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 I

This lecture deals with the concept of spectrum in vari-
ous epochs, with variousmeanings and for various dis-
ciplines. Its content can be motivated by a quotation
of L.A. S []:

Not least because such different objects as atoms, operators and
algebras all possess spectra, the evolution of spectral theory is one
of the most informative chapters in the history of contemporary
mathematics. […] In  and  Norbert Wiener developed
a theory of spectral analysis for functions in an attempt to ana-
lyze mathematically the spectrum of the white light, while twenty
years later Arne Beurling inaugurated the complementary study
of spectral synthesis.

and a quotation of N. W []:

The author sees no compelling reason to avoid a physical termi-
nology in pure mathematics when a mathematical concept corre-
sponds closely to a concept already familiar in physics. [...] The
“spectrum” of this book merely amounts to rendering precise the
notion familiar to the physicist, and may as well be known by the
same name.

We shall return soon to the origin of the use of the
word “spectrum” in physics and in mathematics. The
mathematical spectrum is partly made of “eigenval-
ues”, a strange word which has not been immediately
adopted, as observed by S.H. G in []:

The concept of an eigenvalue is of great importance in both pure
and applied mathematics. […] The German word eigen means
characteristic and the hybrid work eigenvalue is used for charac-
teristic numbers in order to avoid confusion with the many other
uses in English of the word characteristic. […] There can be no
doubt that eigenvalue will soon find its way into the standard
dictionaries. […] The English language has many such hybrids:
for example liverwurst.

Previous work has already been devoted to the de-
velopment of spectral theory in mathematics, and the
reader can find further information and remarks in
[, , , , ].

 L  :   
  U

The first occurence of the word “spectrum” in science
seems to be found in a letter of Isaac N to the
Royal Society, in , where he uses the word to de-
note the oblong colored image, with the colors of a
rainbow, produced on a white paper by a beam of Sun
light dispersed by a glass prism. The expression is re-
peated in his bookOpticks (London, ), and, in no
case, Newton makes any comment on the choice of
the word. “Spectrum” means “vision” in Latin, and
comes from “spectare”, to look at.

Little progress is made in Newton’s experiment in
the eighteenth century, except M’s observation
in  that a flame of salted alcohol only gives a yel-
low spectrum.

The beginning of the nineteenth century sees the
discovery of the infrared and ultra-violet extensions
of the spectrum, respectively by William H
and R, the crucial discovery by W of
seven dark lines in the solar spectrum, and the associ-
ation of the color to the frequency in Y’s ondu-
latory theory of light. In , the Bavarian optician
F constructs the first spectroscope. This
allows him to establish the first map of the Solar spec-
trum, and to identify the position of one of its dark
lines with the bright Natrium D-line.

After some pioneering work of John H,
T, F, K, S and A,
the mathematical physicist K, associated to
the chemist B, discovers in  the fundamen-
tal laws of spectral analysis: each line of a spectrum is
due to the presence of a given element and conversely,
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the appearence of a line spectrum can be used as an
analytical test for the presence of an element. Further-
more, a substance traversed by a source of light with
continuous spectrumgives rise to dark lines having the
same position. Consequently, the dark lines in the So-
lar spectrum reveal the composition of its atmosphere:
astrophysics is born and stellar spectroscopy, with
the pioneering work of men like H, M
and S, reveals a fact of fundamental philosoph-
ical importance: the chemical unity of the Universe,
some two hundred years after Newton’s gravitation
had shown its physical unity. Let us quote, in this re-
spect, P []:

Auguste Comte has said, I do not remember where, that it would
be vain to try to find the composition of the Sun, because this
knowledge would not be useful to Sociology. How could he be
so short-sighted ? […] First, one has recognized the nature of the
Sun, that the founder of positivism wanted to forbid us, and one
has found there substances which exist on the Earth and had re-
mained unnoticed; for example Helium […]. This was already for
Comte a first flat contradiction. But we owe to spectroscopy a
much more precious lesson […]. We know now […] that the laws
of our chemistry are general laws of Nature, and do not follow
from the chance which has made us born on the Earth.

Through the red-shift and the Döppler-Fizeau effect,
galaxy spectra have also revealed to expansion of our
Universe.

But the importance of spectroscopy is not less in
the infinitely small, as spectra appear like signatures
of atoms andmolecules. After A classifies in
 the lines of the emission spectrum of Hydrogen
in series, and after some pioneering work of M,
the Swiss teacher B finds heuristically, in ,
a formula giving the wave numbers (𝜈𝜈 𝜈 /𝜆𝜆 𝜈 𝜆𝜆𝜈𝜈 , 𝜈𝜈
the frequency) of one of those series:

𝜈𝜈 𝜈 𝜈𝜈􏿵􏿵 
 −


𝑚𝑚 􏿸􏿸 , (𝑚𝑚 𝜈 , , …),

where 𝜈𝜈 𝜈 .,  𝜆𝜆𝑚𝑚− is the Rydberg’s con-
stant. The lines accumulate near the limit wave num-
ber 𝜈𝜈𝑙𝑙 𝜈 𝜈𝜈/, corresponding to the limit wave length
𝜆𝜆𝑙𝑙 𝜈 ,  Å.

In , R states his combination principle: for
each type of atom, it is possible to find a sequence of
numbers, the spectral terms, such that the frequency
of any spectral line of this atom is equal to the differ-
ence of two of those spectral terms. For example, the
Hydrogen atom is characterized by the spectral terms
𝜈𝜈/𝑅𝑅, (𝑅𝑅 𝜈 , , …). This principle implies the general-
ized Balmer formula

𝜈𝜈 𝜈 𝜈𝜈􏿵􏿵 
𝑅𝑅 −


𝑚𝑚 􏿸􏿸 , (𝑚𝑚 𝜈 𝑅𝑅 𝑚 , 𝑅𝑅 𝑚 , … , 𝑅𝑅 𝜈 , , …),

suggesting the existence of Hydrogen lines with new
wave numbers, later observed byP, B,
and P in the infra-red, and byL in the ultra-
violet. The reader can consult [] for the historical de-
velopment of spectroscopy and its influence on chem-
istry and astrophysics.

In , B proposes his quantified planetary
model for theHydrogen atom, fromwhichhededuces
mathematically the generalized Balmer formula with
𝜈𝜈 𝜈 𝜋𝜋𝜇𝜇𝜇𝜇/𝜆𝜆𝑐.Here 𝜇𝜇 is the mass of the electron, 𝜇𝜇 its
charge, 𝜆𝜆 the speed of light, 𝑐 is Planck’s constant, and
the computation gives a value very close to Rydberg’s
constant. However Bohr’s model is based on some
contradictory assumptions, andwemay leave again to
P [] some prophetic conclusion:

Following the work of Balmer, Runge, Kaiser, Rydberg, those
lines are distributed in series, and, in each series, follow simple
laws. The first idea is to relate those laws to those of harmonics.
In the same way as a vibrating string has infinitely many degrees
of freedom, allowing it to produce an infinity of sounds whose
frequences are multiple of the fundamental frequency, […] could
the atom produce, for identical reasons, infinitely many different
lights ? You know that this so simple idea has failed, because,
according to the laws of spectroscopy, it is the frequency and not
its square which has a simple expression; because the frequency
does not become infinite for the harmonics of infinitely high rank.
The idea must be modified or must be abandoned.

It is time to have a look at those vibrating strings to
which Poincaré refers.

 M  :   
  

The relation between vibrating strings and mathemat-
ics can be traced at least to the Pythagorian tradition,
but the development of musical theory at the Renais-
sance has led to physical discussions of the frequency
of a vibrating string. G andM, around
, study the dependence of the fundamental fre-
quency of vibration with respect to the length, the ten-
sion and the mass of the string. At the end of the sev-
enteenth century,W, R and S de-
scribe the connection between the number of nodes
and the overtones of a vibrating string. See [, ] for
details and references.

In , T assumes the isochronism of the
oscillations for all the points of the string, and their
simultaneous passage through the horizontal equilib-
rium position. He shows analytically that the funda-
mental frequency is 𝜈𝜈 𝜈 (/𝑙𝑙)(√𝑇𝑇/𝑇𝑇), (𝑇𝑇 is the tension,
𝑙𝑙 the length, and 𝑇𝑇 the linear density) and the shape of
the string is 𝑦𝑦 𝜈 𝑦𝑦 𝑦𝑦𝑦(𝜋𝜋𝑦𝑦/𝑙𝑙). In , Jean B
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determines the fundamental frequency of a discrete
stringmade of six masses. None of themmentions the
highermodes, which are considered in  byDaniel
B for an oscillating suspended string, both
in the discrete and in the continuous case (anticipating
Bessel functions). Modeling the propagation of sound
in the air, E obtains in , the characteristic fre-
quencies and the general solution (as a sum of simple
harmonic modes)

𝑦𝑦𝑘𝑘 =
𝑛𝑛

􏾝􏾝
𝑟𝑟=

𝐴𝐴𝑟𝑟 sin
𝑟𝑟𝑘𝑘𝑟𝑟
𝑛𝑛 𝑛 

cos
⎛
⎜
⎝
√𝐾𝐾𝐾𝐾
√𝑀𝑀

sin(𝑟𝑟𝑟𝑟𝜋)
𝑛𝑛 𝑛 

⎞
⎟
⎠
,

of the discrete model of a horizontal string

𝑀𝑀�̈�𝑦𝑘𝑘 = 𝐾𝐾􏿴􏿴𝑦𝑦𝑘𝑘𝑛 − 𝑦𝑦𝑘𝑘 𝑛 𝑦𝑦𝑘𝑘−􏿷􏿷 , (𝑘𝑘 = , , … , 𝑛𝑛),

already written by Jean B in .
Through a limit process, ’A deduces

from it, in , the one-dimensionalwave equation

𝜕𝜕𝑦𝑦(𝐾𝐾, 𝑦𝑦)
𝜕𝜕𝐾𝐾 = 𝑎𝑎𝜕𝜕

𝑦𝑦(𝐾𝐾, 𝑦𝑦)
𝜕𝜕𝑦𝑦 ,

where 𝑎𝑎 = 𝑇𝑇𝜋𝑇𝑇𝑇 He determines the solutions, satisfy-
ing the boundary conditions

𝑦𝑦(𝐾𝐾, ) = , 𝑦𝑦(𝐾𝐾, 𝑦𝑦) = , (𝐾𝐾 𝑡 𝑡),

through the change of independent variables still used
to-day. In , he introduces the method of separa-
tion of variables.

In , E mentions that all possible motions
of the vibrating string are periodic with the period
of the fundamental mode, and that individual modes
whose period is half, third,… of the fundamental one
can occur. He writes those particular solutions in the
form

𝑦𝑦(𝐾𝐾, 𝑦𝑦) =􏾝􏾝𝑎𝑎𝑛𝑛 sin
𝑛𝑛𝑟𝑟𝑦𝑦
𝑦𝑦 cos 𝑛𝑛𝑟𝑟𝑎𝑎𝐾𝐾𝑦𝑦

for the initial configuration

𝑦𝑦(, 𝑦𝑦) =􏾝􏾝𝑎𝑎𝑛𝑛 sin
𝑛𝑛𝑟𝑟𝑦𝑦
𝑦𝑦 ,

without precising if the sum is finite or not.
After reading the papers of d’Alembert and Euler

on wave equation, D B claims in 
that there are enough free constants 𝑎𝑎𝑛𝑛 to represent all
the possible initial shapes as

𝑓𝑓(𝑦𝑦) =
∞

􏾝􏾝
𝑛𝑛=

𝑎𝑎𝑛𝑛 sin
𝑛𝑛𝑟𝑟𝑦𝑦
𝑦𝑦 ,

and that all the subsequent motions are given by

𝑦𝑦(𝐾𝐾, 𝑦𝑦) =
∞

􏾝􏾝
𝑛𝑛=

𝑎𝑎𝑛𝑛 sin
𝑛𝑛𝑟𝑟𝑦𝑦
𝑦𝑦 cos 𝑛𝑛𝑟𝑟𝑎𝑎𝐾𝐾𝑦𝑦 𝑇

Those conclusions are refuted by E and
’A for different reasons, and thewarmquar-
rell between those three giants lasts for some ten year,
without conclusion, despite some deep comments
of L in  (see []). For references to
the original sources and historical development, see
[, , , , ].

 H  :  
  F 

F modelizes the conduction of heat in a mem-
oir submitted to the Académie des Sciences de Paris
in , rejected by the referees L, L
and L, revised in , awarded the Grand
Prix de Mathématiques de l’Académie in , and
only published in - in its Mémoires, after
Fourier has became its permanent secretary. In the
meantime, Fourier has published a variant as a book,
the famousThéoriemathématique de la chaleur (Paris,
).

Fourier establishes that the temperature 𝑇𝑇(𝑦𝑦, 𝑦𝑦, 𝑇𝑇, 𝐾𝐾)
in a point (𝑦𝑦, 𝑦𝑦, 𝑇𝑇)of ahomogeneous and isotropic body
satisfies the heat equation

𝜕𝜕𝑇𝑇
𝜕𝜕𝑦𝑦 𝑛

𝜕𝜕𝑇𝑇
𝜕𝜕𝑦𝑦 𝑛

𝜕𝜕𝑇𝑇
𝜕𝜕𝑇𝑇 = 𝑘𝑘𝜕𝜕𝑇𝑇𝜕𝜕𝐾𝐾 ,

where the constant 𝑘𝑘 depends upon the material. He
studies several special cases by separation of variables,
raising again the question of representing an arbitrary
function by a trigonometric series, and obtaining, in
a complicated way, the formula relating the coeffi-
cients of the series to the function. For references on
Fourier’s work, see [, , ].

Fourier’s results motivate S and L
[, , ] to study in - the general problem
of eigenvalues and eigenfunctions for an arbitrary sec-
ond order ordinary linear differential equation

𝑑𝑑
𝑑𝑑𝑦𝑦􏿰􏿰𝑝𝑝(𝑦𝑦)

𝑑𝑑𝑦𝑦
𝑑𝑑𝑦𝑦􏿳􏿳 𝑛 𝜆𝜆𝜆𝜆(𝑦𝑦)𝑦𝑦 = , (𝑝𝑝(𝑦𝑦) 𝑝 , 𝜆𝜆(𝑦𝑦) 𝑝 ),

with the boundary conditions

𝑦𝑦 (𝑎𝑎) − 𝑎𝑦𝑦(𝑎𝑎) = , 𝑦𝑦 (𝑏𝑏) 𝑛 𝑎𝑦𝑦(𝑏𝑏) = ,

where 𝑎 ≥ , 𝑎 ≥  and 𝑎𝑎 𝑎 𝑏𝑏. They prove that the
problem has a nontrivial solution only when 𝜆𝜆 takes
one of the values of an increasing sequence of positive
numbers 𝜆𝜆𝑛𝑛 tending to infinity (eigenvalues), that the
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solutions 𝑣𝑣𝑛𝑛 corresponding to the eigenvalue𝜆𝜆𝑛𝑛 (eigen-
functions) are orthogonal in the sense

􏾙􏾙
𝑏𝑏

𝑎𝑎
𝑣𝑣𝑚𝑚(𝑥𝑥𝑥𝑣𝑣𝑛𝑛(𝑥𝑥𝑥𝑥𝑥(𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥 , (𝑚𝑚 𝑚 𝑛𝑛𝑥,

and that each𝐶𝐶 function satisfying the boundary con-
ditions can be developed into a uniformly conver-
gent series 𝑓𝑓(𝑥𝑥𝑥 𝑥 ∑∞

𝑛𝑛𝑥 𝑐𝑐𝑛𝑛𝑣𝑣𝑛𝑛(𝑥𝑥𝑥, where the generalized

Fourier coefficients 𝑐𝑐𝑛𝑛 𝑥 ∫
𝑏𝑏

𝑎𝑎
𝑓𝑓(𝑥𝑥𝑥𝑣𝑣𝑛𝑛(𝑥𝑥𝑥𝑥𝑥(𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 satisfy the

Parseval equality

􏾙􏾙
𝑏𝑏

𝑎𝑎
𝑓𝑓(𝑥𝑥𝑥𝑥𝑥(𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥

∞

􏾝􏾝
𝑛𝑛𝑥

𝑐𝑐𝑛𝑛

For the first time, general results are obtained which
donot dependupon some explicit formof the solution
of the differential equation. For studies of thework of
Sturm and Liouville, see [, , ].

The Sturm-Liouville theory motivates of course
the obtention of similar conclusions for the simplest
partial differential equation case, namely the eigen-
value problem for the Laplacian on a general planar
or spatial domain 𝛺𝛺 (excluding the use of separation
of variables)

𝛥𝛥𝛥𝛥 𝛥 𝜆𝜆𝛥𝛥 𝑥  𝑖𝑖𝑛𝑛 𝛺𝛺, 𝛥𝛥 𝑥  𝑜𝑜𝑛𝑛 𝑜𝑜𝛺𝛺𝑜

S [] proves in  the existence of the first
eigenvalue and eigenfunction, and shows that a smaller
𝛺𝛺 gives a larger 𝜆𝜆. P [] obtains in  the ex-
istence of the second eigenvalue, and P []
proves in  the existence and the essential proper-
ties of all the eigenvalues and eigenfunctions, by show-
ing that the solution of

𝛥𝛥𝛥𝛥 𝛥 𝜆𝜆𝛥𝛥 𝑥 𝑓𝑓 𝑖𝑖𝑛𝑛 𝛺𝛺, 𝛥𝛥 𝑥  𝑜𝑜𝑛𝑛 𝑜𝑜𝛺𝛺,

can be expressed as a meromorphic function of 𝜆𝜆,
whose poles are real and are the eigenvalues. Physi-
cally, 𝑓𝑓 can be considered as a force applied to the vi-
bratingmembrane or body, and its free oscillations are
those forwhich the forcedoscillations become infinite.
See [, ] for more details.

Motivated by Poincaré’s work, F []
publishes in  a systematic study of the integral
equations of second type

𝛥𝛥(𝑥𝑥𝑥 𝛥􏾙􏾙



𝐾𝐾(𝑥𝑥, 𝐾𝐾𝑥𝛥𝛥(𝐾𝐾𝑥 𝑥𝑥𝐾𝐾 𝑥 𝑓𝑓(𝑥𝑥𝑥𝑜

Following an idea of V, he approximates the
integral equation by the finite algebraic linear system

𝛥𝛥𝑛𝑛􏿶􏿶
𝑖𝑖
𝑛𝑛􏿹􏿹 𝛥

𝑛𝑛

􏾝􏾝
𝑗𝑗𝑥

𝐾𝐾􏿶􏿶
𝑖𝑖
𝑛𝑛 ,

𝑗𝑗
𝑛𝑛􏿹􏿹 𝛥𝛥𝑛𝑛􏿶􏿶

𝑗𝑗
𝑛𝑛􏿹􏿹

𝑗𝑗
𝑛𝑛 𝑥 𝑓𝑓􏿶􏿶

𝑖𝑖
𝑛𝑛􏿹􏿹 , (𝑖𝑖 𝑥 , , … , 𝑛𝑛𝑥𝑜

Usingfinite-dimensional linear algebra and a limit pro-
cess, he obtains the necessary and sufficient conditions
of solvability, but does not emphasize the correspond-
ing eigenvalue problem

𝛥𝛥(𝑥𝑥𝑥 𝛥 𝜆𝜆􏾙􏾙



𝐾𝐾(𝑥𝑥, 𝐾𝐾𝑥𝛥𝛥(𝐾𝐾𝑥 𝑥𝑥𝐾𝐾 𝑥 𝑜

This will be done by H, as we shall see later.
This finite-dimensional linear algebra has been devel-
oped in the nineteenth century, to answer some ques-
tions raised by analytical and celestialmechanics in the
eighteenth century.

 S   S :  
   

Motivated by elasticity problems, E anounces in
 the resolution of the linear ordinary differential
equations with constant coefficients

𝐴𝐴𝐴𝐴 𝛥 𝐴𝐴𝑥𝑥𝐴𝐴𝑥𝑥𝑥𝑥 𝛥 𝐶𝐶
𝑥𝑥𝐴𝐴
𝑥𝑥𝑥𝑥 𝛥 𝐷𝐷

𝑥𝑥𝐴𝐴
𝑥𝑥𝑥𝑥 𝛥 … 𝛥 𝐿𝐿

𝑥𝑥𝑛𝑛𝐴𝐴
𝑥𝑥𝑥𝑥𝑛𝑛 𝑥 𝑜

Functions of the form 𝐴𝐴(𝑥𝑥𝑥 𝑥 𝑦𝑦𝑟𝑟𝑥𝑥 are solutions if and
only if 𝑟𝑟 is a solution of the characteristic or indicial or
auxiliary equation

𝐴𝐴 𝛥 𝐴𝐴𝑟𝑟 𝛥 𝐶𝐶𝑟𝑟 𝛥 … 𝛥 𝐿𝐿𝑟𝑟𝑛𝑛 𝑥 ,

and the general solution is obtained as a linear combi-
nation of the 𝑛𝑛 special solutions associated to its roots.

’A, in his Traité de dynamique (Paris,
), studies second order systems of the form

𝐴𝐴𝑖𝑖 𝛥
𝑛𝑛

􏾝􏾝
𝑘𝑘𝑥

𝐴𝐴𝑖𝑖𝑘𝑘𝐴𝐴𝑘𝑘 𝑥 , (𝑖𝑖 𝑥 , , … , 𝑛𝑛𝑥,

with 𝑛𝑛 𝑥 ,  and, for 𝑛𝑛 𝑥 , special values of the co-
efficients 𝐴𝐴𝑖𝑖𝑘𝑘, and, in , first order systems of the
type

𝑥𝑥 𝛥 𝑎𝑎𝑥𝑥 𝛥 𝑏𝑏𝐴𝐴 𝛥 𝑐𝑐𝑎𝑎 𝑥 ,
𝐴𝐴 𝛥 𝑦𝑦𝑥𝑥 𝛥 𝑓𝑓𝐴𝐴 𝛥 𝑒𝑒𝑎𝑎 𝑥 ,
𝑎𝑎 𝛥 ℎ𝑥𝑥 𝛥 𝑚𝑚𝐴𝐴 𝛥 𝑛𝑛𝑎𝑎 𝑥 ,

but he obtains only partial results.
In L considers the general second or-

der system above, and, through the substitution 𝐴𝐴𝑖𝑖 𝑥
𝑥𝑥𝑖𝑖𝑦𝑦𝑥𝑥𝜌𝜌, (𝑖𝑖 𝑥 , , … , 𝑛𝑛𝑥, shows that

𝑥𝑥 𝑥 (𝑥𝑥, 𝑥𝑥, … , 𝑥𝑥𝑛𝑛𝑥
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must verify the linear system (in modern matrix nota-
tions, with 𝐴𝐴 𝐴 𝐴𝐴𝐴𝑖𝑖𝑖𝑖), 𝐴𝐴

𝑇𝑇 𝐴 𝐴𝐴𝐴𝑖𝑖𝑖𝑖))

𝜌𝜌𝑥𝑥 𝑥 𝐴𝐴𝑇𝑇𝑥𝑥 𝐴 .

The elimination of the 𝑥𝑥𝑖𝑖 in this system implies that
𝜌𝜌 must verify an algebraic equation of degree 𝑛𝑛. La-
grange is interested in modeling situations where the
equilibrium 𝑥𝑥 𝐴  is stable, and concludes from this a
priori physical stability and from the form of the so-
lutions that the roots 𝜌𝜌 must be real, negative, and
simple! In , Lagrange obtains, in linearizing some
equations of celestialmechanics, the first order system

ℎ𝑖𝑖 𝑥􏾝􏾝
𝑖𝑖

𝐴𝐴𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖 𝐴 , 𝑙𝑙𝑖𝑖 −􏾝􏾝
𝑖𝑖

𝐴𝐴𝑖𝑖𝑖𝑖ℎ𝑖𝑖 𝐴 , 𝐴𝑖𝑖 𝐴 , , … , 𝑛𝑛),

where ℎ𝑖𝑖 𝑥 𝑙𝑙

𝑖𝑖 𝐴 𝑒𝑒𝑖𝑖 , the square of the excentricity of

the orbit, and uses the same approach, endingwith the
same physical “proof” for the properties of the roots
of the corresponding algebraic equation, he calls secu-
lar equation []:

One must notice that although we have supposed the roots […]
of the [secular] equation […] real and distinct, it can happen that
imaginary [=complex] ones exist; […] we only observe that the
quantities will increase with 𝑡𝑡; consequently, the above solution
will stop to be exact after some time; but happily those case do
not seem to occur in the system of the world.

L is convinced that amathematical proof of the
properties of the secular roots should be preferred. In
, he deduces the a priori boundedness of the so-
lutions from a first integral, first obtained in an ap-
proximate way, but rigorously proved two years later.
Laplace’s arguments are used byL, in hisMé-
canique analytique (Paris, ), for the study of small
motions around an equilibrium, using this time the
well known energy integral.

In hisLeçons sur les applications du calcul infinitési-
mal à la géométrie (Cours de l’Ecole polytechnique,
Paris, ), C associates the reduction of a
quadric to its axes to an eigenvalue problem and its
characteristic equation, invariant for any orthogonal
change of coordinates, and proves rigorously that all
eigenvalues are real. S uses in  his theo-
rem of the number of real zeros of a real polynomial
to prove the reality of the roots of the secular equa-
tions introduced by L and L. The
same year, C [] gives another proof, shows
the analogy of the problem of characteristic values
in problems of analytic geometry, differential equa-
tions, solid and celestial mechanics, introduces the
term characteristic polynomial or equation,whichwill

finally overcome earlier or even later terminologies
like 𝑆𝑆-equation, determining, secular or latent equa-
tion.

In the second half of the𝑋𝑋𝑋𝑋𝑋𝑋𝑡𝑡ℎ century, the study of
this equation becomes a topics of pure algebra, consid-
ered in the languageofmatrices or forms. For example,
H [] gives in  the standard proof of the
reality of the characteristic roots of aHermitian form.
All this is carefully described in [, , , , ],
with references to the original papers.

 A    
 :   
 

Motivated by Fredholm’s theory, H publishes,
between  and , a series of six articles, later
reproduced in book form, under the title Grunzüge
einer allgemeinen Theorie der linearen Integralgle-
ichungen (Leipzig, ). He first follows essentially
Fredholm’s approach but considers an integral equa-
tion containing explicitely the complex parameter 𝜆𝜆

𝑢𝑢𝐴𝑥𝑥) − 𝜆𝜆􏾙􏾙



𝐾𝐾𝐴𝑥𝑥, 𝐾𝐾)𝑢𝑢𝐴𝐾𝐾) 𝐾𝐾𝐾𝐾 𝐴 .

Hilbert supposes then 𝐾𝐾𝐴𝐾𝐾, 𝑡𝑡) symmetrical 𝐴𝐾𝐾𝐴𝐾𝐾, 𝑡𝑡) 𝐴
𝐾𝐾𝐴𝑡𝑡, 𝐾𝐾)), and uses the theory of finite quadratic forms
to prove the reality of the eigenvalues and the orthog-
onality of the eigenfunctions. He generalizes to this
setting the theorem of principal axes of analytical ge-
ometry, the variational characterization of eigenval-
ues due toLiouville-Weber-Poincaré thatwe shall con-
sider later, and proves theHilbert-Schmidt expansion
theorem. In his own words:

The method […] consists in starting from an algebraic prob-
lem, namely the problem of the orthogonal transformation of
quadratic forms in 𝑛𝑛 variables in a sum of squares, and, through
a rigorous limit process for 𝑛𝑛 𝐴 𝑛, to succeed in solving the con-
sidered transcendental problem.

Hilbert then forgets the initial motivation by integral
equations and considers directly the infinite bilinear
form in the sequences 𝑥𝑥 𝐴 𝐴𝑥𝑥𝑗𝑗), 𝐾𝐾 𝐴 𝐴𝐾𝐾𝑖𝑖)

𝐵𝐵𝐴𝑥𝑥, 𝐾𝐾) 𝐴
𝑛

􏾝􏾝
𝑝𝑝,𝑝𝑝𝐴

𝑖𝑖𝑝𝑝𝑝𝑝𝑥𝑥𝑝𝑝𝐾𝐾𝑝𝑝,

when∑𝑛𝑛
𝑗𝑗𝐴 |𝑥𝑥𝑗𝑗|

 et∑𝑛𝑛
𝑗𝑗𝐴 |𝐾𝐾𝑗𝑗|

 converge, and 𝐵𝐵 is bounded
on the corresponding unit ball. He again generalizes
the theorem of principal axes. For this, he must in-
troduce, in addition to the discrete spectrum make of
the eigenvalues, a continuousorband spectrum, aword
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first used in amathematical setting byW []
in , by analogy with spectra of molecules, in his
discovery of band spectra for Hill’s equation. Let us
quote Dieudonné []:

We now return to the most original part of Hilbert’s  pa-
per, in which he discovered the entirely new phenomenon of the
“continuous spectrum”. […] In  Wirtinger developed similar
ideas for Hill’s equation

𝑦𝑦″ + 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑦𝑦 𝜆 .

[…] The similarity with the optical spectra of molecules leads
him to speak of the “Bandesspectrum” of Hill’s equation. […]
Although Hilbert does not mention Wirtinger’s paper, it is prob-
able that he had read it (it is quoted by several of his pupils), and
it may be that the name “Spectrum” which he used came from it.

To eliminate the continuous spectrum,Hilbert defines
the concept of completely continuous quadratic forms.
He applies his results to integral equations, introduc-
ing explicitely the notion of complete orthogonal sys-
tem of functions.

Hilbert’s work is simplified and geometrized by
Ehrard S in , who introduces the concept
of orthogonal projector; the same year F.R extends
Hilbert theory to 𝐿𝐿𝜆, 𝜆 and shows its isomorphism
with 𝑙𝑙.

In , H.W considers singular integral equa-
tions

𝑢𝑢𝜆𝜆𝜆𝜆 + 𝜆𝜆􏾙􏾙
𝐼𝐼
𝐾𝐾𝜆𝜆𝜆, 𝑦𝑦𝜆𝑢𝑢𝜆𝑦𝑦𝜆 𝐾𝐾𝑦𝑦 𝜆 ,

where integration is made on an unbounded interval 𝐼𝐼,
and shows the existence of band spectra. His work is
generalized by C in . The famous two
volumes monograph Methoden der mathematischen
Physik (Berlin, ) of C-H describes
the state of the art of the mathematical tools of clas-
sical physics, before becoming the bible for the new
physics. As noticed by C. R []:

The Courant-Hilbert book on mathematical methods of physics,
which had appeared at the end of , before both Heisenberg’s
and Schrödinger’s work, instead of being outdated by the new dis-
coveries, seemed to have been written expressly for the physicists
who now had to deal with them.

Excellent surveys of the development of Hilbert’s
ideas can be found in [, , , , ].

 Q :   -
   

In , L.  B recovers Bohr’s formula
for hydrogen atom by associating to each particle a
wave of some frequency and identifying the station-
ary states of the electron to the stationary character of
the wave.

As the observable lines of an atomic spectrum can
be represented by the infinite matrix 𝜆𝜈𝜈𝑛𝑛𝑛𝑛 𝜆 𝑇𝑇𝑛𝑛 − 𝑇𝑇𝑛𝑛𝜆
of the differences between the spectral terms, H-
 proposes in  to replace the position 𝜆𝜆 of an
electron by an infinite matrix 𝜆𝜆𝑛𝑛𝑛𝑛𝑒𝑒

𝜋𝜋𝜋𝜋𝜈𝜈𝑛𝑛𝑛𝑛𝑡𝑡, and similarly
for its momentum 𝑝𝑝. The diagonal elements of the cor-
respondingHermitian infinite matrices correspond to
a stationary state and the other ones to correspond-
ing transitions. The matrices 𝜆𝜆 and 𝑝𝑝 satisfy the Born-
Jordan non-commutativity condition 𝑝𝑝𝜆𝜆 − 𝜆𝜆𝑝𝑝 𝜆 ℎ

𝜋𝜋𝜋𝜋 𝐼𝐼
andHamilton-type canonical equations ofmotion. In
, P deduces the Bohr formula for Hydrogen
atom from matrix mechanics.

Independently and the same year, S
proposes to express the Bohr’s quantification condi-
tions as an eigenvalue problem []:

In this communication I wish first to show in the simplest case
of the Hydrogen atome (nonrelativistic and undistorted) that the
usual rules for quantization can be replaced by another require-
ment, in which mention of ‘whole numbers’ no longer occur. In-
stead the integers occur in the same natural way as the integers
specifying the number of nodes in a vibrating string. The new
conception can be generalized, and I believe it touches the deep-
est meaning of the quantum rules. […] The equation contains a
“proper value parameter” 𝐸𝐸, which corresponds to the mechani-
cal energy in macroscopic problems [...]. In general the wave or
vibration equation possesses no solutions, which together with
their derivatives are one-valued, finite and continuous througout
the configuration space, except for certain special values of 𝐸𝐸, the
proper values. These values form the “proper value spectrum”
which frequently includes continuous parts (the “band spectrum”,
not expressly considered in most formulae […]) as well as discrete
points (the “line spectrum”). The proper values either turn out to
be identical with the “energy levels” […] of the quantum theory
as hitherto developed, or differ from them in a manner which is
confirmed by experience.

Starting from Hamilton-Jacobi equation

𝐻𝐻􏿶􏿶𝜆𝜆,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆 􏿹􏿹 𝜆 𝐸𝐸,

Schrödinger sets 𝜕𝜕 𝜆 𝐾𝐾 𝑆𝑆𝑆𝑆𝑆 (𝐾𝐾 is an action) and ob-
tains

𝐻𝐻􏿶􏿶𝜆𝜆,
𝐾𝐾
𝑆𝑆
𝜕𝜕𝑆𝑆
𝜕𝜕𝜆𝜆 􏿹􏿹 𝜆 𝐸𝐸.

For the electron of the Hydrogen atom this equation
is
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𝑒𝑒
𝑟𝑟 􏿹􏿹 𝑆𝑆

 𝜆 ,

where 𝑟𝑟 𝜆 𝜆𝜆 + 𝑦𝑦 + 𝜕𝜕. Schrödinger introduces the
problem of finding an extremum of
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⎢
⎣
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⎤
⎥
⎦
𝐾𝐾𝜆𝜆 𝐾𝐾𝑦𝑦 𝐾𝐾𝜕𝜕,
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first used in amathematical setting byW []
in , by analogy with spectra of molecules, in his
discovery of band spectra for Hill’s equation. Let us
quote Dieudonné []:

We now return to the most original part of Hilbert’s  pa-
per, in which he discovered the entirely new phenomenon of the
“continuous spectrum”. […] In  Wirtinger developed similar
ideas for Hill’s equation

𝑦𝑦″ + 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝑦𝑦 𝜆 .

[…] The similarity with the optical spectra of molecules leads
him to speak of the “Bandesspectrum” of Hill’s equation. […]
Although Hilbert does not mention Wirtinger’s paper, it is prob-
able that he had read it (it is quoted by several of his pupils), and
it may be that the name “Spectrum” which he used came from it.

To eliminate the continuous spectrum,Hilbert defines
the concept of completely continuous quadratic forms.
He applies his results to integral equations, introduc-
ing explicitely the notion of complete orthogonal sys-
tem of functions.

Hilbert’s work is simplified and geometrized by
Ehrard S in , who introduces the concept
of orthogonal projector; the same year F.R extends
Hilbert theory to 𝐿𝐿𝜆, 𝜆 and shows its isomorphism
with 𝑙𝑙.

In , H.W considers singular integral equa-
tions

𝑢𝑢𝜆𝜆𝜆𝜆 + 𝜆𝜆􏾙􏾙
𝐼𝐼
𝐾𝐾𝜆𝜆𝜆, 𝑦𝑦𝜆𝑢𝑢𝜆𝑦𝑦𝜆 𝐾𝐾𝑦𝑦 𝜆 ,

where integration is made on an unbounded interval 𝐼𝐼,
and shows the existence of band spectra. His work is
generalized by C in . The famous two
volumes monograph Methoden der mathematischen
Physik (Berlin, ) of C-H describes
the state of the art of the mathematical tools of clas-
sical physics, before becoming the bible for the new
physics. As noticed by C. R []:

The Courant-Hilbert book on mathematical methods of physics,
which had appeared at the end of , before both Heisenberg’s
and Schrödinger’s work, instead of being outdated by the new dis-
coveries, seemed to have been written expressly for the physicists
who now had to deal with them.

Excellent surveys of the development of Hilbert’s
ideas can be found in [, , , , ].

 Q :   -
   

In , L.  B recovers Bohr’s formula
for hydrogen atom by associating to each particle a
wave of some frequency and identifying the station-
ary states of the electron to the stationary character of
the wave.

As the observable lines of an atomic spectrum can
be represented by the infinite matrix 𝜆𝜈𝜈𝑛𝑛𝑛𝑛 𝜆 𝑇𝑇𝑛𝑛 − 𝑇𝑇𝑛𝑛𝜆
of the differences between the spectral terms, H-
 proposes in  to replace the position 𝜆𝜆 of an
electron by an infinite matrix 𝜆𝜆𝑛𝑛𝑛𝑛𝑒𝑒

𝜋𝜋𝜋𝜋𝜈𝜈𝑛𝑛𝑛𝑛𝑡𝑡, and similarly
for its momentum 𝑝𝑝. The diagonal elements of the cor-
respondingHermitian infinite matrices correspond to
a stationary state and the other ones to correspond-
ing transitions. The matrices 𝜆𝜆 and 𝑝𝑝 satisfy the Born-
Jordan non-commutativity condition 𝑝𝑝𝜆𝜆 − 𝜆𝜆𝑝𝑝 𝜆 ℎ

𝜋𝜋𝜋𝜋 𝐼𝐼
andHamilton-type canonical equations ofmotion. In
, P deduces the Bohr formula for Hydrogen
atom from matrix mechanics.

Independently and the same year, S
proposes to express the Bohr’s quantification condi-
tions as an eigenvalue problem []:

In this communication I wish first to show in the simplest case
of the Hydrogen atome (nonrelativistic and undistorted) that the
usual rules for quantization can be replaced by another require-
ment, in which mention of ‘whole numbers’ no longer occur. In-
stead the integers occur in the same natural way as the integers
specifying the number of nodes in a vibrating string. The new
conception can be generalized, and I believe it touches the deep-
est meaning of the quantum rules. […] The equation contains a
“proper value parameter” 𝐸𝐸, which corresponds to the mechani-
cal energy in macroscopic problems [...]. In general the wave or
vibration equation possesses no solutions, which together with
their derivatives are one-valued, finite and continuous througout
the configuration space, except for certain special values of 𝐸𝐸, the
proper values. These values form the “proper value spectrum”
which frequently includes continuous parts (the “band spectrum”,
not expressly considered in most formulae […]) as well as discrete
points (the “line spectrum”). The proper values either turn out to
be identical with the “energy levels” […] of the quantum theory
as hitherto developed, or differ from them in a manner which is
confirmed by experience.

Starting from Hamilton-Jacobi equation

𝐻𝐻􏿶􏿶𝜆𝜆,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆 􏿹􏿹 𝜆 𝐸𝐸,

Schrödinger sets 𝜕𝜕 𝜆 𝐾𝐾 𝑆𝑆𝑆𝑆𝑆 (𝐾𝐾 is an action) and ob-
tains

𝐻𝐻􏿶􏿶𝜆𝜆,
𝐾𝐾
𝑆𝑆
𝜕𝜕𝑆𝑆
𝜕𝜕𝜆𝜆 􏿹􏿹 𝜆 𝐸𝐸.

For the electron of the Hydrogen atom this equation
is
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𝜕𝜕𝜆𝜆 􏿹􏿹



+ 􏿶􏿶
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

+ 􏿶􏿶
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
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𝐾𝐾 􏿶􏿶𝐸𝐸 +

𝑒𝑒
𝑟𝑟 􏿹􏿹 𝑆𝑆

 𝜆 ,

where 𝑟𝑟 𝜆 𝜆𝜆 + 𝑦𝑦 + 𝜕𝜕. Schrödinger introduces the
problem of finding an extremum of
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⎢
⎣
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
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𝐾𝐾 􏿶􏿶𝐸𝐸 +

𝑒𝑒
𝑟𝑟 􏿹􏿹 𝑆𝑆

⎤
⎥
⎦
𝐾𝐾𝜆𝜆 𝐾𝐾𝑦𝑦 𝐾𝐾𝜕𝜕,

among all sufficiently smooth functions 𝜓𝜓 tending
zero at infinity. The correspondEuler-Lagrange equa-
tion

𝛥𝛥𝜓𝜓 𝛥 𝜇𝜇
𝐾𝐾 􏿶􏿶𝐸𝐸 𝛥

𝑒𝑒
𝑟𝑟 􏿹􏿹 𝜓𝜓 𝜓 ,

is Schrödinger’s equation. Using spherical coordinates
and separation of variables (𝜓𝜓(𝑟𝑟, 𝜓𝜓, 𝜓𝜓𝜓 𝜓 𝜓𝜓(𝑟𝑟𝜓𝜓𝜓(𝜓𝜓𝜓𝜓𝜓(𝜓𝜓𝜓𝜓,
Schrödinger reduces the problem to finding nontrivial
solutions tending to  when 𝑟𝑟 𝑟 𝑟 for the ordinary
differential equations

𝑑𝑑𝜓𝜓
𝑑𝑑𝑟𝑟 𝛥


𝑟𝑟
𝑑𝑑𝜓𝜓
𝑑𝑑𝑟𝑟 𝛥 􏿶􏿶

𝜇𝜇𝐸𝐸
𝐾𝐾 𝛥 𝜇𝜇𝑒𝑒

𝐾𝐾𝑟𝑟
− 𝑛𝑛(𝑛𝑛 𝛥 𝜓

𝑟𝑟 􏿹􏿹 𝜓𝜓 𝜓 ,

where 𝑛𝑛 𝜓 , , , ….
With thehelpofW, Schrödinger shows that this

equation has solutions with the required asymptotic
properties if and only if 𝐸𝐸 𝐸  or

𝐸𝐸 𝐸  and
𝜇𝜇𝑒𝑒

𝐾𝐾√−𝜇𝜇𝐸𝐸
𝜓 𝑗𝑗, (𝑗𝑗 𝜓 𝑛𝑛 𝛥 , 𝑛𝑛 𝛥 , …𝜓.

For 𝑛𝑛 𝜓 , those conditions become

𝐸𝐸𝑗𝑗 𝜓 −
𝜇𝜇𝑒𝑒

𝐾𝐾𝑗𝑗
, (𝑗𝑗 𝜓 , , …𝜓,

and reduce to Bohr’s ones by taking 𝐾𝐾 𝜓 𝐾𝐾𝜋𝜋.
Schrödinger has reduced the problem of finding the
energy spectrum of the Hydrogen atom to an eigen-
value problem on ℝ

𝐿𝐿𝜓𝜓 𝛥 𝜇𝜇
𝐾𝐾𝐸𝐸𝜓𝜓 𝜓 ,

for somedifferential operator𝐿𝐿. Itsmathematical spec-
trum exactly corresponds to the physical spectrum.
Poincaré’s program is realized.

Schrödinger gives later the now classical derivation
of his equation, based upon the analogy between me-
chanics and optics, and closer to  B’s ideas.
He also develops a perturbation method, inspired by
the work of R in acoustics, gives the time-
dependent Schrödinger’s equation

𝜋𝜋𝜋𝜋
𝐾
𝜕𝜕𝜓𝜓
𝜕𝜕𝜕𝜕 𝜓 𝛥𝛥𝜓𝜓 −

𝜋𝜋

𝐾
𝑉𝑉(𝜕𝜕, 𝑉𝑉, 𝑉𝑉, 𝑉𝑉𝜓𝜓𝜓.

and proves the equivalence between his wave mechan-
ics and Heisenberg’s matrix mechanics. Mathemati-
cally, this fact is linked to the isomorphism between
𝑙𝑙 and 𝐿𝐿. Indeed, as observed by C [], physi-
cists could have saved some time and energy if they
had taken Hilbert more seriously:

I remember that David Hilbert was lecturing on quantum theory
that fall [], although he was in very poor health at the time.

[…] Hilbert was having a great laugh on Born and Heisenberg
and the Göttingen theoretical physicists because when they first
discovered matrix mechanics they [...] had gone to Hilbert for
help and Hilbert said the only time he had ever had anything to
do with matrices was when they came up as a sort of by-product
of the eigenvalues of the boundary-value problem for a differen-
tial equation. So if you look for the differential equation which
has these matrices you can probably do more with that. They had
thought it was a goofy idea and that Hilbert didn’t know what
he was talking about. So he was having a lot of fun pointing out
to them that they could have discovered Schrödinger’s wave me-
chanics six months earlier if they had paid a little more attention
to him.

See [, ] for the development of quantum mechan-
ics.

Quantum theory gives in return a huge impetus
to the mathematical development of spectral theory
for unbounded linear operators. According to L.A.
S []:

The mathematical machinery of quantum mechanics became that
of spectral analysis and the renewed activity precipitated the pub-
lication by Aurel Wintner of the first book devoted to spectral
theory in .

In , Ndefines axiomatically the con-
cept of abstract Hilbert space and developes, between
 and , a spectral theory for unbounded self-
adjoint operators in a Hilbert space. He synthetizes
his approach in the epoch-making book Mathematis-
cheGrundlagen derQuantenmechanik (Berlin, ),
and, the same year, S publishes his Linear Trans-
formations in Hilbert Spaces (Providence, ), the
first systematic treatise on the spectral theory of un-
bounded linear operators.

 V  
:     
 

Using Lagrange multipliers, L and C
(-) are already well aware that the smallest and
the largest eigenvalue of a symmetric quadratic form

𝑄𝑄(𝜓𝜓𝜓 𝜓
𝑛𝑛

􏾝􏾝
𝑗𝑗,𝑗𝑗𝜓

𝑎𝑎𝑗𝑗𝑗𝑗𝜓𝜓𝑗𝑗𝜓𝜓𝑗𝑗, (𝑎𝑎𝑗𝑗𝑗𝑗 𝜓 𝑎𝑎𝑗𝑗𝑗𝑗𝜓,

can be obtained my minimizing and maximizing it on
the unit sphere ∑𝑛𝑛

𝑗𝑗𝜓 𝜓𝜓𝑗𝑗 𝜓 . If the corresponding ex-
tremum is reached at 𝜓𝜓∗, then 𝜓𝜓∗ is an associated eigen-
vector, an approach later developed by R.

In the setting of integral or partial differential
equations, L, in unpublished papers written
around , H. W [] in , and P
[] in , independently propose a recursive varia-
tional method to determine all eigenvalues 𝜆𝜆 ≤ 𝜆𝜆 ≤
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… ≤ 𝜆𝜆𝑛𝑛 and corresponding eigenvectors 𝑢𝑢, 𝑢𝑢, … , 𝑢𝑢𝑛𝑛 of
𝑄𝑄:

𝜆𝜆 = min‖𝑢𝑢‖=
𝑄𝑄𝑄𝑢𝑢𝑄 𝑄= 𝑄𝑄𝑄𝑢𝑢𝑄𝑄,

𝜆𝜆𝑗𝑗 = min
‖𝑢𝑢‖=,⟨𝑢𝑢,𝑢𝑢⟩=,…,⟨𝑢𝑢,𝑢𝑢𝑗𝑗𝑗⟩=

𝑄𝑄𝑄𝑢𝑢𝑄 𝑄= 𝑄𝑄𝑄𝑢𝑢𝑗𝑗𝑄𝑄, 𝑄𝑗𝑗 = , … , 𝑛𝑛𝑄𝑛

Further considerations of P lead to a non-
recursive minimum-maximum principle explicitely
given by F [] in :

𝜆𝜆𝑗𝑗 = min
{𝑋𝑋𝑗𝑗⊂ℝ𝑛𝑛∶𝑑𝑑𝑑𝑑𝑑𝑑𝑋𝑋𝑗𝑗=𝑗𝑗𝑗

max
{𝑢𝑢𝑢𝑋𝑋𝑗𝑗∶‖𝑢𝑢‖=𝑗

𝑄𝑄𝑄𝑢𝑢𝑄𝑛

W introduces in  amaximum-minimum prin-
ciple:

𝜆𝜆𝑗𝑗 = max
{𝑝𝑝,…,𝑝𝑝𝑗𝑗𝑗𝑢ℝ

𝑛𝑛𝑗
min

{‖𝑢𝑢‖=,⟨𝑢𝑢,𝑝𝑝𝑑𝑑⟩=,≤𝑑𝑑≤𝑗𝑗𝑗𝑗
𝑄𝑄𝑄𝑢𝑢𝑄,

and C widely uses those principles in various
existence and approximation questions of mathemati-
cal physics (see the survey []). The principles are eas-
ily extended to the abstract setting of symmetric bilin-
ear forms in Hilbert spaces.

In , L and S’ [, ]
extend this theory by replacing𝑄𝑄 by an differentiable
function 𝑓𝑓 and the unit sphere by a finite dimensional
compact differentiable manifold𝑀𝑀𝑛 To replace the di-
mension of vector spaces, they introduce the concept
of category 𝑐𝑐𝑐𝑐𝑐𝑐𝑋𝑋𝑄𝐴𝐴𝑄 of a closed set 𝐴𝐴 in a topological
space 𝑋𝑋, namely the least integer 𝑘𝑘 such that 𝐴𝐴 can be
written as ∪𝑘𝑘𝑗𝑗=𝐴𝐴𝑗𝑗, with closed subsets 𝐴𝐴𝑗𝑗 contractible
in 𝑋𝑋𝑛 L and S’ prove that the
number of critical points of 𝑓𝑓 on𝑀𝑀 is at least 𝑐𝑐𝑐𝑐𝑐𝑐𝑀𝑀𝑄𝑀𝑀𝑄,
and that the corresponding values of 𝑓𝑓 at the critical
points (critical values) are given by

𝑐𝑐𝑘𝑘 = inf
𝐴𝐴𝑢𝐴𝐴𝑘𝑘

sup
𝑢𝑢𝑢𝐴𝐴

𝑓𝑓𝑄𝑢𝑢𝑄,

where 𝐴𝐴𝑘𝑘 = {𝐴𝐴 ⊂ 𝑀𝑀 ∶ 𝐴𝐴 closed, cat𝑀𝑀𝑄𝐴𝐴𝑄 𝐴 𝑘𝑘𝑗 for
𝑘𝑘 = , , … 𝑛

Of course one has to check that 𝐴𝐴𝑘𝑘 is non empty,
which requires topological considerations. In particu-
lar they prove that if 𝐹𝐹 ∶ ℝ𝑛𝑛 → ℝ is of class𝐶𝐶 and even,
then the system

𝐹𝐹 𝑄𝑢𝑢𝑄 = 𝜆𝜆𝑢𝑢

has at least 𝑛𝑛 pairs of solutions [𝑄𝜆𝜆, 𝑢𝑢𝑄, 𝑄𝜆𝜆, 𝑗𝑢𝑢𝑄𝜆 with
‖𝑢𝑢‖ = 𝑛 A version of this result is given in 
by L when ℝ𝑛𝑛 is replaced by a real infinite-
dimensional separable Hilbert space, 𝐹𝐹 is compact
and satisfies some other conditions.

In the fifties and the sixties, further extensions
of Lusternik-Schnirel’mann theory to some infinite-
dimensional problems are given by K’,
J.T. S and P (see references in []). F.
B [] refines and extends them to study non-
linear spectral problems in a Hilbert or a suitable re-
flexive Banach space 𝑋𝑋,which are of the form

𝐹𝐹 𝑄𝑢𝑢𝑄 = 𝜆𝜆𝑢𝑢 𝑄𝑢𝑢𝑄,

where 𝐹𝐹,𝑢𝑢 ∶ 𝑋𝑋 → ℝ are suitable sufficiently smooth
even nonlinear functionals. He finds conditions upon
𝐹𝐹 and 𝑢𝑢 which insure the existence of infinitely many
critical levels.

The special case of 𝑋𝑋 = 𝑋𝑋,𝑝𝑝
 𝑄𝛺𝛺𝑄, 𝑝𝑝 𝛺 , 𝛺𝛺 a

bounded domain of ℝ𝑁𝑁 , 𝐹𝐹𝑄𝑢𝑢𝑄 = ∫
𝛺𝛺
|∇𝑢𝑢𝑄𝑢𝑢𝑄|𝑝𝑝 𝑑𝑑𝑢𝑢 and

𝑢𝑢𝑄𝑢𝑢𝑄 = ∫
𝛺𝛺
|𝑢𝑢𝑄𝑢𝑢𝑄|𝑝𝑝 𝑑𝑑𝑢𝑢 leads to the eigenvalue problem for

the so-called p-Laplacian operator 𝛥𝛥𝑝𝑝, defined by

𝛥𝛥𝑝𝑝𝑢𝑢𝑄𝑢𝑢𝑄 ∶= div 􏿴􏿴|∇𝑢𝑢𝑄𝑢𝑢𝑄|𝑝𝑝𝑗∇𝑢𝑢𝑄𝑢𝑢𝑄􏿷􏿷 ,

with the Dirichlet boundary conditions

𝑢𝑢 =  on 𝜕𝜕𝛺𝛺𝑛

An eigenvalue for 𝑗𝛥𝛥𝑝𝑝 with the Dirichlet boundary
conditions is a 𝜆𝜆 such that the problem

𝑗𝛥𝛥𝑝𝑝𝑢𝑢 = 𝜆𝜆|𝑢𝑢|
𝑝𝑝𝑗𝑢𝑢 in𝛺𝛺, 𝑢𝑢 =  on 𝜕𝜕𝛺𝛺,

has a nontrivial solution.
The Lusternik-Schnirel’mann technique implies

the existence of a sequence of eigenvalues given by a
minimax characterization.

When 𝑁𝑁 = , it follows from direct computations
that this sequence constitutes thewhole spectrum, but
the problem remains open for 𝑁𝑁 𝐴 𝑛 For the corre-

sponding ordinary vector p-Laplacian𝑢𝑢 𝑢 􏿴􏿴‖𝑢𝑢 ‖𝑝𝑝𝑗𝑢𝑢 􏿷􏿷
where 𝑢𝑢 ∶ [, 𝜆 → ℝ𝑑𝑑, 𝑑𝑑 𝐴 , the spectrum is
completely known in the case of Dirichlet conditions
𝑢𝑢𝑄𝑄 = 𝑢𝑢𝑄𝑄 = , but not in the case of periodic bound-
ary condition 𝑢𝑢𝑄𝑄 𝑗 𝑢𝑢𝑄𝑄 = 𝑢𝑢 𝑄𝑄 𝑗 𝑢𝑢 𝑄𝑄 = 𝑛

The corresponding forced problem is always solv-
able (although not uniquely) when 𝜆𝜆 is not an eigen-
value, but solvability conditions at an eigenvalue re-
main almost terra incognita.

 S   
:    
 

The above extensions preserve the ℤ-symmetry of
the linear situation. Motivated by some asymmet-
ric asymptotically linear boundary value problems,
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F̌ andD have independently introduced in
 the study of problems of the form

−𝛥𝛥𝛥𝛥 𝛥 𝛥𝛥𝛥𝛥+ − 𝜈𝜈𝛥𝛥− in𝛺𝛺𝛺 𝛥𝛥 𝛥  on 𝜕𝜕𝛺𝛺𝛺

where 𝛥𝛥+ 𝛥 max(𝛥𝛥𝛺 )𝛺 𝛥𝛥− 𝛥 max(−𝛥𝛥𝛺 ). An eigenvalue
of this problem is now a couple (𝛥𝛥𝛺 𝜈𝜈) of reals such
that the above problem has a nontrivial solution, and
the set of eigenvalues is usually called the Fučik or the
Dancer-Fučik spectrumof the correspondingDirichlet
problem. Abstract extensions in suitable ordered Ba-
nach spaces exist as well. L and MK have
emphasized the possible interest of those problems in
modeling suspension bridges and explaining their pos-
sible instability (see []).

In the ordinary differential case (𝑁𝑁 𝛥  and 𝛺𝛺 𝛥
]𝛺 [)𝛺 the Fučik spectrum is completely determined
and made of the family of hyperbolic type curves

𝑚𝑚
√𝛥𝛥

+ 𝑛𝑛
√𝜈𝜈

𝛥 
𝜋𝜋𝛺 (𝑚𝑚𝛺 𝑛𝑛 𝛥 𝛺 𝛺 𝛺 …)𝛺

whose intersection with the diagonal reproduces of
course the standard spectrum

{𝑘𝑘𝜋𝜋 ∶ 𝑘𝑘 𝛥 𝛺 𝛺 …}.

Very little is know in contrast when 𝑁𝑁 𝑁 𝛺 except
some properties for the first non trivial curve, some
information on the shape near the diagonal points
(𝜆𝜆𝑘𝑘𝛺 𝜆𝜆𝑘𝑘) associated to the classical eigenvalues, and
some generic results about the structure in curves of
the spectrum.

Here again the solvability of the forced problem is
rather well understood when (𝛥𝛥𝛺 𝜈𝜈) is not in the Fučik
spectrum, butmuch remains tobedone infinding solv-
ability conditions when (𝛥𝛥𝛺 𝜈𝜈) belongs to the spectrum.

Needless to say that the situation is still less de-
veloped in the study of the Fučik spectrum of the p-
Laplacian

−𝛥𝛥𝑝𝑝𝛥𝛥 𝛥 𝛥𝛥𝑢𝛥𝛥𝑢
𝑝𝑝−𝛥𝛥+ − 𝜈𝜈𝑢𝛥𝛥𝑢𝑝𝑝−𝛥𝛥− 𝛥  in𝛺𝛺𝛺 𝛥𝛥 𝛥  on 𝜕𝜕𝛺𝛺.

References can be found in the monographs [,
].

 C

Many other modern aspects of spectral theory could
have been discussed here, like bifurcation theory,
Gelfand 𝐶𝐶∗-algebras, the spectrum of Riemannian
manifolds, inverse spectral problems, perturbation
theory or the relation between the spectrum of
Schrödinger equations and the solution of some non-
linear partial differential equations. This would have

taken the lecture beyong its time schedule, and the au-
thor beyond his abilities.

I hope that the story above has revealed the immen-
sively creative power of unplanified research, as well
as its unavoidable tortuous development. According
to the Chinese tradition, only devils follow straight
lines.

The conclusion will be left, like the Introduction,
to some quotations, one from the middle, and one
from the end of this century. They may convey some
changes in mentalities in the fifty years period. The
first one is due to R. G []:

We believe that the human mind is a “meteor” in the same way as
the rainbow – a natural phenomenon; and that Hilbert realizing
the “spectral decomposition” of linear operators, Perrin analyz-
ing the blue color of the sky, Monet, Debussy and Proust recre-
ating, for our wonder, the scintillation of the light on the see, all
worked for the same aim, which will also be that of the future:
the knowledge of the whole Universe.

The second one is due to M. Z []:

Eigenvalues of self-adjoint operators describe, among other
things, the energies of bound states, states that exist forever if
unperturbed. These do exist in real life […]. In most situation
however, states do not exist for ever, and a more accurate model
is given by a decaying state that oscillates at some rate. […] Eigen-
values are yet another expression of humanity’s narcissic desire
for immortality.
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 oPen questions leading to a global PersPective in dynamics

abstract.—We will address one of the most challenging and central problems in dynamical systems, 
meaning flows, diffeomophisms or, more generally, transformations, defined on a closed manifold 
(compact, without boundary or an interval on the real line): can we describe the behavior in the long 
run of typical trajectories for typical systems? Poincaré was probably the first to point in this direc-
tion and s  tress its importance. We shall consider finite-dimensional parameterized families of dy-
namics and typical will be taken in terms of Lebesgue probability both in parameter and phase spaces. 
We will discuss a conjecture stating that for a typical dynamical system, almost all trajectories have 
only finitely many choices, of (transitive) attractors, where to accumulate upon in the future. Interre-
lated conjectures will also be discussed.
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