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Abstract

Very basic results and ideas of symplectic topology are presented in the context of
symplectic embeddings of ellipsoids. A simple version of symplectic capacities is
defined and used to prove rigidity results, and the “symplectic folding” construction
is explained and used to prove flexibility results.

1 Classical Results

Consider the space R?", with coordinates (p,q), and a
smooth map H : R?® — R. Denote by ¢; the flow
@; : R?" — R2" of Hamilton equations:

)
e
. 0H
b= o

Theorem 1.1 (Liouville). The flow ¢ is volume pre-
Serving.

The changes of coordinates (P,Q) = ¢(p,q) in R*"
that preserve the form of the Hamilton equations for
any Hamiltonian H (called canonical transformations
in Mechanics) form the relevant group for symplectic
geometry. They can be characterized by preserving the
standard 2-form wy:

dPAdQ =dpAdg, (P,Q)=¢(p,q)

where:
n
wo =dpAdg = dei A dg;.
i=1
It is an important fact that, for any fixed ¢:
Theorem 1.2. The flow of Hamilton equations
po R — R (p',q") = ¢u(p, q)

is a canonical transformation:

dpt Adgt = dp® A dg°.

Equivalently, w = dp A dq is an integral invariant of ¢;:

Yiw =w.

All this can be generalized to a symplectic manifold:
a pair (M,w), where M is a 2n—dimensional differen-
tiable manifold and w is a symplectic form, a 2-form
satisfying:

1
Q= - w™ is a volume form, and w is closed: dw = 0.
n!

Locally all symplectic manifolds look the same: there
are no local invariants; this is in contrast to Rieman-
nian geometry, where curvature, for instance, is a local
invariant. The precise formulation is:

Theorem 1.3 (Darboux). A symplectic manifold
(M, w) is locally symplectomorphic to:

(Ran Wo = dp A dQ)

i.e. given x € M, there exists a neighbourhood U of x
and a diffeomorphism ¢ : U — V C R?*™ such that:

" (dp Adg) = w.

Liouville theorem is valid for any canonical transfor-
mation, besides the flow of Hamilton equations. More
generally, defining a symplectic map as a map ¢ :
(M,w) — (M',w’) such that p*w’ = w, we have:

Theorem 1.4 (Liouville). A symplectic diffeomor-
phism ¢ : (M,w) — (M’,w’) is volume preserving

P =w = ' =Q.
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There is no interesting topology associated to volume
preserving maps; in fact:

Theorem 1.5 (Moser). If U C R?" is diffeomorphic
to a ball B, and vol(U) = vol(B), then there exists a
volume preserving diffeomorphism ® : B — U.

The work of Gromov in the 80’s showed a completely
different picture for symplectic topology. In the sym-
plectic camel problem, the camel is represented by the
closed unit ball in R*, and the wall with a hole by:

W={zeRz, =0, 25 +25+2] >1}.

Then the problem, passing the camel through the wall
hole, is to move the ball from one side of the wall (say,
x1 > 0) to the other, preserving the standard symplec-
tic form.

That this is impossible shows a form of rigidity in sym-
plectic geometry. We will consider other results on
rigidity, but also on flexibility, in the context of em-
bedding an ellipsoid into another one.

This type of problem has a Hamiltonian dynamics in-
terpretation ([7]): let (p;,q;) be the moment-position
of the ith particle; we can consider an initial ellipsoid
as a representation of our knowledge of the particles,
a smaller i—axis meaning more information, or smaller
error, for particle ¢; it is important to know whether in
future time the image of the ellipsoid by the flow can be
contained in a different ellipsoid. As the flow, for fixed
time, is a canonical transformation, albeit of a special
type, we have an embedding problem for ellipsoids.

2 Basic definitions

A volume form on a smooth m-dimensional manifold
M is a nowhere vanishing n-form 2. On every open
set U C R™ we consider the standard volume Q5 =
dzi A ... Adz,; a smooth embedding ¢ : U — M is
said to be volume preserving if:

(p*Q = Qo.

Let 2(n) be the group of symplectic diffeomorphisms
(also called symplectomorphisms or canonical transfor-
mation) of R?", and Sp(n) its subgroup of linear iso-
morphisms.

On every open set U C R?" we consider the standard
symplectic form wyg = dz Ady = dxy Ady; +---+dz, A
dy,; a smooth embedding ¢ : U — M is said to be
symplectic if it is a symplectic map:

¢ w = wp, and therefore p*Q = Qg

where Q and g are the volume forms induced by the
symplectic forms.

Definition 1. An open symplectic ellipsoid of C™ =
R2™ with radii v; = \/a; /7 is the set:

E(a) = E(ala"'aan)
2 2
o] )

where we assume a1 < ... < an, and zj = T +1Y;.

ai G,

1%

Definition 2. An open symplectic cylinder of C™
R?" with radius r = \/a/7 is the set:

Z(a) = {(z,y) € R -
={zeC":

7T|(l’1,y1)\2 <a}

m|z1)? < a}.

Remark 2.1. The ball of radius v is denoted by
B(nr?):

In dimension 2, an embedding is volume preserving if
and only if it is symplectic; in higher dimensions there
exists symplectic rigidity, as first shown in [5]:

Gromov Theorem (1985). If there is a symplectic
embedding ¢ : B(a) — Z(A) of a ball into a symplec-
tic cylinder, then a < A.

Remark 2.2. [t is essential for the cylinder to be sym-
plectic; the Lagrangian cylinder:

L(a) = {(z,y) € R*" : 7|(x1,22)|* < a}

can be embedded into L(A) for any positive A, as the
map:

A 2¢ A 2a )

H R R R R
($17y17$2ay2) (2ax17 Ay172a$27 Ay2

18 a symplectomorphism.

The detection of embedding obstructions and the proof
of the corresponding rigidity results will be based on
symplectic capacities:

Definition 3. An extrinsic symplectic capacity ¢ on

(R?" wy) is a map c such that, for every A C R?",
c(A) € [0, +00], satisfying the following properties:

Monotonicity: c¢(A) < c(A’) if there exists ¢ € D(n)
such that o(A) C A’.

Conformality: c(aA) = a?c(A), for any o € R*.

Nontriviality: 0 < ¢(B(7)), c¢(Z(7)) < oo.



3 Rigidity

When considering linear symplectic embeddings, there
exists symplectic rigidity:

Theorem 3.1 ([8]). Given two ellipsoids E(a) and
E(a'), there exists a linear symplectic map S € Sp(n)
such that S (E(a)) C E(d’) if and only if a; < a}, for
alli=1,...,n.

Even when allowing nonlinear symplectomorphisms,
symplectic rigidity can still be present:

Theorem 3.2 ([4]). Given two ellipsoids E(a1,a2) and
E(d}, dy) with:
!/ !/ 1
v<ag,az,aq,ay <1, 3 <vr<l1

there exists a symplectic embedding ¢ such that
¢ (E(a)) C E(d') if and ony if a; < al, fori=1,2.

Gromov theorem can also be seen as a rigidity result
for embeddings of ellipsoids and it follows immediatly
from it that, if F(a) embeds symplectically into E(a’),
then:

a; < aj.

Going back to the Hamiltonian dynamics interpreta-
tion, this means that we cannot improve our knowledge
of the best known particle, but (flexibility results) if we
allow a loss in information for that particle, the error
in the others can become smaller.

In C? = R* it is natural to characterize the shape of a
symplectic ellipsoid by:

Definition 4. Two ellipsoids E(ay,as) and E(a},al)
in C? =2 R* have the same shape type if:

!/

TheN: k<2 k41, k<2 <k+1.
ay ay

In higher dimensions the definition will be more general:

Definition 5. Given an ellipsoid E(aq,...,a,), let
{u:} be the sequence of the numbers {ka;}, with k € N
andj =1,...,n, written (maybe with repetitions) in in-
creasing order. The Ekeland-Hofer i-capacity for E(a)
is given by:

ci (E(a)) = p-

Definition 6. Two ellipsoids E(a) and E(a’) in C™ =
R?" have the same shape type if:

Jog =1<--<ap: pala)=a;, pa,(ad)=ad,.

Example 1. An ellipsoid E(a) C C" = R?" has the
shape type of a ball whenever a, < 2ay; then the asso-
ciated sequences are:

w ={AA... A 24,...,2A,34,...} for B(A)
w ={a1,azs,...,a,,2a1,...,2a,,3az,...} for E(a)
and we can choose a; =i, i=1,...,n.

Example 2. E(1,2,3) and E(1,3,4) have the same
shape type, their associated sequences being respectively:

o ={1,2,2,3,3,4,4,5,6,6,6,7...}
W' ={1,2,3,3,4,4,5,6,6,7,...}

We can choose vy = 1, as = 3 and ag = 5.

Having the same shape type is an equivalence relation
if we exclude resonant ellipsoids, for which the sequence
{p:} is not strictly increasing; it is easy to see that then
the two definitions agree for n = 2.

Example 3. B(a) and E(a,2a) have the same shape
type using the definition 6: their associated sequences
are respectively:

w ={a,a,2a,2a,3a,3a,4a,4a,...}
u' ={a,2a,2a,3a,4a,4a,5a,6a,...}

and we can choose oy = 1 and ag = 2. On the other
hand, they have different shape types using the first def-
inition (def. 4).

Theorem 3.2 considers ellipsoids with the shape type
of a ball (kK = 1), but the result can be extended to
ellipsoids having the same shape type:

Theorem 3.3 ([1]). If the two ellipsoids E(a) and
E(a') in C* = R?*™ have the same shape type, there
exists a symplectic embedding ¢ such that ¢ (E(a)) C
E(d’) if and only if:

’ .
a; <a;, t=1,...,n.

Proof. If E(a) embeds in F(a’) then it follows from the
definition of capacity that:

¢j (E(a)) < ¢; (E(a’))
for all Ekeland-Hofer capacities, in particular if they
have the same shape type:
a; = cqo, (E(a)) < cq, (B(d"))=a, i=1,...,n.
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This is a generalization of a result of F. Schlenk [12, 13]:
If a,, < 2a4, there exists no symplectic embedding of the
ellipsoid E(a) = E(ai,...,ay,) into a ball B(A) with
A < a, (the shape type of the ellipsoid is that of a
ball).



4 TFlexibility

The following result shows that, if the shape type of the
ellipsoids is sufficiently different, there is flexibility:

Theorem 4.1 ([6, 4]). For any a > 0, and for a suffi-
ciently small € > 0, there exists a symplectic embedding
© such that:

v (E(e,...,e,a)) C B(m).

There are no estimates on the size of ¢, but F. Schlenk,
using symplectic folding, proved:

Theorem 4.2 ([12, 13]). If 8 > 2a, there exists
a symplectic embedding ¢ of the ellipsoid E(r) =
E(a,...,a,3) C C" =2 R?" into a ball B(A) with:

E(a,...,a,8) < B(A), A>§—|—o¢.

Remark 4.1. This theorem has been much improved in
(complex) dimension 2 ([11]). But the methods used to
obtain the best embedding results do not have a straight-
forward generalization to higher dimensions.

Definition 7. An open polydisk is the set:

P(a) = P(a1,...,a,) = B(ay) x -+ x B(ay)
2 2
a n

where we assume a1 < -+ < a,.

A very impressive result concerning flexibility of poly-
disks is due to L. Guth:

Theorem 4.3 ([7]). There is a dimensional constant
C,, such that, given two polydisks P(r) and P(r'), if:

!

I
Cray...anp <aj...a,

C’nal < Tll,
there exists a symplectic embedding of P(a) into P(a’).

This result has an obvious application to ellipsoids:

Example 4. In C* = RS, there exists a constant
K > Csm such that:

4
E(n,a,a) = E (SK, 3K, Ka2> a>3K.
This follows from the embedding:
a2
P(r,a,a) — P (K, K, C37r)

and the inclusions E(m,a,a) C P(m,a,a) and:

plrx ) c e sk 3k L
’)Cs,n_ b ,Ka .

A similar result is valid in any dimension; it shows that
if the shape type of the ellipsoid is sufficiently different
from that of a ball (a > 3K above) then there exists
considerable flexibility and the relevant obstructions are
(derived from) just the first capacity and the volume.

Capacities (in general) involve the 2-dimensional area
of some object; volume can considered a generalized
capacity and is 2n-dimensional. It is natural to search
for intermediate capacities that involve 2k-dimensional
volumes; it follows from the results of [7] that there are
no reasonably continuous intermediate capacities.

Symplectic folding is described in [9, 10, 12, 13]; we
shall use a slightly different version [1], but the very
careful and detailed presentation in [12, 13] should be
considered for all technical aspects.

We define T'(a, b) as the set:
T'(a,b) ={ (21,22) = (u1,v1,u2,v2) € RY|
(u1,v1) €]0,a[x]0,1[, (u2,v2) €]0,b[x]0,1]

and T'(a) = T(a,a). The projection of T'(a,b) on the
(u1,uz) plane is a triangle and the fibres are the unit
square.

Lemma 4.4 ([12, 13]). Assume € > 0. Then:

1. E(a,b) symplectically embeds into T'(a +e,b+¢).
2. T(a,b) symplectically embeds into E(a+e,b+¢).

Sketch of the proof. The main fact involved in the proof
is the existence of an area preserving map (u,v) = o(z)
in the plane [12, 13] that, outside an arbitrarily small
neighbourhood of the origin, where it is a translation,
essentially takes open circles of area a into open rect-
angles |0, a[x]0, 1] (figure 1).

0 - 5 R/2 R

Figure 1: Area preserving map in the plane

Let D(a) be the disk of area a; then:

E(a,b) = {z | z1 € D(a), 20 € D (b(l - 7r|21\2/a)) }
The symplectic embedding of E into T is then:

(21, 22) = ((u1,v1), (u2,v2)) = (0(21),0(22))

The inverse of this map is used to embed T into £. O



Here and subsequently we ignore everything ‘small’: an
arbitrary small § is involved in the construction of o,
we should therefore consider maps os with sufficiently
small §, but it is easier to proceed as if § could be zero.

It follows from lemma 4.4 that embedding results for el-
lipsoids can be obtained from the corresponding results
for sets of the form T'(a,b), and we describe symplectic
folding for these sets in section 5. Figure 2 summarises
the process (cf. figure 3.13 in [12]).

Since U embedding symplectically into V' is equivalent
to AU embedding symplectically into AV for A # 0,
we normalize the ellipsoids E(a), and therefore the sets
T, so that a; = m. In the figures we really represent
T(a,n) instead of T'(w, a), as in [12].

Theorem 4.5 ([1]). If the ellipsoid E(r) = E(rq1,r2)
in C2 = R* has shape type k > 3 with:

3§k<’r‘2/1“1<k+1
there exists a symplectic embedding ¢ such that

¢ (E(r)) C E(r") with:

!
-
ro >1h and ng—?<n—|—l
L5

2k
for all shape typesn =1,..., {3} .

Proof. We consider the normalised ellipsoid E(w,a),
with k7 < a < (k4 1)7 and k > 3. Symplectic folding
gives an embedding (figure 2):

T(ﬂ',a)<—>T(g+7r+€)

and lines above the image of T'(m,a) in the
(uf,ub)—plane correspond to sets T'(«, ) into which
T(m,a) embeds; (a,0) and (0,3) are the intersections
of the line with the coordinate axes.

Going from T-type sets to ellipsoids:

3 3
E(7r,a)<—>E(27r+5,4(a+7r)+5),
with:

3
i(a+7r)<a<:>k23.

The same construction also gives an embedding:
a
E(r,a) — B (5 +7T+s>

and clearly embeddings for all in between shape types.
For any b such that:

3
Z(a+7r)<b<a

there is a trivial embedding (again see figure 2):
3 3 3
E (27r+5,4(a—|—7r) —1—5) — E (27r—|—5,b>

and the shape type can thus be extended up to
3]

— . O

3
Open Question ([12, 13]). Does the ellipsoid

E(a,2a,3a) symplectically embed into B(A) for some
A< 3a?

Ekeland-Hofer capacities show that:

e E(a,3a,...,3a) does not symplectically embed
into a ball B(A) with A < 3a.

e FE(a,2a,...,2a,3a) does not symplectically em-
bed into a ball B(A) with A < 2a.

On the other hand, there is also some flexibility, as it
follows from theorem 4.2 that:

E(a,3a) — B <2a +5)

The change introduced in the symplectic folding pro-
cess allows estimates (lemma 4.7) that are decisive in
the proof of:

Theorem 4.6 ([1]). For any positive €, there exists a
symplectic embedding:

E(m,by1,...,bp_o=0b,a) > B(A+¢), A<a

when a > b+, with A given by:

at+b+m
5 .

Remark 4.2. Forn =3, b=2nm, a = 37:

A:

3m+2r
and thus E(m,2m,37) is in the boundary of (known)

flexibility.

E(m,2m,3m) = B(A+¢), A

Remark 4.3. b = 7 gives theorem 3.1.1 in [12] (or
theorem 4.2): for alle > 0,

E(rw,...,m, a) symplectically embeds into B (g + 7+ 6)

Lemma 4.7 ([1]). For any € > 0, symplectic folding
gives an embedding 1 : T(m,a) — C? = R*:

P((u1,01), (u2,v2)) = ((u,vh), (u, v3))
such that

a+b+m

b b
uptuy < A—b+ —uy+ —ug+e, A=
s a 2
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3a/4+3m/4

Figure 2: Scheme of symplectic folding in the (u1,us2) plane

Theorem 4.6 follows from lemmas 4.7 and 4.8:

Lemma 4.8 ([1]). If for any positive ¢ there exists a
symplectic embedding v : T(m,a) — C? = R*:

w((ula 1}1), (Ug, UZ)) = ((ulla v/1)7 (U/Qﬂ ’Ué))
such that:

b b
uiuy <A—b+ —up + —us +e¢
m a

then there exists a a symplectic embedding ®:

E(’]T,bl,...,bn,Q :b,a) ‘—)B(A-i—E)

Proof. Tt follows from lemma 4.4 and the estimate on
1) that there exists a symplectic embedding o:

o: E(m,a) = C* = R*, o(z1,22) = (21, 23)

such that:
12 /12 b 2 b 2
21"+ gt < A—b+ ;ﬂ'\z1| +E7T|22| +e

with:

at+b+m

A= 5

Then o x id,,_s, after a suitable permutation 7, defined
by 7(21, 22, ...) = (21, 2n, 22, - - .), gives the desired sym-
plectic embedding;:

® = (0 xid, o) o7 : E(mbi,...,by_2,a) = C" = R™

O

5 Symplectic folding

Step 1: We separate the region ug > 7 from the region
us < m, the large fibres from the small ones: here the
fibres are related to the projection on the (u1,v;) plane,
and the symplectic map is the product ¢ X id of an area
preserving map ¢ in the (ui,v1) plane (figure 3) and
the identity on the (ug,vs) plane.

10

\ Vi

a/2 a U,

a/2  a/2+m/2  a+m/2 u,

Figure 3: Separating the fibres: black regions have the same
area

Remark 5.1. Again we should consider the regions
uz > b/2+0 and us < b/2 —§ and deform b/2 —§ <
uz < b/2 46 for a conveniently small 6 (the black re-
gion); the map outside that region is the identity on the
left and a translation on the right.

The result can also be seen in the (u1,u2) plane:

u, u;
T T
/2

| a/2 a u, I a2 a/2+m/2  a+w/2 U,

Figure 4: Separating the fibres, (u1,u2) plane

Remark 5.2. The (u1,v1) and (uz,ve) planes are sym-
plectic, the symplectic form on them is an area form,
and it is convenient to preserve the area on them; but
the plane (uy,us) is Lagrangean, the symplectic form
vanishes on it and therefore no area preserving on that
plane is involved.

Step 2: We rearrange the fibres: the symplectic map is
the product of an area preserving map o7 in the (us, v2)
plane (figure 5), and the identity on the (u1,v;) plane.



T /2

w2

0 —T/2
0 1 0 1

Figure 5: Rearranging the fibres in the (u2,v2) plane

The result can again be seen in the (uj,us) plane, the
top triangle goes to the bottom:

a2 a/2+m/2 a+m/2  u

1

—n/2

Figure 6: Rearranging the fibres, in the (u1,us2) plane

Step 3: We lift the region a/247/2 < u; < a+7/2 by
/2 along the us direction. Now the symplectic map is
not a product of area preserving maps: its action can
be seen in the (u1,u2) and (u1,v1) planes (figure 7),
but we refer to [12] for the construction of the lift map.

Uy

>
Uy

a/2 a/2+m/2 a+m/2
—m/2
/2
1
a2 a/2+m/2 a+m/2 E

Figure 7: Lifting

The grey region in the plane (u1,v1) is the projection
on that plane of points lifted less than 7/2, and more
than 0, and has area bigger than /2.

Step 4: We contract along the v; direction, and extend
along the u; direction, by a/(a+7), keeping (usg, v2) un-
changed (figure 8); again this is the product of an area

11

preserving map on the (uj,v1) plane and the identity
on the (uz,v2) plane.

Vi A
n(a+m)/(2a)
a/(a+m)
B T

a/2+m/2 u,

Figure 8: Rearranging in the (u1,v1) plane

Step 5: We now turn T over B: we extend the grey
area, then we fold twice in the base (figure 9).

n(a+rt /(2a)

U ]

a/2+m/2 a/2+m/2
E|.
B

a/24m/2 a/2+m/2

Figure 9: Folding in the (u1,v1) plane

The transformation of the grey area (in the (up,v1)
plane) is as in the previous step, with a factor of 7/a
now, but using the identity outside that area on the left
and a translation on the right. The end result in the
(u1,ug) plane is:

)
B
/2
e —
a/2+m/2 u,
—T/2

Figure 10: Folding in the (u1,us2) plane

Step 6: We rearrange the fibres in the (ug,vs2) plane
again:



T 3m/2
/2 —02> T
o | I
2 o e
0 1 0 1

Figure 11: Rearranging the fibres in the (u2,v2) plane

The symplectic map is the product of an area preserving
map o9 in the (ug2,v2) plane (figure 11), and the iden-
tity on the (up,v;) plane. Seen in the (ug,us) plane,
the bottom triangle goes to the top (figure 2).

The symplectic folding construction is summarised in
figure 2 (it should be compared to figure 3.13 in [12]):
the advantage of the change relative to [12, 13] is that
we can get embeddings into ellipsoids, keeping the same
estimates obtained for embeddings into balls.
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