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Quotients and coverings appear frequently in the construc-
tion of algebraic varieties. If a variety V has some property
that makes it a quotient or a covering of some simpler va-
riety U, then one may try to construct V starting from this
simpler U. This method has proven to be very efficient in
the construction of complex algebraic surfaces. This is a
vast theme, here we do not intend to give a detailed sur-
vey on it. Our aim is to give a taste of the subject, for non-
specialists, by presenting some examples, most of them re-
lated to the work of the author.

1 Generalities

Let S be a complex smooth algebraic surface that is projec-
tive (i.e. that has an embedding into a projective space). A
divisor in S is a formal sum of curves ∑ niCi, ni ∈ ℤ. Adivi-
sor is effective if the coefficients ni are all non-negative. Two
divisorsD,D′ are linearly equivalent if the differenceD−D′

is the divisor of zeros and poles of a rationalfunction f /g on
S. In this case we write D ≡ D′. The complete linear system
|D| is the set of all divisors linearly equivalent to D.

To give a divisor on a surface S is not trivial. If the sur-
face is embedded in some projective space ℙn, an obvious
way is to take hyperplane sections (i.e. intersections with hy-
perplanes), but this depends on the particular embedding.
There is a divisor which is intrinsic to the variety (i.e. it
does not depend on the embedding), the canonical divisor
KS: it is the divisor of a meromorphic differential 2-form
f dx ∧ dy. The number of generators of the canonical linear
system |KS| is the geometric genus pg(S). If the surface admits
a holomorphic differential 1-form fdx + gdy, we say that it

is irregular, and the irregularity q(S) is the number of inde-
pendent such forms.

The pluricanonical map 𝜙𝜙|nKS| ∶ S → ℙd is themap given
by the sections of the pluricanonical linear system |nKS|
(hence d = dim(|nKS|)). The Kodaira dimension Kod(S) is
the maximum of the dimensions of the images 𝜙𝜙|nKS|(S),
n ∈ ℕ. Obviously it is at most 2, and surfaces of Kodaira
dimension 2 are said to be of general type.

It is known since Hironaka [Hir64] that there is always
a resolution of singularities for algebraic varieties over
a field of characteristic zero. He has been awarded the
1970 Fields Medal for this result. His proof consists in re-
peatedly blowing-up alongnon-singular subvarieties, and to
show that the process ends. The idea of resolving a singu-
larity by blowing-up is as follows. Given a smooth surface
X and a point p ∈ X, there is a smooth surface Y and a map
𝜋𝜋 ∶ Y → X such that E ∶= 𝜋𝜋−1(p) ≅ ℙ1 and Y \E ≅ X\p.
Now letC ⊂ Y be a smooth curve intersecting E at n distinct
points. Then 𝜋𝜋(C) ⊂ X is a curve with a singular point of
multiplicity n at p, and the blow-up 𝜋𝜋 resolves the singular-
ity of the curve 𝜋𝜋(C).

Given curves C,C′ ⊂ S without common components,
with S a smooth surface, the intersection number CC′ is the
number of points in C ∩ C′, counting multiplicities. If
C ≡ C′, we say that C2 ∶= CC′ is the self-intersection of
C. The definition can be extended to all curves, and some
curves have negative self-intersection. For instance, con-
sider the blow-up 𝜋𝜋 ∶ Y → ℙ2 at a point p ∈ ℙ2. Let E ⊂ Y
be the exceptional divisor as above, L, L′ ⊂ ℙ2 be distinct
lines through p and consider the strict transforms ̂L, ̂L′ ⊂ Y
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of L, L′. Since ̂L ̂L′ = 0 and ̂L ≡ L̂′, then L̂2 = 0.Wehave that

1 = L2 = 𝜋𝜋∗(L)2 = (E + ̂L)2 = E2 + 0 + 2,

thus E2 = −1.Wesay that E is a (−1)-curve. Any (−1)-curve
can be contracted to a smooth point of the surface. Curves
with self-intersection < −1 are contracted to singular
points. For example the resolution of a node (ordinary dou-
ble point) is a (−2)-curve, i.e. a curve isomorphic to ℙ1 with
self-intersection −2.

We say that a smooth surface is minimal if it has no
(−1)-curves; the minimal model of a smooth surface is
obtained contracting all its (−1)-curves. The minimal
model of a surface with non-negative Kodaira dimension
is unique, i.e. different choices for the contraction of all
(−1)-curves give rise to isomorphic surfaces.

The geometric genus pg(S) and the irregularity q(S) of
the surface S are topological invariants. Finally, the holo-
morphic Euler characteristic of S is

𝜒𝜒(S) ∶= 1 − q(S) + pg(S),

and the topological Euler characteristic 𝜒𝜒top(S) satisfies

K2
S + 𝜒𝜒top(S) = 12𝜒𝜒(S).

Geometers want to classify surfaces according to these in-
variants. For surfaces of general type always 𝜒𝜒 𝜒 1, and
naturally one wants to classify the case 𝜒𝜒 = 1, but this is
still far from completed.

2 Campedelli vs Godeaux

Let S be a smooth minimal surface of general type. One
has K2

S 𝜒 1, and the Bogomolov-Miyaoka-Yau inequality
K2
S ≤ 9𝜒𝜒(S) holds, hence 1 ≤ K2

S ≤ 9 for surfaces with
𝜒𝜒 = 1. These surfaces satisfy pg = q, and the ones with
pg = q = 0 have received particular attention. In the
19th century it was thought that these surfaces were ratio-
nal (i.e. obtained from the projective plane by a sequence
of blow-ups and blow-downs). Then Enriques [Enr96], in
1896, showed the existence of surfaces with pg = q = 0 and
Kodaira dimension 0, hence not rational. Nowadays these
are called Enriques surfaces. In the same year, Castelnuovo
[Cas96] proved his rationality criterion: an algebraic surface
S is rational if and only if q(S) = 0 and the linear system
|2KS| is empty.

The first examples of surfaces of general type with pg =
q = 0 were discovered by Godeaux [God31] (K2 = 1) and
Campedelli [Cam32] (K2 = 2) in the 1930s.

The Godeaux construction is as follows. Let Q ⊂ ℙ3 be
the quintic surface with equation

x5 + y5 + z5 + w5 = 0.

It is invariant for the ℤ5 action

𝜎𝜎 ∶ (x ∶ y ∶ z ∶ w) → (x ∶ 𝜌𝜌y ∶ 𝜌𝜌2z ∶ 𝜌𝜌3w),

with 𝜌𝜌 a 5th root of unity. Since the action is free and
𝜒𝜒(Q) = 5, q(Q) = 0, K2

Q = 5, then the surface Q/𝜎𝜎 is smooth
and has invariants 𝜒𝜒 = 1, q = 0 and K2 = 1.

The Campedelli surface is obtained as (the resolution
of the singularities of) a double cover of ℙ2 ramified over
a curve {f10 = 0} of degree 10 with 6 singularities of type
(3, 3) (a triple point with the 3 branches sharing the same
tangent line). This can be seen as the surface with equation
w2 = f10(x, y, z) in theweighted projective space ℙ[1, 1, 1, 5]. Its
invariants are 𝜒𝜒 = 1, q = 0 and K2 = 2.

These are typical examples of the two most successful
methods for the construction of algebraic surfaces: quo-
tients and coverings. One can discuss which method is
more efficient, but frequently the construction is given by
a combination of the two. Below we give some examples.

3 Double coverings

Let S be a smooth surface with an involution, i.e. with a non-
trivial automorphism 𝜎𝜎 such that 𝜎𝜎2 = Id. The projection

𝜑𝜑 ∶ S → X ∶= S/𝜎𝜎

is a double covering. The ramification set of 𝜑𝜑 is the set of
points fixed by 𝜎𝜎𝜎 it is the union of a smooth curve with a fi-
nite number n 𝜒 0 of points p1, … , pn, which correspond to
nodes of S/𝜎𝜎. Let S′ → S be the blow-up of S at these points.
Then 𝜎𝜎 extends to an involution 𝜎𝜎′ on S′ with ramification

R′ ∶= R +
n

∑
1

Ei,

where Ei is the exceptional curve corresponding to pi, and R
is a smooth curve disjoint from Ei, i = 1, … , n. The branch
locus of

𝜑𝜑′ ∶ S′ → X′ ∶= S′/𝜎𝜎′

is the (smooth) curve B ∶= 𝜑𝜑′(R′). One can show that
there exists a divisor L such that B ≡ 2L (we say that B is
2-divisible). The projection 𝜌𝜌 ∶ X′ → ̄X to the minimal
model gives a singular curve ̄B ∶= 𝜌𝜌(B).

Conversely, from a smooth surface ̄X and a 2-divisible
(possibly singular) branch curve B̄, we can recover the sur-
face S: we take the double covering ̄S → ̄X ramified over ̄B𝜎
the smooth minimal model of ̄S, obtained by resolving the sin-
gularities of S̄ and contracting all (−1)-curves, is a surface
isomorphic to S.

̄S

��

S′�� ��

��

S

��
̄X X′ ���� X

Frequently the curve B̄ is highly singular; construction
methods that include the use of symmetry and computa-
tional tools have proved useful.
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Figure 1.—A Kummer surface in ℝ3

Since Godeaux and Campedelli, mathematicians have
been giving examples of surfaces of generaltypewith 𝜒𝜒 𝜒 1
for each possible value of the invariants pg 𝜒 q and 3 ≤
K2 ≤ 9. The author has given the first examples for the
mysterious cases K2 𝜒 7 and pg 𝜒 q 𝜒 1, 2 (see [Rit10],
[Rit15]). Somehow surprisingly, these were obtained using
double coverings.

3.1 pg 𝜒 q 𝜒 1,K2 𝜒 7

A singular point of a curve is of type (n, n) if it is a singu-
lar point of multiplicity n with branches sharing the same
tangent line at the point. This means that we still have a
singularity of multiplicity n after one blow-up; we say that
these two points of multiplicity n are infinitely near.

A double plane is a surface S with an involution i such
that the quotient S/i is a rational surface. It can be obtained
as (the resolution of the singularities of) a double covering
S̄ → ℙ2, ramified over a (singular) branch curve B. The
problem is then how to find B, because the surface S is de-
termined by it.

In his work on double planes, Du Val [du 52] proposed
a configuration of branch curves B for the construction of
some surfaces with low invariants, in particular pg 𝜒 q 𝜒 0.
A similar configuration gives invariants pg 𝜒 q 𝜒 1. But
these curves are highly singular (with some points of type
(n, n)), and hence it is difficult to prove their existence.

Given points p1, … , pn, possibly infinitely near, one can
use computer algebra, or more precisely the computer al-
gebra system Magma [BCP97] and the algorithm given in
[Rit10], to compute the linear system of plane curves with
given degree and singularities at p1, … , pn. But in general,

if these points are not chosen properly, this system is empty.
Thus we have to compute points in a special position such
that the curve exists. The idea is as follows.

Suppose we want to compute a plane curve of degree d
with a singular point of multiplicity n. Its defining polyno-
mial is a linear combination ∑ aimi(x, y), where mi(x, y) are
monomials. We want to compute the coefficients ai. Recall
that a plane curve has a point of multiplicity n if and only
if the derivatives up to order n − 1 vanish at that point. Let
M be the matrix with lines the derivatives of the mi up to
order n − 1. The curve exists if M is not of maximal rank.
Thus we need to compute points in the variety given by the
vanishing of certain minors of the matrix M. Since some
points are infinitely near, the process is a combination of
the above with some blow-ups. Then the success depends
on the computational complexity. For the construction of
the case pg 𝜒 q 𝜒 1 and K2 𝜒 7, see [Rit10].

3.2 pg 𝜒 q 𝜒 2,K2 𝜒 7

Recall that an elliptic curve is the quotient of ℂ by a lattice
Γ. Topologically it is a torus. In the same way, a quotient
A ∶𝜒 ℂ2/Γ is a complex surface, a torus of dimension 2.
The ones that are algebraic are called abelian surfaces. Mul-
tiplication by −1 in ℂ2 gives rise to an involution 𝜎𝜎 on A.
The quotient A/𝜎𝜎 is a Kummer surface, a complex algebraic
surfacewith q 𝜒 0,K ≡ 0, andhaving 16 nodes, correspond-
ing to the 16 fixed points of 𝜎𝜎 (figure 1).

Nowwe explain the construction of a particular abelian
surface, starting from a double covering of the projective
plane. Let p0, p1, p2 be distinct points in the projective plane
ℙ2 and let Ti be the line through p0, pi, i 𝜒 1, 2. There is
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a 1-dimensional linear system of conics tangent to T1, T2

at p1, p2, respectively. Take C1,C2 distinct smooth conics
in this system, and choose T3, T4 general lines through p0.
Let Q′ → ℙ2 be the double covering with branch curve
C1 + C2 + T3 + T4. It is well known that the smooth min-
imal model Q of Q′ is a K3 surface, i.e. a smooth mini-
mal surface with q = 0 and K ≡ 0. Notice that Q′ has 8
nodes corresponding to the 8 nodes in the branch curve.
These give 8 (−2)-curves inQ.We can show thatQ contains
8 other disjoint (−2)-curves, contained in the pullback of
the lines T1, T2. HenceQ is a K3 surface with 16 (−2)-curves
A1, … , A16; it is a Kummer surface. Now consider the dou-
ble covering 𝜓𝜓 𝜓 A′ → Q with branch curve ∑16

1 Ai. Since
Ai is in the branch locus, then 𝜓𝜓∗(Ai) is a double curve 2Ei,
i = 1, … , 16. From (2Ei)2 = 2A2

i = −4, we get E2i = −1,
i = 1, … , 16. The minimal model A of A′ is obtained by
contracting the (−1)-curves E1, … , E16. The surface A is an
abelian surface.

Choosing a certain branch curve in A, we have con-
structed a double covering of A that gives the first example
of a surface with pg = q = 2 and K2 = 7, see [Rit15] for the
details.

4 Triple coverings

Triple coverings are more complicated than double cover-
ings, but they share a common nice property: both have a
canonical resolution of singularities. Briefly this means that
one can resolve the singularities of the surface via resolving
the singularities of the branch locus of the covering.

Herewe explain the idea of the constructionof a surface
of general type with pg = 0 and K2 = 3which is obtained by
a triple covering of a certain singular Godeaux surface.

A cusp singularity of a surface is a singularity with lo-
cal equation x2 + y2 = z3. Its resolution is the union of two
(−2)-curves A, A′ such that AA′ = 1. It is a type of singular-
ity thatmay appearwhenone takes the quotient of a surface
by the action of a group isomorphic to ℤ3, with fixed points.
Conversely, if a surfaceX has cusps c1, … , cn satisfying a cer-
tain 3-divisibility condition, namely

n

∑
1

(Ai + 2A′
i ) ≡ 3L

for some divisor L, then there is a ℤ3-covering 𝜏𝜏 𝜓 S → X
with branch locus ∪ci. The surface S is smooth at 𝜏𝜏−1(ci),
i = 1, … , n. The invariants of S and X are related by

𝜒𝜒(S) = 3𝜒𝜒(X) − 2n
3

, K2
S = 3K2

X .

So, if X is a Godeaux surface with a 3-divisible set of 3
cusps and no other singularities, then S is a smooth surface
with 𝜒𝜒 = 1 and K2 = 3. As in Section 2, the surface X is a

ℤ5-quotient of a quintic surface Q ⊂ ℙ3, but now Q has 15
cusp singularities. The problem is how to find such a sin-
gular quintic.

It is classically known that a threefold of degree 3 in ℙ4

has at most 10 nodes, and there is exactly one such three-
fold with 10 nodes, the Segre cubic. The dual of the Segre
cubic is the so-called Igusa quartic. Its singular set is an
union of 15 lines. We have used computer algebra to con-
struct a quintic threefold passing through the 15 singular
lines of the Igusa quartic, with 15 cuspidal lines there. This
means that a general hyperplane section of this threefold
is a quintic surface with 15 cusps. The task now is to find
one of these with a free action of the group ℤ5. This has
been achieved by using computer algebra and some symme-
try. This has produced two non-isomorphic surfaces with
pg = 0 and K2 = 3, one is a surface implicitly constructed
from results in [vdGZ77] and [Bar00], the other is new, see
[Rit16].

5 Quotients of products of curves

Consider the surface ℙ1 × ℙ1 and let f , g be the fibrations
given by the projections onto the first and second factor,
respectively. Let F1, … , F4 be fibres of f and G1, … ,G4 be
fibres of g. The curve

B 𝜓= F1 + … + F4 + G1 + ⋯ + G4

has 16 nodes. There is a ℤ2
2 covering

E1 × E2
𝛾𝛾

−→ Q
𝛿𝛿

−→ ℙ1 × ℙ1,

with E1, E2 elliptic curves: the map 𝛿𝛿 is the double covering
ramified over B, then Q is a Kummer surface, the double
covering 𝛾𝛾 of Q ramified over its nodes is an abelian sur-
face, and we can show that this surface is the product of
two elliptic curves.

So, the surface Q, constructed as a covering of ℙ1 × ℙ1,
could be initially obtained as a quotient of E1 × E2. This
can be done more in general. Let C, D be smooth curves
and G be a group acting on the product C × D. The quo-
tient X 𝜓= (C × D)/G is a surface, with singularities cor-
responding to the points fixed by G. The invariants of the
smooth minimal model of X can be easily calculated, there
has been a considerable work on these type of surfaces (see
e.g. [Bau12] for a survey on product-quotient surfaces).
This method has proven to be very efficient.

Such quotient surfaces with 𝜒𝜒 = 1 have been exhaus-
tively studied. If the action ofG is free, thenK2 = 8 and sev-
eral examples have been obtained. A product of curves is a
quotient of ℍ×ℍ, where ℍ is the complex upper-half plane.
Thus these surfaces are coveredby the bidisk ℍ×ℍ. Itwas an
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open problem to provide an example of a surface of general
type with 𝜒𝜒 𝜒 1 and K2 𝜒 8 not covered by the bidisk. Such
an example was found in a collaborationwith F. Polizzi and
X.Roulleau. Surprisingly again, it is obtainedusingdouble
coverings, see [PRR] for the details.

6 Ball quotients

So far we have talked about coverings and quotients by fi-
nite groups. But these groups can be infinite. It is known
that all smooth minimal algebraic surfaces satisfying K2 𝜒
9𝜒𝜒 are ball quotients, i.e. are obtained as a quotient 𝔹𝔹𝔹G,
where 𝔹𝔹 is the unit ball in ℂ2 and G is some infinite group.

A surface of general type with the same invariants pg 𝜒
q 𝜒 0, K2 𝜒 9 as ℙ2 is called a fake projective plane. These
surfaces have been classified ([PY07], [CS10]), there are
exactly 100 such surfaces, which are 50 pairs of complex-
conjugated surfaces. The methods used, related to arith-
metic groups, are not typical from algebraic geometry. The
output of this classification is a list of the groups G, avail-
able at [Car]. Some information about the geometry of
these surfaces is very hard to get. But it is interesting to
play with the groups. For instance degree n coverings of
the surface 𝔹𝔹𝔹G correspond to index n subgroups of G, and
(some of) these can be computed. Then one may wonder
how to get it from the geometry...

As a by-product of the work on fake projective planes,
in [CS10] the unique (up to complex-conjugation) example
of a surface with pg 𝜒 q 𝜒 1 and K2 𝜒 9 is given. It is
known as the Cartwright-Steger surface, one of the most
intriguing surfaces ever found.

A geometric construction of any of the above surfaces
with 𝜒𝜒 𝜒 1 and K2 𝜒 9 is a very interesting open problem
on the theory of algebraic surfaces.
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