SOERGEL BIMODULES AND 2-REPRESENTATION THEORY

by Marco Mackaay™

1 INTRODUCTION

For almost four decades, the canonical bases of certain
quantum algebras have been at the core of representation
theory. Historically, the first ones were the KAZHDAN-
LUSZTIG bases of Hecke algebras associated to COXETER
groups [8]. For lack of space in this review, we will mostly
concentrate on these, although the canonical bases of quan-
tum groups form another interesting class of examples.

The KL bases, and the associated KL polynomials, have
remarkable positive integrality properties, which were conjec-
tured by KAZHDAN and LUSZTIG in [8]. For example, the
multiplication constants of the Hecke algebra w.r.t. the
KL basis belong to N[v,v™"], where v is a formal parameter.
(We assume that the HECKE algebras and their modules are
defined over C(v).)

In a subsequent paper [9], KAZHDAN and LUSzTIG
proved their conjectures for finite and affine WEYL groups,
by interpreting the KL bases in terms of the local intersec-
tion cohomology of Schubert varieties. In that approach,
the aforementioned multiplication constants become di-
mensions of cohomology groups and are therefore positive
integral. Eventually, a geometric proof for Weyl groups of
symmetrizable KAc-MooDY algebras was found [1, 2, 7].
However, the geometric arguments do not work for other
COXETER groups.

Therefore, SOERGEL [17, 18] introduced an alge-
braic/combinatorial approach, using certain bimodules,
designed to prove that the KL positive integrality proper-
ties hold for any COXETER group. This huge project, after
important partial results by himself and others [17, 18, 5, 4],
was eventually completed by EL1IAS and WILLIAMSON [3].

Following standard terminology in this field, we say
that SOERGEL's monoidal categories, resp. the indecompos-
able bimodules, categorify the Hecke algebras, resp. the KL
basis elements. Alternatively, we can say that the latter de-
categorify the former.
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Since the interest in HECKE algebras stems from
their representation theory, it is natural to study the
2-representation theory of SOERGEL’s monoidal categories,
in which modules are replaced by their categorical ana-
logue, called 2-modules.

In their systematic approach to 2-representation the-
ory, MAZORCHUK and MIEMIETZ [16] proved a categorical
version of the JORDAN-HOLDER theorem. This led them
to define the notion of a simple transitive 2-module, which
is the correct categorical analogue of a simple module, al-
though its decategorification is often not simple. Thus
arises naturally the problem of classifying all simple tran-
sitive 2-modules of SOERGEL’s monoidal category for any
finite COXETER type.

In this review, we will recall what is known about this
classification.

2 COXETER GROUPS AND HECKE ALGEBRAS

In this section we will briefly recall some well-known facts
about COXETER groups, HECKE algebras and KAZHDAN-
LUSzTIG bases. More material and proofs can be found
in[6, 8, 12].

2.1 COXETER GROUPS

Let S be a finite set. A COXETER matrix (m), s is a sym-
metric matrix such that m; = 1 foralls € §, andm, €
{2,3,...} U{oo} foralls # t € S. Furthermore, let W be a

group.
DEFINITION 1.— We say that (W, S) is a COXETER system
if there exists a COXETER matrix (m),,c¢ such that W =

F(S)/N, where F(S) is the free group generated by S and
N<F(S) the normal subgroup generated by the elements

(st)"™ (1)
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foralls,t € Swithm, < 0.
We call W the COXETER group and § the set of simple
reflections of the COXETER system (W, S).

By definition, the rank of (W, ) is the order of S, which is
finite by assumption. However, this does not necessarily
imply that W is of finite order.

The only COXETER group of rank o is the trivial group,
and the only one of rank 1 is Z/2Z. But there is an infinite
family of rank 2 Coxeter groups, indexed by m, = m, =n €
{2,3,4...,} U {oco} with S = {s,t}. These are isomorphic
to the dihedral groups of order 2n (which can be infinite),
with st corresponding to a rotation of degree 277/n when n is
finite.

The finite COXETER groups are classified by the finite
type COXETER diagrams [6, Sections 2.4 and 6.4], which
are a generalization of the DYNKIN diagrams of finite-
dimensional complex semisimple LIE algebras.

For example, for any n € N, the symmetric group on
n + 1 letters can be seen as a COXETER group of type A,,
with § = {s,,...,s,} the set of simple transpositions. Its
COXETER diagram is

oo —O

Numbering the vertices of the diagram from left to right by
1,2, ...,n,and writing s, for the simple reflection associated

to the vertex i, we have

3 if|i—j| =1,

m. =<2

i if |i —j| > 1,

1 if|i—j| =o.

This is the general rule for obtaining the COXETER matrix
from a COXETER diagram and vice-versa, with one excep-
tion: if m;, > 3 for two neighboring vertices in the diagram,
then that number is written above the corresponding edge.

For example, for any n > 3, the dihedral group of or-
der 2n can be seen as a COXETER group of type I, (n) with

COXETER diagram
n

—o .
Note that I,(3) = A,, since they have the same COXETER
diagram.
For any w € W, areduced expression for w is by definition
,s, € Ssuchthatw =5 ---s,. We
call # the length of the string. In general, there can be more

a shortest string s, ...

than one reduced expression for w, but two of them can al-
ways be related by applying (3) a finite number of times, as
shown by MATSUMOTO and TiTs’ theorem (see [12, Thm.
1.9]).

This allows us to define the length function
. W — Z,,, which associates to each w € W the length
of a reduced expression for w (see [6, Sect. 1.6]).
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Furthermore, it allows us to define the BRUHAT order <
on W, which is a partial order defined by: u < wiff u can be
obtained as a (not necessarily reduced) subexpression of a
reduced expression for w (see [6, Sect. 5.9 and 5.10]).

If W is finite, then it has a unique longest element, de-
noted w_, which is also maximal w.r.t. the BRUHAT order.

2.2 HECKE ALGEBRAS

Let (W, S) be any COXETER system. In the group algebra
C[W], the relations s> = ¢ and (st)"* = e can be rewritten as

(2)
3)

(s+e)s—e) =o,

StS e = A8t eer .

mg mg

The next definition is obtained by v-deforming the relation
in (2).

DEFINITION 2.— The HECKE algebra # associated to
(W, §) is the unital associative C(v)-algebra generated by T,
for s € S, subject to the relations

(T, +1)(T,—v7*) = o
TthTx = TrTsTr T (4)

for alls,t € S. By convention, we write T, = 1.

Notethat T? = (v > — )T, +v *and T, ' =v*T,+v* — 1.
For any w € W, choose a reduced expression w =
S, *** Sy With's; € S, and define
T =T «.T

w S, Sty

By MATSUMOTO and TiTs’ theorem, the element T, does
not depend on the choice of reduced expression. Moreover,
{Tw |we W} is a linear basis of #, called the standard ba-
sis (see [12, Prop. 3.3]). In particular, this implies that 7 is
a flat deformation of the group algebra of W.

The KL basis {bw |we W} is harder to define. Let ™ be
the bar involution on J, which is the C-linear involution
given by
“oand T, i=T,..

vi=v

The KL basis elements b,, € # are uniquely determined by
the two properties [8, Thm 1.1]:

b, =b

b,=v"" Y P,.T,

y=w

(5)
(6)

where P, € Z[v™*] has negative v-degree strictly less than
£(w)—¢(y)fory <wandP,, =1.

Note that the matrix (P,.),,
fact that the b, form a basis follows immediately from the

fact that the T, form a basis.

wew is unitriangular, so the
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In general, there is no simple formula expressing b, in
terms of the T,. Only the KL generators are easy to com-
pute:

(7)

However, in type I,(n) we can write down all KL basis ele-
ments explicitly [12, Ch. 7]:

bp=1 and b =v(T,+1) foralls€Ss.

b, = v'® 2 T, forallwew.
y=w
A short calculation shows that, in any COXETER type, we
have
b:=@w+v )b, forallses.

(8)
It is also easy to see that bb, = b, for alls # ¢ € S. But,
in general, the product of a finite number of KL basis ele-
ments is not a KL basis element, e.g. in type I,(3) = A, we
have

bbb, =b, +b, and bbb, =b, +b,

where b, = b,, because sts = tst in W. Nevertheless, if we
choose a reduced expression w =5, +++ 54, foreachw € W,
and define b, 1= b, - bst,(w), then {bz | w € W} is yet
another basis of H (W), called the BOTT-SAMELSON basis.
This follows from the fact that b, = v'*'T, + Lo.t., where
l.o.t. is a linear combination of Y_"y with y < w. Note, how-
ever, that b, depends on the choice of reduced expression

for w.

3  SOERGEL BIMODULES

For any COXETER group W, take ) to be the complexifica-
tion of SOERGEL’s finite-dimensional real W-module in [18,
Prop. 2.1], which generalizes the usual representation of an
affine WEYL group on the CARTAN subalgebra of an affine
Kac-Mooby algebra.

Let R be the complex algebra of regular functions on b,
equipped with a Z-grading such that deg(h*) = 2. The ac-
tion of W on ) extends naturally to an action on R by degree-
preserving automorphisms.

Let R—fmod—R be the monoidal category of all finitely
generated graded R—R bimodules, where the monoidal
product is given by the tensor product over R. By definition,
the morphisms are the degree-preserving bimodule maps.
Note that R—fmod—R is additive, because we can also take
the direct sum of two bimodules. Furthermore, the homo-
geneous direct summands of the hom-spaces are all finite-
dimensional complex vector spaces and composition is bi-
linear, so R—fmod—R is C-linear.

For any s € S, let R' be the graded subalgebra of
s-invariant polynomials and define

B, := R ®g R{1},

18

where {1} indicates a downward grading shift of 1. This is
a graded R — R bimodule with left and right actions given
bya-(x®y)-b :=(ax) @ (yb), foranya,b,x,y €R.

We have R = R @ R*{—2} as R*-bimodules, so

B,® B, = B{+1} ®B{—1} foralls €S

This isomorphism categorifies the equality in (8).
More generally, for any finite number of simple reflec-

tions s, ...,s, € S, the corresponding BOTT-SAMELSON

m

bimodule is defined as
Bs‘ ®R le ®r o ®R Bsm'

Letw € W and suppose w = s, *+ 54, is a reduced expres-
sion. Then we denote the corresponding BOTT-SAMELSON
bimodule by B,,.

DEFINITION 3.— The monoidal category of SOERGEL bi-
modules &'is the full subcategory of R—fmod—R containing
all direct sums of direct summands of BOTT-SAMELSON bi-
modules with grading shifts.

The additive category & is idempotent complete and
KRULL-SCHMIDT [18, Rem. 1.3].

Before we state the categorification theorem for So-
ERGEL bimodules, recall that the split GROTHENDIECK alge-
bra of &, denoted [§'], is by definition the C(v)-vector space
spanned by the isoclasses of the SOERGEL bimodules, sub-
ject to the relations:

[U@V]=[U]+[V] and [U{t}]="[U]

for all SOERGEL bimodules U,V and t € Z. It becomes an
algebra after putting

(U V] :=[U][V]

for all SOERGEL bimodules U, V. By the above, it follows
that {[Bw] | we W} is a basis of [§].

The first three points in the following theorem are due
to SOERGEL [18, Thm. 1.10 and Satz 6.16]. The fourth point
is due to EL1AS and WILLIAMSON [3, Thm. 1.1].

THEOREM 4.— Let (W, S) be an arbitrary COXETER sys-
tem. Then

1. thereis a well-defined isomorphism of C(v)-algebras
ps . # — [&]uniquely determined by

b, [B] forallse€S;

2. for every w € W, there exists an indecomposable B,
in &, unique up to degree-preserving isomorphism,
that is a direct summand of the BOTT-SAMELSON bi-
module B, for any reduced expression for w, and is
not a direct summand of B, {t} for any u < w and
t € Z; in particular, the isoclass of B,, does not de-
pend on the choice of reduced expression for w;



3. every indecomposable SOERGEL bimodule is isomor-
phic to B, {t} for somew € W and t € Z;

4. for every w € W, we have py(b,) = [B,].

Note that this theorem immediately implies that the KL ba-
sis of # is positive integral: for any u,v € W, we have

bb, 1= Z Yuwbi

weWw

such thaty;’, € N[v,v '], because these multiplication con-
stants are equal to the graded decomposition numbers of
[B, ® B,] in terms of the [B,]

4 2-REPRESENTATION THEORY

From now on, let (W, S) be an finite type COXETER system,
i.e. we assume that W is a finite group.

Recall that a category is graded finitary if it is addi-
tive, C-linear, idempotent complete and KRULL-SCHMIDT,
such that the homogeneous direct summands of its hom-
spaces are finite-dimensional and it has finitely many iso-
classes of indecomposable objects up to grading shifts, e.g.
the category of finitely generated graded projective mod-
ules over a non-negatively graded algebra which is finite-
dimensional in each degree.

Let &' be the monoidal category of SOERGEL bimodules
for (W, S). A 2-module of §'is by definition a graded finitary
category ./ on which the SOERGEL bimodules act as linear
endofunctors and the bimodule maps as natural transfor-
mations, such that all structures (including the grading)
are preserved. In general, the 2-action is allowed to be weak
inarestricted sense, but this is not the right place to explain
such technical details.

A 1-intertwiner between two 2-modules of & is by def-
inition a degree-preserving C-linear functor between the
underlying categories which commutes with the 2-action.
Again, we suppress all technical conditions which control
the level of weakness that is allowed. Two 2-modules are
called EQUIVALENT if there s a fully faithful and essentially
surjective 1-intertwiner between them.

Finally, there is a next layer of structure, formed by nat-
ural transformations between 1-intertwiners which satisfy
additional conditions. We call these 2-intertwiners.
the
2-intertwiners between them form a 2-category, which we
denote by §-2fmod.

Together, 2-modules of & and the 1 and

Note that we only consider additive 2-modules. In
this review, we do not discuss abelian or triangulated

2-modules.
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4.1 CELL MODULES

The decategorified story of cell modules of Hecke algebras
is due to KAZHDAN and LUSZTIG [8].

DEFINITION 5.— We define the left pre-order >, on W by
putting w >, vify;, # o for someu € W.

We set w ~; u provided thatu >, wandw >, u. The
equivalence classes of this equivalence relation are called

the left cells of W.

The right and two-sided pre-orders >, and 2, and the right
and two-sided cells for the corresponding equivalence rela-
tions ~ and ~; are defined similarly, using multiplication
from the right and from both sides respectively.

Note that each left (resp. right) cell is contained in a
two-sided cell, that each two-sided cell is the disjoint union
of the left (resp. right) cells it contains, and that W is the
disjoint union of all two-sided cells.

In general, it is not so easy to compute cells explicitly.
In type A,, KAZHDAN and LUSZTIG [8] proved that u ~; w
iff Qu) = Q(w), where Q is the recording tableau in the
ROBINSON-SCHENSTED correspondence. Similarly, u ~, v
iff P(u) = P(w), where P is the insertion tableau.

In type I,(n), the computation of the cells is straightfor-
ward and gives:

Fo=ZL. =R = e}

%S (%f
s, Sts, ... ts, tsts, ... Z.
SH=F=
st stst, ... t,tst, ... Z,

Fv. =2, =R, ={w,}.

If Z1is aleft cell of W, we write w >, ZLifw >, u forall
u € Z,andwewritew >, ZLifw > Zandw ¢ Z. Let
M, 4 and M, o be the subvector-spaces of # spanned by
all EW satisfyiﬁg w >, &, andw >, ZLrespectively. Both are
left ideals of Zand M, o C M o

DEFINITION 6.— The left cell module C, is defined as

with the natural left 7 action.

Note that C, inherits a KL-basis, consisting of all b,, with
w € Z. Clearly, this provides the cell module with a pos-
itive integral basis, i.e. on the KL-bases of # and Cg, the
action constants all belong to N[v,v™'].

As we already remarked, the left cells in type A, are
parametrized by standard tableaux. As a matter of fact,

every left cell-module of # is simple and its isomorphism
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class is determined by the partition underlying the corre-
sponding standard tableau. This establishes a bijection be-
tween the isoclasses of left cell-modules and the isoclasses
of simple modules, which is atypical: in other COXETER
types most simple modules do not have a positive integral
basis and most cell modules are not simple.

For example, consider type I,(n). Any one-dimensional
module is completely determined by its character y : # —
C(g). By the quadraticrelations in #, we must have y(T,) =
€, and y(T,) = €, withe ,e, € {v*,—1}. If nis even, there
is no extra condition, so there are four different characters.
If nis odd, then ¢, =

only two different characters. We denote the correspond-

€, is required to hold, so there are

ing one-dimensional modules by V, .
We have C, = V.

—1,—1?

because b, = »(T, + 1) and

>V

v

b, = v(T, + 1) act as zero. Similarly, we have Co,
because b, and b, both act as multiplication by v+v"". When
n is even and at least 4, the modules V.. _, and V_, . are
not equivalent to cell modules, because there are no more
one-element left cells.

All other simple modules are known to be of dimension
two. Since Cy and Cg, have dimension n — 1, they cannot
be simple forn > 4.

Furthermore, in type I,(n) there are other interesting
modules of 7 with a positive integral basis, as we will ex-
plain below.

4.2 CELL 2-MODULES

There is a natural categorification of the (left) cell-modules,
due to MAZORCHUK and STROPPEL [13] in the case of fi-
nite WEYL groups, and MAZORCHUK and MIEMIETZ [15]
in general (see also [16, Sec. 3.3]). Let Z be a left cell and
take ./, o to be the full subcategory of & generated by the
B, forw >, . This subcategory contains a unique ideal
S which is maximal in the set of all §-stable ideals.

DEFINITION 7.— The left cell 2-module associated to £ is
defined as
%g = ﬂZan[/ jy

with the natural 2-action of §.

By construction, we have C, = [Cy] as #Z-modules.

4.3 SIMPLE TRANSITIVE 2-MODULES

MAZORCHUK and MIEMIETZ [16] found that the correct
categorification of the notion of simple module, is that of
simple transitive 2-module. A 2-module ./ of § is transitive
if for any two indecomposable objects X, Y in ./, there ex-
ists a SOERGEL bimodule B in & such that X is a direct sum-
mand of BY. A transitive 2-module .# is SIMPLE TRANSI-
TIVE if it has no non-zero proper §-stable ideals. Any tran-

sitive 2-module has a simple transitive quotient [16, Lem.
4]. By construction, any cell 2-module is simple transitive.

In type A, the converse is also true: any simple transi-
tive 2-module is equivalent to a cell 2-module [15, Sec. 7.1].

However, in type I,(n) there are simple transitive
2-modules that are not equivalent to cell 2-modules. There
is an ADE-classification for the simple transitive 2-modules
in type I,(n), and only the ones of type A are equivalent to
cell 2-modules.

To explain this, we first note that any simple transi-
tive 2-module .# has an underlying quiver, which can be
graded, so that ./ becomes equivalent to the category of
graded finitely generated projective modules of the quiver
algebra after modding out by a virtually nilpotent ideal. As
it turns out, for type I,(n) SOERGEL bimodules, the quiver
underlying a simple transitive 2-module can always be ob-
tained from a simply laced DYNKING diagram of finite type.
The main part of the following theorem can be found in [10,
Thm. 1and Sec. 6], with only a construction of the simple
transitive 2-modules of DYNKIN type E missing, which can
be found in [14].

THEOREM 8.— Let & be the monoidal category of So-
ERGEL bimodules of type I,(n). For any n > 2, & has two
inequivalent cell 2-modules of rank one, namely €, and

Cy .
f?urthermore, there are two cell 2-modules of rankn — 1,
namely €, and €, whose underlying graph is of Dynkin

type A,_,. They are equivalent iff n is odd.

1. Ifn = 2k 4+ 1 > 2 or n = 4, then all simple transitive
2-modules are equivalent to the above cell 2-modules.

2. If n = 2k > 4, there are two additional inequivalent
simple transtive 2-modules, whose underlying graph
is of DYNKIN type D, ,.

3. Ifn = 12, 18 or 30, there are also two inequivalent ex-
ceptional simple transitive 2-modules, whose under-
lying graph is of DYNKIN type E, E_ and E, respec-
tively.

The above gives a total classification of the simple transi-
tive 2-modules of &.

It is interesting to note that the two inequivalent sim-
ple transitive 2-modules of DYNKING type E, decate-
gorify to isomorphic #-modules. The same happens for
DYNKIN type Eg, but the two inequivalent simple transitive
2-modules of DYNKIN type E_ have non-isomorphic decate-
gorifications.

We also note that the decategorified story was already
known to LUSZTIG [11, Prop. 3.8].

The classification of the simple transitive 2-modules of
&in other finite COXETER types is very incomplete. In [10]



the following (very) partial result was proved. For every fi-
nite type COXETER system (W, S), there is a unique lowest
order two-sided cell #; which does not contain e. One sim-
ple description of f is that it consists of allw # ¢ € W with
a unique reduced expression. Now assume that (W, S) has
rank > 2. Then any simple transitive 2-module of § that is
annihilated by all B, with w >, 7, is equivalent to a cell
2-module [10, Thm. 1].

The rest of the classification is unknown and forms an
interesting but difficult open problem, except for COXETER
type A, where the cell 2-modules exhaust the simple transi-

tive 2-modules.
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