2} \left(D_{11} \sum_{j=1}^{N} \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial x} + D_{12} \sum_{j=1}^{N} \alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + D_{16} \sum_{j=1}^{N} \left(\alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial y} \right) \right) + \\ & 2n_{x}n_{y} \left(D_{12} \sum_{j=1}^{N} \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial x} + D_{22} \sum_{j=1}^{N} \alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + D_{26} \sum_{j=1}^{N} \left(\alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial y} \right) \right) + \\ & n_{y}^{2} \left(D_{16} \sum_{j=1}^{N} \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial x} + D_{26} \sum_{j=1}^{N} \alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + D_{66} \sum_{j=1}^{N} \left(\alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial y} \right) \right) = 0 \end{split}$$
Problema de fronteira (BVP) Interpolação na fronteira

(a) Bordo simplesmente apoiado $\begin{array}{c} \mathsf{SS1}, w = 0; M_n = 0; M_{ns} = 0 \\ \mathsf{SS2}, w = 0; M_n = 0; \theta_s = 0 \end{array}$ (b) Bordo encastrado, $w = 0; \theta_n = 0; \theta_s$

(c) Bordo Livre, $Q_n = 0$; $M_n = 0$; $M_{ns} = 0$

$$\mathbf{w} = \mathbf{0}
ightarrow \sum_{j=1}^{N} \alpha_j^{W} \phi_j = \mathbf{0}$$

$$\begin{split} \mathbf{M}_{n} &= 0 \rightarrow n_{x}^{2} \left(D_{11} \sum_{j=1}^{N} \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial x} + D_{12} \sum_{j=1}^{N} \alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + D_{16} \sum_{j=1}^{N} \left(\alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial y} \right) \right) + \\ & 2n_{x}n_{y} \left(D_{12} \sum_{j=1}^{N} \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial x} + D_{22} \sum_{j=1}^{N} \alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + D_{26} \sum_{j=1}^{N} \left(\alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial y} \right) \right) + \\ & n_{y}^{2} \left(D_{16} \sum_{j=1}^{N} \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial x} + D_{26} \sum_{j=1}^{N} \alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + D_{66} \sum_{j=1}^{N} \left(\alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial y} \right) \right) = 0 \end{split}$$

Problema de fronteira (BVP) Interpolação na fronteira

- (a) Bordo simplesmente apoiado
 - SS1, w = 0; $M_n = 0$; $M_{ns} = 0$
 - SS2, w = 0; $M_n = 0$; $\theta_s = 0$

(b) Bordo encastrado, w = 0; $\theta_n = 0$; $\theta_s = 0$

(c) Bordo Livre, $Q_n = 0$; $M_n = 0$; $M_{ns} = 0$

$$\mathbf{w} = \mathbf{0} \rightarrow \sum_{j=1}^{N} \alpha_j^{W} \phi_j = \mathbf{0}$$

$$\begin{split} \mathbf{M}_{n} &= 0 \rightarrow n_{x}^{2} \left(D_{11} \sum_{j=1}^{N} \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial x} + D_{12} \sum_{j=1}^{N} \alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + D_{16} \sum_{j=1}^{N} \left(\alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial y} \right) \right) + \\ & 2n_{x}n_{y} \left(D_{12} \sum_{j=1}^{N} \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial x} + D_{22} \sum_{j=1}^{N} \alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + D_{26} \sum_{j=1}^{N} \left(\alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial y} \right) \right) + \\ & n_{y}^{2} \left(D_{16} \sum_{j=1}^{N} \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial x} + D_{26} \sum_{j=1}^{N} \alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + D_{66} \sum_{j=1}^{N} \left(\alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial y} \right) \right) = 0 \end{split}$$

Problema de fronteira (BVP) Interpolação na fronteira

- (a) Bordo simplesmente apoiado
 - SS1, w = 0; $M_n = 0$; $M_{ns} = 0$ SS2, w = 0; $M_n = 0$; $\theta_s = 0$
- (b) Bordo encastrado, w = 0; $\theta_n = 0$; $\theta_s = 0$
- (c) Bordo Livre, $Q_n = 0$; $M_n = 0$; $M_{ns} = 0$

$$\mathbf{w} = \mathbf{0} \to \sum_{j=1}^{N} \alpha_j^{W} \phi_j = \mathbf{0}$$

$$\begin{split} M_{n} &= 0 \rightarrow n_{x}^{2} \left(D_{11} \sum_{j=1}^{N} \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial x} + D_{12} \sum_{j=1}^{N} \alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + D_{16} \sum_{j=1}^{N} \left(\alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial y} \right) \right) + \\ & 2n_{x}n_{y} \left(D_{12} \sum_{j=1}^{N} \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial x} + D_{22} \sum_{j=1}^{N} \alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + D_{26} \sum_{j=1}^{N} \left(\alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial y} \right) \right) + \\ & n_{y}^{2} \left(D_{16} \sum_{j=1}^{N} \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial x} + D_{26} \sum_{j=1}^{N} \alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + D_{66} \sum_{j=1}^{N} \left(\alpha_{j}^{\Psi y} \frac{\partial \phi_{j}}{\partial x} + \alpha_{j}^{\Psi x} \frac{\partial \phi_{j}}{\partial y} \right) \right) = 0 \end{split}$$

Placa laminada Cross-ply (0/90/90/0) carga sinusoidal Formulação Layerwise, poliharmónicas, Ferreira, IJMS, 2004

Camadas de igual espessura, lado a, espessura h, laminado (0/90/90/0). Simplesmente apoiado. Pressão:

$$p_{\mathbf{Z}} = P \sin\left(\frac{\pi x}{a}\right) \sin\left(\frac{\pi y}{a}\right)$$

Propriedades materiais:

$$E_1 = 25.0E_2$$
 $G_{12} = G_{13} = 0.5E_2$ $G_{23} = 0.2E_2$ $\nu_{12} = 0.25$

Adimensionalização:

$$\overline{w} = \frac{10^2 w (a/2, a/2, 0) h^3 E_2}{P a^4} \qquad \overline{\sigma}_{xx} = \frac{\sigma_{xx} (a/2, a/2, h/2) h^2}{P a^2} \qquad \overline{\sigma}_{yy} = \frac{\sigma_{yy} (a/2, a/2, h/4) h^2}{P a^2}$$

$$\overline{\tau}_{zx} = \frac{\tau_{zx}(0, a/2, \text{firstlayer})h}{P_a} \qquad \overline{\tau}_{xy} = \frac{\tau_{xy}(a, a, h/2)h^2}{P_a^2}$$

Constant of the second second

(日) (同) (日) (日)

Placa laminada Cross-ply (0/90/90/0) carga sinusoidal Formulação Layerwise, poliharmónicas, Ferreira, IJMS, 2004

a h	Method	W	$\overline{\sigma}_{\mathbf{x}}$	$\overline{\sigma}_{y}$	$\overline{\tau}_{zx}$	$\overline{\tau}_{xy}$
4	Finite strip [Akhras]	1.8939	0.6806	0.6463	0.2109	0.0450
	HSDT [Reddy]	1.8937	0.6651	0.6322	0.2064	0.0440
	elasticity [Pagano]	1.954	0.720	0.666	0.270	0.0467
	MQ [CompB, 2003](N=21)	1.8864	0.6659	0.6313	0.1352	0.0433
	present, ayerwise (N=11)	1.8990	0.6505	0.6227	0.2078	0.0418
	present, layerwise (N=15)	1.9023	0.6396	0.6236	0.2147	0.0429
	present, layerwise (N=21)	1.9056	0.6420	0.6257	0.2160	0.0437

	Method	W	$\overline{\sigma}_{\mathbf{x}}$	$\overline{\sigma}_{y}$	$\overline{\tau}_{zx}$	$\overline{\tau}_{xy}$
10	Finite strip [Akhras]	0.7149	0.5589	0.3974	0.2697	0.0273
	HSDT [Reddy]	0.7147	0.5456	0.3888	0.2640	0.0268
	elasticity [Pagano]	0.743	0.559	0.403	0.301	0.0276
	MQ, COMPB, 2003 (N=21)	0.7153	0.5466	0.4383	0.3347	0.0267
	present, ayerwise (N=11)	0.7250	0.5434	0.3930	0.2888	0.0267
	present, ayerwise (N=15)	0.7277	0.5466	0.3942	0.2950	0.0269
	present, ayerwise (N=21)	0.7298	0.5485	0.3951	0.2980	0.0271

Placa laminada Cross-ply (0/90/90/0) carga sinusoidal Formulação Layerwise, multiquádricas, Ferreira, MAMS,2005

<u>a</u>	Method	w	$\overline{\sigma}_{\mathbf{x}}$	$\overline{\sigma}_{y}$	$\overline{\tau}_{zx}$	$\overline{\tau}_{xy}$
4	3 strip [Akhras]	1.8939	0.6806	0.6463	0.2109	0.0450
	HSDT [Reddy]	1.8937	0.6651	0.6322	0.2064	0.0440
	FSDT [Akhras]	1.7100	0.4059	0.5765	0.1398	0.0308
	elasticity [Pagano]	1.954	0.720	0.666	0.270	0.0467
	Third-order [ferreira comp part b 2003] (N=11)	1.8804	0.6665	0.6292	0.1415	0.0423
	Third-order [ferreira comp part b 2003] (N=15)	1.8846	0.6660	0.6307	0.1372	0.0429
	Third-order [ferreira.comp.part.b.2003] (N=21)	1.8864	0.6659	0.6313	0.1352	0.0433
	present (N=11)	1.9024	0.6402	0.6241	0.2149	0.0437
	present (N=15)	1.9063	0.6424	0.6261	0.2162	0.0440
	present (N=21)	1.9075	0.6432	0.6228	0.2166	0.0441
10	3 strip [Akhras]	0.7149	0.5589	0.3974	0.2697	0.0273
	HSDT [Reddy]	0.7147	0.5456	0.3888	0.2640	0.0268
	FSDT [Akhras]	0.6628	0.4989	0.3615	0.1667	0.0241
	elasticity [Pagano]	0.743	0.559	0.403	0.301	0.0276
	Third-order [ferreira.comp.part.b.2003] (N=11)	0.7142	0.5464	0.4380	0.3267	0.0264
	Third-order [ferreira comp part b 2003] (N=15)	0.7150	0.5465	0.4382	0.3305	0.0266
	Third order [ferreira comp part b 2003] (N=21)	0.7153	0.5466	0.4383	0.3347	0.0267
	present (N=11)	0.7281	0.5469	0.3943	0.2960	0.0270
	present (N=15)	0.7302	0.5489	0.3953	0.2980	0.0272
	present (N=21)	0.7309	0.5496	0.3956	0.2988	0.0273

FSDT, Placa laminada Cross-ply

The normalized fundamental frequency of the simply-supported cross-ply laminated square plate $[0^{\circ}/90^{\circ}/0^{\circ}]$ ($\bar{w} = (wa^2/h)\sqrt{\rho/E_2}, h/a = 0.2$) Ferreira et al., CMAME, 2005

Method	Grid	E_1/E_2			
		10	20	30	40
Liew		8.2924	9.5613	10.320	10.849
Exact (Reddy, Khdeir)		8.2982	9.5671	10.326	10.854
Present	7×7	8.4011	9.6793	10.430	10.966
	9×9	8.3402	9.6130	10.372	10.899
	11 imes 11	8.3181	9.5889	10.348	10.876
	13 imes 13	8.3101	9.5801	10.349	10.864

FSDT, Placa laminada Cross-ply

The normalized fundamental frequency of the 3-layer $[0^{\circ}/90^{\circ}/0^{\circ}]$ laminated square plate with various boundary conditions and span to thickness ratios $(\bar{w} = (wa^2/h)\sqrt{\rho/E_2}, E_1/E_2 = 40)$, Ferreira et al., CMAME, 2005

a/h	Method	Grid	SS	SC	сс
2	Liew		5.205	5.210	5.257
	Exact (Reddy)		5.205	5.211	5.257
	Present	7×7	5.238	5.242	5.257
		9×9	5.218	5.223	5.269
		11 imes 11	5.211	5.217	5.263
5	Liew		10.290	10.647	11.266
	Exact (Reddy)		10.290	10.646	11.266
	Present	7×7	10.380	10.715	11.316
		9×9	10.326	10.673	11.285
		11 imes 11	10.307	10.658	11.274
10	Liew		14.767	17.176	19.669
	Exact (Reddy)		14.767	17.175	19.669
	Present	7×7	14.956	17.317	19.743
		9×9	14.845	17.299	19.693
		11 imes 11	14.804	17.199	19.678
100	Liew		18.769	28.164	40.004
	Exact		18.891	28.501	40.743
	Present	7×7	15.679	28.088	43.359
		9×9	17.758	28.125	41.210
		11 imes 11	18.355	28.165	40.234

FSDT , Placa laminada Cross-ply (SKEW) The normalized natural frequencies of the clamped cross-ply skew laminates $[90^{\circ}/0^{\circ}/90^{\circ}/90^{\circ}]]$ with various skew angles $(\bar{w} = (wa^2)/(\pi^2/h)\sqrt{\rho/E_2}, E_1/E_2 = 40, a/h = 10)$, Ferreira et al., CMAME, 2005

Method	Grid	$lpha=$ 15 $^{\circ}$	$lpha=$ 30 $^{\circ}$	$\alpha = 45^{\circ}$	$lpha=$ 60 $^{\circ}$	$\alpha = 75^{\circ}$	$lpha=$ 90 $^{\circ}$
Liew		9.3485	4.9430	3.4723	2.7927	2.4725	2.3790
Wang		-	-	3.4738	2.7921	-	2.3820
Present	7×7	9.3489	4.9771	3.5355	2.8802	2.5791	2.4901
	9×9	9.3577	4.9626	3.5066	2.8223	2.5126	2.4221
	11 imes 11	9.3575	4.9541	3.4923	2.8005	2.4932	2.4021

RBF - Materiais funcionais Aluminio (Al) e zirconia (ZrO2)

Al:
$$E_m = 70 \text{ GPa}$$
, $\nu_m = 0.3$, $\rho_m = 2702 \text{kg/m}^3$

ZrO2:
$$E_z = 200 \text{ GPa}$$
 , $\nu_z = 0.3$, $\rho_z = 5700 \text{kg/m}^3$

$$V_1 = \left(\frac{1}{2} + \frac{z}{h}\right)^p.$$

 $\bar{\omega} = \omega h \sqrt{\frac{\rho_m}{E_m}}$

RBF - Materiais funcionais

Fundamental frequency of a simply supported square thick Al/ZrO₂ FG plate, Mori-Tanaka scheme, third-order deformation theory, $V_1 = \left(\frac{1}{2} + \frac{z}{h}\right)^p$, p = 1, Ferreira et al., Composite Structures, 2005

h/a = 0.05			h/a = 0.10			h/a = 0.20		
Present	Batra	Exact	Present	Batra	Exact	Present	Batra	Exact
0.0147	0.0149	0.0153	0.0592	0.0584	0.0596	0.2188	0.2152	0 2192

Fundamental frequency of a simply supported square thick Al/ZrO $_2$ FG plate, Mori-Tanaka scheme, third-order deformation theory, h/a=0.2

p = 2			p = 3			p = 5		
Present	Batra	Exact	Present	Batra	Exact	Present	Batra	Exact
0.2188	0.2153	0.2197	0.2202	0.2172	0.2211	0.2215	0.2194	0.2225

・ロト ・四ト ・ヨト ・ヨト ・ 油

RBF - Materiais funcionais

First 10 natural frequencies of a simply supported square thick Al/ZrO₂ FG plate, Mori-Tanaka scheme, third-order deformation theory, h/a = 0.2, Ferreira et al., Composite Structures, 2005

ceramic				p = 1			
N = 7	N = 9	N = 11	Batra	N = 7	N = 9	N = 11	Batra
0.247	0.246	0.246	0.247	0.219	0.219	0.219	0.215
0.446	0.447	0.449	0.454	0.405	0.406	0.399	0.411
0.446	0.448	0.448	0.454	0.405	0.406	0.399	0.411
0.541	0.540	0.540	0.544	0.482	0.481	0.478	0.476
0.541	0.540	0.540	0.544	0.482	0.481	0.478	0.476
0.660	0.651	0.647	0.642	0.599	0.591	0.576	0.582
0.784	0.782	0.781	0.788	0.700	0.698	0.690	0.691
0.888	0.896	0.899	0.908	0.806	0.813	0.800	0.819
0.890	0.897	0.899	0.933	0.807	0.814	0.816	0.822
0.913	0.920	0.921	0.936	0.815	0.821	0.812	0.824

RBF - Layerwise, [0/90/90/0], SSSS Convergence of the present layerwise method with respect to the number of nodes for a cross-ply laminate plate $(a/h = 10), \bar{\omega} = \omega h \sqrt{\frac{\rho}{E_2}}$, Ferreira et al. , Engineering Analysis with Boundary Elements, 2005

Method	(1, 1)	(1,2)	(2, 1)	(2, 2)	(1, 3)	(2, 3)
Exact (Srinivas)	0.06715	0.12811	0.17217	0.20798		
HSDT (Nosier)	0.06716	0.12816	0.17225	0.20808		
Layerwise (Wang and Zhang)	0.06716	0.12819	0.17230	0.20811	0.22868	0.28423
Present, Layerwise (7×7)	0.06768	0.13220	0.17129	0.21169	0.23169	0.28662
Present, Layerwise (9×9)	0.06723	0.13109	0.17054	0.20990	0.23287	0.28815
Present, Layerwise $(11 imes11)$	0.06708	0.13072	0.17027	0.20926	0.23310	0.28842

Non-dimensional central deflection, $\overline{w} = w \frac{10^2 E_2 h^3}{P_0 a^4}$ variation with various number of grid points per unit length, N for different R/a ratios, for $R_1 = R_2$, Ferreira et al., Composite Structures, 2005 (2)

$$u = \left(1 + \frac{\zeta}{R_1}\right) u_0 + \zeta \theta_1 - \frac{4}{3h^2} \zeta^3 \left(\theta_1 + \frac{1}{\alpha_1} \frac{\partial w_0}{\partial \xi_1}\right)$$
$$v = \left(1 + \frac{\zeta}{R_2}\right) v_0 + \zeta \theta_2 - \frac{4}{3h^2} \zeta^3 \left(\theta_2 + \frac{1}{\alpha_2} \frac{\partial w_0}{\partial \xi_2}\right)$$
$$w = w_0$$

.1 Geometry of a doubly-curved shell [50]. (a) Shell geometry. (b) Position vectors of points on the midsurface and above the midsurface. (c) A differential element of the shell (dS₁ and dS₂ denote the arc lengths).

-		Method			R	/a		
	a/h		5	10	20	50	100	109
[0°/90°/0°]	10	present (N=11)	6.7047	6.9900	7.0652	7.0865	7.0896	7.0906
	10	present (N=15)	6.7308	6.9994	7.0700	7.0900	7.0928	7.0938
	10	present (N=21)	6.7396	7.0028	7.0718	7.0914	7.0942	7.0951
	10	HSDT [Reddy/Liu]	6.7688	7.0325	7.1016	7.1212	7.1240	7.125
	10	FSDT [Reddy/Liu]	6.4253	6.6247	6.6756	6.6902	6.6923	6.6939
	100	present (N=11)	0.9608	2.3356	3.6423	4.3199	4.4379	4.4786
	100	present (N=15)	1.0084	2.3810	3.6104	4.2209	4.3254	4.3614
	100	present (N=21)	1.0253	2.3964	3.6003	4.1897	4.2900	4.3244
	100	HSDT [Reddy/Liu]	1.0321	2.4099	3.617	4.2071	4.3074	4.3420
	100	FSDT [Reddy/Liu]	1.0337	2.4109	3.6150	4.2027	4.3026	4.3370

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

Nondimensionalized fundamental frequencies of cross-ply laminated spherical shells, $\overline{\omega} = \omega \frac{a^2}{h} \sqrt{\rho/E_2}$, laminate ([0°/90°/0°]),Ferreira et al., Composite Structures, 2005 (2)

	Method			R	/ a		
a/h		5	10	20	50	100	10 ⁹
10	present (N=7)	12 242	11.935	11.856	11.834	11.831	11.830
	present (N=9)	12.134	11.889	11.826	11.809	11.806	11.805
	present (N=11)	12.094	11.873	11.817	11.801	11.799	11.798
	present (N=13)	12.076	11.867	11.813	11.798	11.796	11.795
	present (N=15)	12.068	11.863	11.811	11.797	11.794	11.794
	present (N=17)	12.063	11.861	11.810	11.796	11.794	11.793
	HSDT [Reddy/Liu]	12.060	11.860	11.810	11.790	11.790	11.790
100	present (N=7)	35.590	21.221	15.587	13.588	13.277	13.172
	present (N=9)	33.177	20.828	16.297	14.778	14.548	14.471
	present (N=11)	32.114	20.600	16.480	15.124	14.920	14.851
	present (N=13)	31.609	20.484	16.547	15.261	15.068	15.004
	present (N=15)	31.353	20.425	16.578	15.326	15.139	15.077
	present (N=17)	31.216	20.394	16.595	15.361	15.176	15.115
	HSDT [Reddy/Liu]	31.020	20.350	16.620	15.420	15.240	15.170

Ferreira et al., Composite Structures, 2005 (2)

Fig. 1. Stresses with $R_1 = R_2$; N = 15; a/h = 10; $[0^{\circ}/90^{\circ}/90^{\circ}/0^{\circ}]$

ヘロト ヘアト ヘヨト ヘ

크 > 크

Ferreira et al., Composite Structures, 2005 (2)

► $u(\mathbf{x}) = \sum_{j=1}^{N} \lambda_j \phi_j(\mathbf{x}), \quad \mathbf{x} \in \Omega \subset \mathbb{R}^n.$ ► Derivadas: $\mathcal{L}u(\mathbf{x}) = \sum_{j=1}^{N} \lambda_j \mathcal{L}\phi_j(\mathbf{x})$

Moreover, for the RBF-PS approach we are only interested in evaluation of the solution at the collocation points x_1, \ldots, x_N . Therefore, we do not actually need to know the solution u defined at arbitrary x-values. Instead, the vector $\boldsymbol{u} = [u(x_1), \ldots, u(x_N)]^T$ of function values at the collocation points suffices.

► KEY IDEA: $u_{\mathcal{L}} = Du$

▶ onde
$$D = A_{\mathcal{L}}A^{-1}$$
., $A_{ij} = \phi_j$; $A_{\mathcal{L}}ij = \mathcal{L}\phi_j$

▶ após imposição de BC: $D_{\Gamma} u_{\mathcal{L}} = \mathbf{f}$

►
$$u(\mathbf{x}) = \sum_{j=1}^{N} \lambda_j \phi_j(\mathbf{x}), \quad \mathbf{x} \in \Omega \subset \mathbb{R}^n.$$

• Derivadas:
$$\mathcal{L}u(\mathbf{x}) = \sum_{j=1}^{N} \lambda_j \mathcal{L}\phi_j(\mathbf{x})$$

Moreover, for the RBF-PS approach we are only interested in evaluation of the solution at the collocation points x_1, \ldots, x_N . Therefore, we do not actually need to know the solution u defined at arbitrary x-values. Instead, the vector $\boldsymbol{u} = [u(x_1), \ldots, u(x_N)]^T$ of function values at the collocation points suffices.

► KEY IDEA: $u_{\mathcal{L}} = Du$

▶ onde
$$D = A_{\mathcal{L}}A^{-1}$$
., $A_{ij} = \phi_j$; $A_{\mathcal{L}}ij = \mathcal{L}\phi_j$

▶ após imposição de BC: $D_{\Gamma} u_{\mathcal{L}} = \mathbf{f}$

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

►
$$u(\mathbf{x}) = \sum_{j=1}^{N} \lambda_j \phi_j(\mathbf{x}), \quad \mathbf{x} \in \Omega \subset \mathbb{R}^n.$$

• Derivadas:
$$\mathcal{L}u(\mathbf{x}) = \sum_{j=1}^{N} \lambda_j \mathcal{L}\phi_j(\mathbf{x})$$

Moreover, for the RBF-PS approach we are only interested in evaluation of the solution at the collocation points x_1, \ldots, x_N . Therefore, we do not actually need to know the solution u defined at arbitrary x-values. Instead, the vector $\boldsymbol{u} = [u(x_1), \ldots, u(x_N)]^T$ of function values at the collocation points suffices.

- KEY IDEA: $u_{\mathcal{L}} = Du$
- ▶ onde $D = A_{\mathcal{L}}A^{-1}$., $A_{ij} = \phi_j$; $A_{\mathcal{L}}ij = \mathcal{L}\phi_j$
- ▶ após imposição de BC: $D_{\Gamma} u_{\mathcal{L}} = \mathbf{f}$

►
$$u(\mathbf{x}) = \sum_{j=1}^{N} \lambda_j \phi_j(\mathbf{x}), \quad \mathbf{x} \in \Omega \subset \mathbb{R}^n.$$

• Derivadas:
$$\mathcal{L}u(\mathbf{x}) = \sum_{j=1}^{N} \lambda_j \mathcal{L}\phi_j(\mathbf{x})$$

Moreover, for the RBF-PS approach we are only interested in evaluation of the solution at the collocation points x_1, \ldots, x_N . Therefore, we do not actually need to know the solution u defined at arbitrary x-values. Instead, the vector $\boldsymbol{u} = [u(x_1), \ldots, u(x_N)]^T$ of function values at the collocation points suffices.

- KEY IDEA: $u_{\mathcal{L}} = Du$
- ► onde $D = A_{\mathcal{L}}A^{-1}$., $A_{ij} = \phi_j$; $A_{\mathcal{L}}ij = \mathcal{L}\phi_j$
- ▶ após imposição de BC: $D_{\Gamma} \boldsymbol{u}_{\mathcal{L}} = \mathbf{f}$

►
$$u(\mathbf{x}) = \sum_{j=1}^{N} \lambda_j \phi_j(\mathbf{x}), \quad \mathbf{x} \in \Omega \subset \mathbb{R}^n.$$

• Derivadas:
$$\mathcal{L}u(\mathbf{x}) = \sum_{j=1}^{N} \lambda_j \mathcal{L}\phi_j(\mathbf{x})$$

Moreover, for the RBF-PS approach we are only interested in evaluation of the solution at the collocation points x_1, \ldots, x_N . Therefore, we do not actually need to know the solution u defined at arbitrary x-values. Instead, the vector $\boldsymbol{u} = [u(x_1), \ldots, u(x_N)]^T$ of function values at the collocation points suffices.

- KEY IDEA: $u_{\mathcal{L}} = Du$
- onde $D = A_{\mathcal{L}}A^{-1}$., $A_{ij} = \phi_j$; $A_{\mathcal{L}}ij = \mathcal{L}\phi_j$
- ► após imposição de BC: $D_{\Gamma} u_{\mathcal{L}} = \mathbf{f}$

Outline

Materiais

Materiais e laminados compósitos Laminados sandwich Materiais funcionais gradativos Teorias de deformação Generalidades Teorias single-layer Teorias layerwise

Solução por funções de base radial

Método de Kansa

Problemas de fluidos

Problemas de sólidos Optimização do parâmetro de forma O problema Métodos adaptativos Estratégia Conclusões

- 31

・ロット 全部 マート・ キョン

Solução da equação Allen-Cahn $u_t = \epsilon u_{xx} + u - u^3$ nonlinear reaction-diffusion [Ferreira,Fasshauer, unpublished]

・ロト ・ 日下 ・ モト

Solução do problema "wave tank" $u_{tt} = u_{xx} + u_{yy}, -3 < x < 3, -1 < y < 1$ linear wave equation [Ferreira,Fasshauer, unpublished]

Periodic boundary conditions: $u_y(x, \pm 1, t) = 0$; u(-3, y, t) = u(3, y, t)Initial condition: $u(x, y, 0) = exp^{-8[(x+3/2)^2+y^2]}$; $u(x, y, -\Delta t) = exp^{-8[(x+\Delta t+3/2)^2+y^2]}$

Outline

Materiais

Materiais e laminados compósitos Laminados sandwich Materiais funcionais gradativos Feorias de deformação Generalidades Teorias single-layer Teorias layerwise

Solução por funções de base radial

Método de Kansa Exemplos diversos Problemas de fluidos

Problemas de sólidos

Optimização do parâmetro de forma O problema Métodos adaptativos Estratégia Conclusões

- 31

・ロット 全部 マート・ キョン

Eigenproblem

Viga Timoshenko: vibrações livres Equações de movimento

$$EI\frac{d^{2}\theta}{dx^{2}} + \alpha hG\left(\frac{dw}{dx} - \theta\right) = -\omega^{2}\rho I\theta$$
$$-\alpha hG\frac{d\theta}{dx} + \alpha hG\frac{d^{2}w}{dx^{2}} = -\omega^{2}\rho hw.$$

Frequências adimensionais

$$\bar{\omega}=\omega_i L^2 \sqrt{\frac{m}{EI}},$$

Viga Timoshenko: vibrações livres Non-dimensionalized frequency parameter $\bar{\omega}$ of the Timoshenko beam (clamped/clamped boundary condition, $\nu = 0.3$, $\alpha = 5/6$, N = 35)[Ferreira,Fasshauer, 2005]

Mode	Classical		h/L					
	theory	0.002	0.005	0.01	0.02	0.05	0.1	0.2
1	4.73004	4.7300	4.7296	4.7284	4.7235	4.6899	4.5795	4.2420
2	7.85320	7.8530	7.8516	7.8469	7.8282	7.7035	7.3312	6.4179
3	10.99560	10.9950	10.9917	10.9800	10.9341	10.6401	9.8561	8.2853
4	14.13720	14.1359	14.1294	14.1061	14.0154	13.4611	12.1454	9.9037
5	17.27880	17.2766	17 2651	17.2246	17.0679	16.1590	14.2324	11.3487
6	20.42040	20.4168	20.3985	20.3338	20.0868	18.7318	16.1487	12.6402
7	23.56190	23.5567	23.5292	23.4325	23.0682	21.1825	17.9215	13.4567
8	26.70350	26.6960	26.6567	26.5192	26.0086	23.5168	19.5723	13.8101
9	29.84510	29.8348	29.7808	29.5926	28.9052	25.7421	21.1185	14.4806
10	32.98670	32.9728	32.9008	32.6513	31.7557	27.8662	22.5735	14 9383

Placa Mindlin: vibrações livres Natural frequencies of a CCCC square Mindlin/Reissner plate with $k = 0.8601, \nu = 0.3$ [Ferreira,Fasshauer, 2005]

Frequências adimensionais

$$\bar{\omega} = \omega_{mn} a \sqrt{\frac{\rho}{G}},$$

Mode no.	m	n	5×5	7 imes 7	9 imes 9	11 imes 11	13 imes13	RRitz	Liew
1	1	1	1.5784	1.5909	1.5910	1.5910	1.5910	1.5940	1.5582
2	2	1	5.4930	3.1054	3.0389	3.0389	3.0389	3.0390	3.0182
3	1	2	5.4930	3.1054	3.0389	3.0389	3.0389	3.0390	3.0182
4	2	2	7.6182	4.3248	4.2620	4.2624	4.2625	4.2650	4.1711
5	3	1	7.9604	5.1520	5.0207	5.0249	5.0247	5.0350	5.1218
6	1	3	7.9862	5.2088	5.0682	5.0725	5.0723	5.0780	5.1594
7	3	2	9.5494	6.1307	6.0735	6.0799	6.0798		6.0178
8	2	3	9.5494	6.1307	6.0735	6.0799	6.0798		6.0178
9	4	1	11.1657	7.6203	7.6669	7.4330	7.4123		7.5169

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ

Placa Mindlin: vibrações livres Natural frequencies of a SSSS square Mindlin/Reissner plate with k = 0.833, $\nu = 0.3$ (* - closed form)[Ferreira,Fasshauer, 2005]

Frequências adimensionais

$$ar{\omega} = \omega_{mn} a \sqrt{rac{
ho}{G}},$$

Mode no.	m	n	5×5	7 imes 7	9 × 9	11 imes 11	13 imes 13	3D *	Mindin *	Liew
1	1	1	0.920	0.930	0.930	0.930	0.930	0.932	0.930	0.922
2	2	1	4.029	2.211	2.220	2 219	2.219	2.226	2.219	2.205
3	1	2	4.029	2.211	2.220	2 219	2.219	2.226	2.219	2.205
4	2	2	5.495	3.409	3.404	3.406	3.406	3.421	3.406	3.377
5	3	1	7.955	4.069	4.156	4.150	4.149	4.171	4.149	4.139
6	1	3	7.959	4.069	4.156	4.150	4.149	4.171	4.149	4.139
7	3	2	8.139	5.155	5.185	5.213	5.204	5.239	5.206	5.170
8	2	3	8.139	5.155	5.185	5.213	5.204	5.239	5.206	5.170
9	4	1	11.418	6.788	6.725	6.513	6.530	-	6.520	6.524
10	1	4	15.229	11.408	6.725	6.513	6.530	-	6.520	6.524

Placa Compósita: vibrações livres

Frequências adimensionais

$$ar{\omega} = (\omega b^2 / \pi^2) \sqrt{rac{
ho h}{D_0}}, D_0 = E_{22} h^3 / 12 (1 -
u_{12}
u_{21})$$

Materiais compósitos: propriedades

 $E_{11}/E_{22} = 40$; $G_{23} = 0.5E_{22}$; $G_{13} = G_{12} = 0.6E_{22}$; $\nu_{12} = 0.25$; $\nu_{21} = 0.006$

Placa Compósita: vibrações livres Convergence study of frequency parameters $\bar{\omega} = (\omega b^2 / \pi^2) \sqrt{(\rho h / D_0)}$ for three-ply $(0^{\circ}/90^{\circ}/0^{\circ})$ clamped CCCC rectangular laminates, [Ferreira,Fasshauer, 2005]

			Modes					
a/b	t/b	Grid	1	2	3	4	5	6
1	0.001	13 imes 13	14.2138	17.669	25.5193	38.0121	39.3376	40.7548
		15 imes15	14.6918	18.4741	26.9611	37.6121	39.3560	40.9241
		17 imes 17	14.5866	17.4065	24.5479	35.3335	39.1869	41.4113
		19 imes19	14.8138	17.6181	24.1145	36.0900	39.0170	40.8323
	Liew (p-Ritz)		14.6655	17.6138	24.5114	35.5318	39.1572	40.7685
	0.20	13 imes 13	4.4465	6.6418	7.6995	9.1848	9.7377	11.3990
		15 imes15	4.4465	6.6420	7.6995	9.1848	9.7377	11.3990
		17 imes 17	4.4467	6.6418	7.6995	9.1848	9.7376	11.3990
		19 imes19	4.4463	6 6419	7.6995	9.1839	9.7376	11.3994
	Liew (p-Ritz)		4.4468	6.6419	7.6996	9.1852	9.7378	11.3991
2	0.001	13 imes 13	4.9869	10.0330	13.1204	15.1032	19.9742	24.6265
		15 imes15	5.0970	10.4052	10.6097	14.3575	18.4830	18.9482
		17 imes 17	2.4262	6.5945	6.6310	9.3494	14.3323	14.5476
		19 imes19	2.3670	6 6331	6.6691	9.4676	14 2921	14.3915
	Liew (p-Ritz)		2.3618	6.6252	6.6845	9.4470	14.2869	16.3846
	0.20	13 imes 13	1.9387	3.5934	4.8750	5.4849	5.7683	7.1168
		15 imes15	1.9387	3.5934	4.8750	5.4851	5.7683	7.1170
		17 imes 17	1.9387	3.5934	4.8750	5.4851	5.7683	7.1170
		19 imes19	1.9387	3.5934	4.8750	5.4851	5.7683	7.1170
	Liew (p-Ritz)		1.9393	3.5939	4.8755	5.4855	5.7691	7.1177

Placa Compósita: vibrações livres Mode shapes (1 to 4 and 5 to 8) for three-ply $(0^{\circ}/90^{\circ}/0^{\circ})$ clamped CCCC square laminates $a/b = 1, t/b = 0.2, 13 \times 13$ nodal grid [Ferreira,Fasshauer, 2005]

Placa Compósita: vibrações livres Mode shapes (1 to 4) for three-ply $(0^{\circ}/90^{\circ}/0^{\circ})$ simply-supported SSSS rectangular laminates $a/b = 2, t/b = 0.2, 13 \times 13$ nodal grid. [Ferreira,Fasshauer, 2005]

Placa Compósita: vibrações livres Mode shapes (1 to 4) for three-ply $(0^{\circ}/90^{\circ}/0^{\circ})$ clamped CCCC square plate

Outline

Materiais

Materiais e laminados compósitos Método de Kansa

Optimização do parâmetro de forma O problema

Métodos adaptativos Estratégia Conclusões

- 31

・ロト ・ 日本 ・ 日本 ・ 日本

Influência do parâmetro de forma $\varphi(r) = (1 + \varepsilon^2 r^2)^{\beta}$, $\beta \notin 2\mathbb{N}$

Compact support function

Global support function (IMQ)

Influência do parâmetro de forma : IMQ $\epsilon = 0.127$

Optimal $\epsilon = 0.87$

Popular strategy for estimating the parameter of a model based on the given data

- Rippa : variant of cross validation known as *"leave-one-out" cross validation* (LOOCV).
- AKA in the statistics literature as PRESS (Predictive REsidual Sum of Squares).
- In this algorithm an "optimal" value of ε for the RBF interpolation problem is selected by minimizing the error for a fit to the data based on an interpolant for which one of the centers was "left out". This method takes into account the dependence of the error on the data function.

LOOCV method

Specifically, if $\mathcal{P}_{f}^{[k]}$ is the radial basis function interpolant to the data $\{f_{1}, \ldots, f_{k-1}, f_{k+1}, \ldots, f_{N}\}$, *i.e.*,

$$\mathcal{P}_f^{[k]}(\boldsymbol{x}) = \sum_{\substack{j=1\j
eq k}}^N c_j^{[k]} \varphi(\|\boldsymbol{x}-\boldsymbol{x}_j\|),$$

and if E_k is the error

$$E_k = f_k - \mathcal{P}_f^{[k]}(\boldsymbol{x}_k),$$

then the quality of the fit is determined by the norm of the vector of errors $E = [E_1, \ldots, E_N]^T$ obtained by removing in turn one of the data points and comparing the resulting fit with the (known) value at the removed point. The norm of E as a function of ε will serve as a *cost function* for the shape parameter.

While a naive implementation of the leave-one-out algorithm is rather expensive (on the order of N^4) Rippa shows that the algorithm can be simplified to a single formula

$$E_k=\frac{c_k}{A_{kk}^{-1}},$$

where c_k is the *k*th coefficient in the interpolant \mathcal{P}_f based on the full data set, and A_{kk}^{-1} is the *k*th diagonal element of the inverse of the corresponding interpolation matrix. This results in $\mathcal{O}(N^3)$ computational complexity.

- 日本 (雪本 (日本 (日本))

Note that all entries in the error vector E can be computed in a single statement in Matlab

- EF = (invA*rhs)./repmat(diag(invA),1,m);

In order to find a good value of the shape parameter as quickly as possible we can use the Matlab function fminbnd to find the minimum of the cost function for ε .

Outline

Materiais e laminados compósitos Método de Kansa Métodos adaptativos

Estratégia

- 32

・ロト ・ 日本 ・ 日本 ・ 日本

Estratégia para métodos adaptativos

Calcular interpolante baseado em centros conhecidos e seus valores

- Refinar/engrossar baseado no resíduo calculado numa rede mais fina
- Eventual ajuste do parâmetro de forma, para evitar alterações significativas do condicionamento

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Estratégia para métodos adaptativos

- Calcular interpolante baseado em centros conhecidos e seus valores
- Refinar/engrossar baseado no resíduo calculado numa rede mais fina
- Eventual ajuste do parâmetro de forma, para evitar alterações significativas do condicionamento

(日) (四) (日) (日) (日)

Estratégia para métodos adaptativos

- Calcular interpolante baseado em centros conhecidos e seus valores
- Refinar/engrossar baseado no resíduo calculado numa rede mais fina
- Eventual ajuste do parâmetro de forma, para evitar alterações significativas do condicionamento

・ロット (雪) (き) (き) (し)

Viga simplesmente apoiada

Universidade do Naria Possibilite de Esperimiria FEUP

オロデオ聞き オミドオミド 三三 のの

Viga encastrada

▲山戸→倉戸→▲田戸→三田 のの

Exemplos

Poisson (in starfish) $\Delta u = f \in \Omega; u = u_0 \text{ on } \partial \Omega$ $f(x, y) = 100e^{-200(x^2+y^2)}$

Função de Franke $f(x, y) = e^{x^2 + y^2} + e^{-5((x-0.5) + (y-0.5)^2)} + e^{-15((x+0.2)^2 + (y-0.5)^2)} + e^{-15((x+0.2)^2 + (y-0.4)^2)} + e^{-9((x+0.3)^2 + (y-0.8)^2)}$

- 32

(日) (四) (日) (日)

Placa quadrada

-2

・ロ・・ 聞・ ・ ヨ・ ・ ヨ・

Placa triangular

N = 307

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲■ - のへで

Análise de Estruturas laminadas (materiais compósitos, sandwich e funcionais gradativos)

- Importante escolher bem a teoria de deformação adequada para cada problema e laminado
- Técnicas de solução sem malha adequadas e simples
- RBFs melhores com optimização de parâmetro de forma
- RBF-PS útil e simples de formular
- Métodos adaptativos podem ser muito importantes em geometrias irregulares

- Análise de Estruturas laminadas (materiais compósitos, sandwich e funcionais gradativos)
- Importante escolher bem a teoria de deformação adequada para cada problema e laminado
- Técnicas de solução sem malha adequadas e simples
- RBFs melhores com optimização de parâmetro de forma
- RBF-PS útil e simples de formular
- Métodos adaptativos podem ser muito importantes em geometrias irregulares

・ロット 本語 アイヨア トロア

- Análise de Estruturas laminadas (materiais compósitos, sandwich e funcionais gradativos)
- Importante escolher bem a teoria de deformação adequada para cada problema e laminado
- Técnicas de solução sem malha adequadas e simples
- RBFs melhores com optimização de parâmetro de forma
- RBF-PS útil e simples de formular
- Métodos adaptativos podem ser muito importantes em geometrias irregulares

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

- Análise de Estruturas laminadas (materiais compósitos, sandwich e funcionais gradativos)
- Importante escolher bem a teoria de deformação adequada para cada problema e laminado
- Técnicas de solução sem malha adequadas e simples
- RBFs melhores com optimização de parâmetro de forma
- RBF-PS útil e simples de formular
- Métodos adaptativos podem ser muito importantes em geometrias irregulares

・ロット (雪) (き) (き) (し)

- Análise de Estruturas laminadas (materiais compósitos, sandwich e funcionais gradativos)
- Importante escolher bem a teoria de deformação adequada para cada problema e laminado
- Técnicas de solução sem malha adequadas e simples
- RBFs melhores com optimização de parâmetro de forma
- RBF-PS útil e simples de formular
- Métodos adaptativos podem ser muito importantes em geometrias irregulares

・ロット 本語 マート キョット 日マ

- Análise de Estruturas laminadas (materiais compósitos, sandwich e funcionais gradativos)
- Importante escolher bem a teoria de deformação adequada para cada problema e laminado
- Técnicas de solução sem malha adequadas e simples
- RBFs melhores com optimização de parâmetro de forma
- RBF-PS útil e simples de formular
- Métodos adaptativos podem ser muito importantes em geometrias irregulares

・ロット 本語 マート キョット 日マ