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1 The Fourier transform

The Fourier transform is an ubiquitous tool in mathe-
matical analysis. Its power stems from the fact that it re-
veals certain properties about the function which are not
readily apparent by inspection. One of the first questions
that arises concerns its mapping properties on the scale
of Lebesgue spaces Lp. Given a sufficiently nice function
f ∶ ℝ → ℂ, we shall define its Fourier transform as fol-
lows:

̂f (𝜉𝜉𝜉 𝜉 ∫
∞

−∞
f (x𝜉e−2𝜋𝜋ix𝜉𝜉 dx.

One easily checks that the Fourier transform of an inte-
grable function is a uniformly continuous function which
decays at infinity, an observation which is historically at-
tributed to early works of Riemann and Lebesgue. With
the above normalization, a straightforward application of
the triangle inequality shows that the Fourier transform
is a contraction from L1 to L∞. It also extends to an
isometry on the Hilbert space L2, as a consequence of
Plancherel’s theorem. In other words, the following
hold:

‖ ̂f‖L∞(ℝ) ≤ ‖f‖L1(ℝ), (1)

‖ ̂f‖L2(ℝ) 𝜉 ‖f‖L2(ℝ). (2)

Estimates (1) and (2) can be interpolated with the classical
convexity theoremofRiesz-Thörin. As a consequence, we
obtain the Hausdorff-Young inequality, which in turn
asserts the following: Given an exponent 1 ≤ p ≤ 2, the
inequality

‖ ̂f‖Lp′(ℝ) ≤ ‖f‖Lp(ℝ) (3)

holds for every f ∈ Lp. Here p′ denotes the exponent conju-
gate to p, given by 1

p
+ 1

p′ 𝜉 1.
The concept of Lp convergence differs substantially

from that of pointwise convergence. A powerful link be-
tween thetwo is provided by maximal functions, which are in
themselves central objects of study in Fourier analysis. In
general terms, one expects Lp-bounds for a maximal func-
tion to imply pointwise almost everywhere convergence of
the original operator. In our setting, we are led to define
the maximally truncated Fourier transform,

ℱ∗f (𝜉𝜉𝜉 𝜉 𝜉𝜉𝜉
y∈ℝ | ∫

y

−∞
f (x𝜉e−2𝜋𝜋ix𝜉𝜉 dx|.

The classical Menshov-Paley-Zygmund inequality
states that, for every 1 ≤ p < 2, there exists a constant
Mp < ∞ such that

‖ℱ∗f‖Lp′(ℝ) ≤ Mp‖f‖Lp(ℝ), (4)

for every f ∈ Lp. The case p 𝜉 2 of inequality (4) is consider-
ably more subtle, and follows from the celebrated result of
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Carleson [3] on the pointwise convergence of Fourier se-
ries of square integrable functions. A powerful variational
refinement of these results has been recently proved by
Oberlin, Seeger, Tao, Thiele, andWright [13]: Given
1 ≤ p ≤ 2 and r > p, there exists a constant Cp,r < ∞ such
that

‖ ∫
y

−∞
f (x)e−2𝜋𝜋ix𝜉𝜉 dx‖Lp

′
𝜉𝜉 (ℝ;𝒱𝒱 r

y (ℝ))
≤ Cp,r‖f‖Lp(ℝ), (5)

for every f ∈ Lp. In the case 1 ≤ p < 2 and r = ∞, in-
equality (5) reduces to (4). When p = 2 and 2 < r < ∞,
inequality (5) strengthens Carleson’s theorem by estab-
lishing L2-estimates for the r-variation[1] of the partial sum
operator for the Fourier transform.

We conclude this succinct account of linear Fourier
analysis by asking the following natural questions: What is
the optimal constant in inequality (3)? What are the corre-
sponding extremizers? By this wemeanfunctions which sat-
urate the sharp inequality, turning it into an equality. Beck-
ner [2] proved that the inequality

‖ ̂f‖Lp′(ℝ) ≤ Bp‖f‖Lp(ℝ) (6)

holds with constant Bp ∶= p
1
2p p′− 1

2p′ , which is strictly less
than 1 if 1 < p < 2, and is sharp. Moreover, equality is at-
tained by Gaussians. Lieb [9] later proved that there exist
no other extremizers besides theGaussianfunctions. More
recently, Christ [4] further refined inequality (6), estab-
lishing the following stable version: There exists a constant
cp > 0 such that

‖ ̂f‖Lp′(ℝ) ≤ (Bp − cp
dist2p(f , 𝔊𝔊)

‖f‖2
Lp(ℝ)

)‖f‖Lp(ℝ), (7)

for every nonzero f ∈ Lp. Here distp(f , 𝔊𝔊) denotes the
Lp-distance from f to the set of all Gaussians, denoted 𝔊𝔊.
Sharp inequalities and stable versions thereof, together
with a characterization of the corresponding sets of extrem-
izers, have a rich history in mathematical analysis. The
brief description given here only scratches the surface of
this fascinating topic for the very particular case of the
Hausdorff-Young inequality, which will nonetheless be
of interest to us further along the discussion.

2 The nonlinear Fourier transform

One of the many useful features of the Fourier transform
is that it maps a linear partial differential equation into
an algebraic equation, which can be explicitly solved, and
then pulled back to a solution of the original problem via
Fourier inversion. There have beenmany attempts to find
suitable replacements for this mechanism in the world of
nonlinear partial differential equations.

For the remainder of this note, we shall focus on a sim-
ple nonlinearmodel of the Fourier transform, also known
as the Dirac scattering transform, or the SU(1, 1)-scattering
transform. To describe it precisely, let us take a measurable,
bounded and compactly supported function f ∶ ℝ → ℂ,
which will generally be referred to as a potential. Given an
arbitrary number 𝜉𝜉 ∈ ℝ, consider the initial value problem

𝜕𝜕
𝜕𝜕x [

a(x, 𝜉𝜉)
b(x, 𝜉𝜉)]

=
[

0 f (x)e2𝜋𝜋ix𝜉𝜉

f (x)e−2𝜋𝜋ix𝜉𝜉 0 ] [
a(x, 𝜉𝜉)
b(x, 𝜉𝜉)]

,

[
a(−∞, 𝜉𝜉)
b(−∞, 𝜉𝜉)]

= [
1
0] .

(8)

This system is well known to have unique absolutely contin-
uous solutions a(⋅, 𝜉𝜉) and b(⋅, 𝜉𝜉). Defining functions a, b ∶
ℝ → ℂ via a(𝜉𝜉) ∶= a(+∞, 𝜉𝜉) and b(𝜉𝜉) ∶= b(+∞, 𝜉𝜉), one
is led to study properties of the forward transform f ↦ (a, b).
The differential equation (8) forces |a(𝜉𝜉)|2 − |b(𝜉𝜉)|2 = 1,
which in particular means that a certain size of the above
vector is controlled by the quantity |a(𝜉𝜉)| alone. It is some-
times convenient to add an extra column and turn this vec-
tor into a 2 × 2 matrix belonging to the classical Lie group

SU(1, 1) = { (
w z
z w ) ∶ w, z ∈ ℂ and |w|2 − |z|2 = 1},

which is isomorphic to SL(2, ℝ). It should be emphasized
that we are not considering the linear Fourier transform
on the group SU(1, 1), as the map f ↦ (a, b) is highly non-
linear. This is at the root of several foundational and tech-
nical issues, and among other issues prevents any sort of in-
terpolation scheme from holding in general. On the other
hand, thenonlinearFourier transformenjoys several sym-
metrieswhich are sharedby its linear counterpart, e.g.with
respect to L1-normalized dilations, translations, and mod-
ulations.

Sources of motivation for considering this precise in-
stance of the nonlinear Fourier transform include the
eigenvalue problem for the Dirac operator, the study of
completely integrable systems and scattering theory, and
the Riemann-Hilbert problem; see the expository paper
[15] for further information. The Dirac scattering trans-
form is the simplest nonlinear model that cannot be solved
explicitly of a more general transform, the AKNS-ZS non-
linear Fourier transform; see [1, 17] for details.

We now describe some nonlinear analogues of the clas-
sical inequalities for the linear Fourier transform from
the first section. First of all, Grönwall’s inequality
from ODE theory implies the following analogue of the
Riemann-Lebesgue estimate (1):

‖(log |a(𝜉𝜉)|2)
1
2 ‖L∞

𝜉𝜉 (ℝ) ≤ ‖f‖L1(ℝ), (9)

for every potential f .

2
[1] See §3.2 below for a discussion of variation norms.
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2

Secondly, the nonlinear Plancherel’s theorem is a well-
known scattering identity, a variant of which goes back at
least to work ofVerblunsky from the 1930s. It states that

‖(log |a(𝜉𝜉𝜉|2𝜉
1
2 ‖L2𝜉𝜉(ℝ) = ‖f‖L2(ℝ), (10)

for every potential f . Identity (10) can be established via
a contour integration argument, see e.g. [11, §6], and it is
curious to note that no other proof seems available in the
literature. The reader might wonder about the role of the
square root of the logarithm on the left-hand sides of in-
equalities (9) and (10). It helps to notice that both inequal-
ities reduce to their linear analogues in first order approx-
imation. In particular, the linear Fourier transform coin-
cides with the linearization of the nonlinear Fourier trans-
form at the origin.

Similarly to the linear case, one would like to use in-
terpolation in order to obtain a nonlinear Hausdorff-
Young inequality but, as previously mentioned, this is not
available in the current nonlinear setting. However, the
seminal work of Christ and Kiselev [5, 6] on the spec-
tral theory of one-dimensional Schrödinger operators
implies the following result: If 1 ≤ p < 2, then there ex-
ists a constant Cp < ∞ such that

‖(log |a(𝜉𝜉𝜉|2𝜉
1
2 ‖Lp

′
𝜉𝜉 (ℝ) ≤ Cp‖f‖Lp(ℝ), (11)

for every potential f . The proof produces a family of con-
stants Cp which, contrary to the linear case, blows up as
p → 2−. Thus it is natural to ask:

Question 1.— Do the constantsCp from inequality (11) re-
main uniformly bounded, as p tends to 2?

Question (1) was originally asked by Muscalu, Tao and
Thiele [11], andwas solved in a particular toymodel byKo-
vač [7], but remains open in its full generality. In §3.1 we
shall describe some recent investigations around this circle
of problems. On the other hand, a variational refinement
generalizing the nonlinear analogue of the Menshov-
Paley-Zygmund inequality was established by Oberlin
et al. [13]. This has recently been extended to the discrete
setting, and we present some details in §3.2 below.

We close this section by mentioning a nonlinear ana-
logue of Carleson’s theorem on the pointwise conver-
gence of Fourier series. It was originally formulated in
[11, Conjecture 1.2], and we record it here.

Question 2.— Does the following inequality hold, for ev-
ery square integrable function f?

‖ sup
x∈ℝ

(log |a(x, 𝜉𝜉𝜉|2𝜉
1
2 ‖L2𝜉𝜉(ℝ) ≤ C‖f‖L2(ℝ)

Question 2 was solved in a particular toy model by Mus-
calu, Tao and Thiele [11], but remains open in its full

generality. It is known [12] that this fundamental question
cannot be settled by estimating the terms in the natural
multilinear expansion of the scattering transform.

3 Some recent progress

3.1 Towards Question 1

By considering truncated Gaussian potentials and lineariz-
ing, onemay check that the constantCp from (11) dominates
Beckner’s constant from (6), Cp ≥ Bp. It may be tempting
to conjecture thatCp = Bp. While this is still an open prob-
lem, which would immediately provide an affirmative an-
swer to Question 1, the main result from [8] hints at some
supporting evidence in this direction. To describe it pre-
cisely, fix an exponent 1 < p < 2, a height H > 0, and a
width W > 0. We only consider potentials f ∶ ℝ → ℂ of
controlled height and width, i.e. such that |f | ≤ H and f is
supported on an interval of length at most W .

Theorem 1 ([8]).— There exist 𝛿𝛿, 𝛿𝛿 > 0, depending on
p,H,W , such that

‖(log |a(𝜉𝜉𝜉|2𝜉
1
2 ‖Lp

′
𝜉𝜉 (ℝ) ≤ (Bp − 𝛿𝛿‖f‖2

L1(ℝ))‖f‖Lp(ℝ), (12)

for every potential f satisfying the above hypotheses and
‖f‖L1 ≤ 𝛿𝛿.

Note that inequality (12) implies (11) with Cp = Bp,
but only for the restricted class of potentials considered
in the theorem. Since this class is allowed to depend on
the exponent p, no uniformity is claimed. The emphasis
is rather on the perhaps surprising fact that the nonlin-
ear Hausdorff-Young ratio beats the linear one for suf-
ficiently small values of ‖f‖L1.

We briefly describe the main idea behind the proof
of Theorem 1. The strategy is to split the analysis into
two cases, depending on whether or not the potential f is
far from the set of Gaussians in the relative Lp-distance.
In the former case, one invokes Christ’s sharpened
Hausdorff-Young inequality (7) in order to absorb the
error terms coming from linearization. In the latter case,
one calculates a few terms of the multilinear expansion of
(log |a|2𝜉1/2, and approximates f by a suitableGaussian. The
error terms that appear are controlled by successive appli-
cations of the Menshov-Paley-Zygmund inequality (4).

3.2 Discrete analogues

There is a close and fruitful connection between the contin-
uous Fourier transform and discrete Fourier series. In
a similar vein, Tao and Thiele [16] introduced a discrete
model for the solution curves of the nonlinear Fourier
transform. To define it, consider a compactly supported,

3
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complex-valued sequence F satisfying |Fn| < 1, for every n,
and transfer matrices {Tn} given by

Tn(z) = (1 − |Fn|2)
− 1

2

(
1 Fnz

n

Fnz
−n 1 ) ,

where z ∈ 𝕋𝕋 is a unimodular complex number. Note that
Tn(z) ∈ SU(1, 1). The nonlinear Fourier transform of the
sequence F is defined as an SU(1, 1)-valued function on the
unit circle given by the expression

(a, b)(z) = lim
N→∞

N

∏
n=−N

Tn(z),

where the ordered product is seen to converge in an ap-
propriate sense provided F ∈ ℓ2. Discrete analogues of
the nonlinear Riemann-Lebesgue, Plancherel and
Hausdorff-Young inequalities are available, see [16, §1–
3]. To describe a variational refinement of latter, consider
the following truncated versions of the linear and the non-
linear Fourier transforms of F, respectively denoted by
𝜎𝜎 = 𝜎𝜎(F) and 𝛾𝛾 = 𝛾𝛾𝛾F], and given at level N by

𝜎𝜎(F)(N; z) = ∑N
n=−∞ (

0 Fnz
n

Fnz
−n 0 ) , and

𝛾𝛾𝛾F](N; z) = ∏N
n=−∞ Tn(z).

(13)

For fixed z ∈ 𝕋𝕋, we shall think of the maps N ↦ 𝛾𝛾𝛾F](N; z)
and N ↦ 𝜎𝜎(F)(N; z) as discrete curves taking values on the
Lie group SU(1, 1) and its Lie algebra 𝔰𝔰𝔰𝔰(1, 1), respectively.
Endow the Lie algebra with the operator norm ‖ ⋅ ‖op, and
the Lie group with the distance

d(X, Y) = log(1 + ‖X−1Y − I‖op).

Given an exponent r ≥ 1, we are interested in measuring
the r-variation in the variable N of the curves 𝜎𝜎 and 𝛾𝛾. The
variation is defined as

𝒱𝒱r(𝛾𝛾)(z) = sup
K

sup
N0<…<NK

(

K−1

∑
j=0

d(𝛾𝛾Nj
(z), 𝛾𝛾Nj+1

(z))r)
1
r ,

and similarly for 𝒱𝒱r(𝜎𝜎). Here the supremum is taken over
all strictly increasing finite sequences of integers N0 <
N1 < … < NK and over all integers K. We are finally in
a position to state the following discrete, variational, non-
linear Hausdorff-Young inequality.

Theorem 2 ([14]).— Let 1 ≤ p < 2 and r > p. Then there
exists a constant Dp,r < ∞ such that

‖𝒱𝒱r(𝛾𝛾𝛾F])‖Lp′(𝕊𝕊𝕊 + ‖𝒱𝒱r(𝛾𝛾𝛾F])‖1/r
Lp′/r(𝕋𝕋 𝕋𝕊𝕊𝕊

≤

≤ Dp,r‖ log (
1+|Fn|
1−|Fn| )‖ℓp(ℤ𝕊

,
(14)

for every F ∈ ℓp satisfying |Fn| < 1, for every n. Here,
𝕊𝕊 𝕊= {z ∈ 𝕋𝕋 𝕊 𝒱𝒱s(𝛾𝛾𝛾F])(z) ≤ 1}, where s = r if p < r < 2,
and s = (p + 2)/2 if r ≥ 2.

We briefly describe the proof of Theorem 2, which com-
prises two parts. The first part is inspired by the adaption
of Lyons’ theory of rough paths [10] by Oberlin et al. [13]
to study variation norms on SU(1, 1). In particular, given
a potential F, one shows that the r-variation of the discrete
curve 𝛾𝛾𝛾F] can be controlled by the r-variation of the lin-
earized curve 𝜎𝜎(F), plus an extra term that accounts for the
possible presence of large jumps. The second part amounts
to a discrete variational version of the Menshov-Paley-
Zygmund inequality (4). This step requires r > p, and is
accomplished via an adaptation of the original argument
of Christ-Kiselev [5] to the variational setting.

We finish by noting that the range of exponents
promised by Theorem 2 is almost sharp. Indeed, given
p > 1, one easily checks that inequality (14) can only hold
if r > p. On the other hand, extending this inequality to
p = 2, already in the simplest case r = ∞, would provide
an affirmative answer to a discrete version of Question 2.
This remains a central open problem in the area.
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the following truncated versions of the linear and the non-
linear Fourier transforms of F, respectively denoted by
𝜎𝜎 = 𝜎𝜎(F) and 𝛾𝛾 = 𝛾𝛾𝛾F], and given at level N by

𝜎𝜎(F)(N; z) = ∑N
n=−∞ (

0 Fnz
n

Fnz
−n 0 ) , and

𝛾𝛾𝛾F](N; z) = ∏N
n=−∞ Tn(z).

(13)

For fixed z ∈ 𝕋𝕋, we shall think of the maps N ↦ 𝛾𝛾𝛾F](N; z)
and N ↦ 𝜎𝜎(F)(N; z) as discrete curves taking values on the
Lie group SU(1, 1) and its Lie algebra 𝔰𝔰𝔰𝔰(1, 1), respectively.
Endow the Lie algebra with the operator norm ‖ ⋅ ‖op, and
the Lie group with the distance

d(X, Y) = log(1 + ‖X−1Y − I‖op).

Given an exponent r ≥ 1, we are interested in measuring
the r-variation in the variable N of the curves 𝜎𝜎 and 𝛾𝛾. The
variation is defined as

𝒱𝒱r(𝛾𝛾)(z) = sup
K

sup
N0<…<NK

(

K−1

∑
j=0

d(𝛾𝛾Nj
(z), 𝛾𝛾Nj+1

(z))r)
1
r ,

and similarly for 𝒱𝒱r(𝜎𝜎). Here the supremum is taken over
all strictly increasing finite sequences of integers N0 <
N1 < … < NK and over all integers K. We are finally in
a position to state the following discrete, variational, non-
linear Hausdorff-Young inequality.

Theorem 2 ([14]).— Let 1 ≤ p < 2 and r > p. Then there
exists a constant Dp,r < ∞ such that

‖𝒱𝒱r(𝛾𝛾𝛾F])‖Lp′(𝕊𝕊𝕊 + ‖𝒱𝒱r(𝛾𝛾𝛾F])‖1/r
Lp′/r(𝕋𝕋 𝕋𝕊𝕊𝕊

≤

≤ Dp,r‖ log (
1+|Fn|
1−|Fn| )‖ℓp(ℤ𝕊

,
(14)

for every F ∈ ℓp satisfying |Fn| < 1, for every n. Here,
𝕊𝕊 𝕊= {z ∈ 𝕋𝕋 𝕊 𝒱𝒱s(𝛾𝛾𝛾F])(z) ≤ 1}, where s = r if p < r < 2,
and s = (p + 2)/2 if r ≥ 2.

We briefly describe the proof of Theorem 2, which com-
prises two parts. The first part is inspired by the adaption
of Lyons’ theory of rough paths [10] by Oberlin et al. [13]
to study variation norms on SU(1, 1). In particular, given
a potential F, one shows that the r-variation of the discrete
curve 𝛾𝛾𝛾F] can be controlled by the r-variation of the lin-
earized curve 𝜎𝜎(F), plus an extra term that accounts for the
possible presence of large jumps. The second part amounts
to a discrete variational version of the Menshov-Paley-
Zygmund inequality (4). This step requires r > p, and is
accomplished via an adaptation of the original argument
of Christ-Kiselev [5] to the variational setting.

We finish by noting that the range of exponents
promised by Theorem 2 is almost sharp. Indeed, given
p > 1, one easily checks that inequality (14) can only hold
if r > p. On the other hand, extending this inequality to
p = 2, already in the simplest case r = ∞, would provide
an affirmative answer to a discrete version of Question 2.
This remains a central open problem in the area.
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