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Feature Article

The solid trefoil knot as an algebraic surface

Stephan Klaus

Mathematisches Forschungsinstitut
Oberwolfach

http://www.mfo.de/organisation/institute/klaus

Abstract

We give an explicit polynomial of degree 14 in three real variables x, y and z such
that the zero set gives the solid trefoil knot. The polynomial depends on two fur-
ther parameters which enable a deformation from an embedded torus. We use only
elementary methods such that the proofs are also accessible to graduate math work
groups for pupils in secondary schools. The results can be easily visualized using the
free SURFER software of Oberwolfach.

Introduction

We use the elementary technique in [1] to construct
an explicit polynomial of degree 14 in three real
variables x, y and z such that the zero set gives
the solid trefoil knot, i.e, the boundary surface of
a tubular neighborhood of the trefoil knot. This
answers a question of José Francisco Rodrigues at
the Mathematisches Forschungsinstitut Oberwolfach.

Moreover, our polynomial will also depend on two real
parameters a and b such that a 7→ 0 describes a defor-
mation into the shape of the standard torus.

We present some visualizations of the trefoil surface
by the free SURFER software of Oberwolfach which
also allows real-time deformation by changing some sur-
face parameters. Using suitable parameter combina-
tions there are interesting self-intersections and singu-
larities. The pictures of this article are all created by
the SURFER.

The trefoil knot is the simplest nontrivial knot and
one can ask for explicit polynomials giving other solid
knots. In a forthcoming paper, we will do this for gen-
eral torus knots by similar techniques, whereas other

types of knots seem difficult to approach. In particular,
the following numerical invariant of a knot seems to be
new, but difficult to approach:

Definition: Let K ⊂ R3 be a knot. Denote by

sad(K) := min
{

deg(p)|p ∈ R[x, y, z]and p(x, y, z) = 0

gives a tubular neighborhood aroundK
}

the solid algebraic degree of K.

Our construction shows sad(trefoil) ≤ 14. More gen-
erally, it is possible to show sad(K) ≤ 8 + 2k for a
(2, k)-torus knot using the method described in [1].

Keywords: trefoil knot, torus, algebraic surface
MSC: 14J25, 14Q10, 51N10, 57N05, 57N35
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The idea of the construction

We denote by d the distance of a point (x, y) ∈ R2 to
the origin and by φ ∈ [0, 2π[ its angle to the x-axis, i.e.

d2 = x2 + y2, x = d cos(φ) and y = d sin(φ).

We denote C := cos(φ) and S := sin(φ).

Now we consider a second coordinate system (t, z) ∈ R2

and two circles of radius b and centers (1 − a, 0) and
(1 + a, 0), which are clearly given by the equation[
(t− 1− a)2 + z2 − b2)((t− 1 + a)2 + z2 − b2

]
= 0

where we assume a and b to be positive real numbers.
We note that the two circles intersect if a ≤ b and that
the circle around 1−a includes the origin for a+ b > 1.
By expansion of [(t− 1)± a]

2
and using the third bino-

mial law, the equation reads as[
(t− 1)2 + z2 + a2 − b2

]2 − 4a2(t− 1)2 = 0.

As in [1], the idea is to rotate the pair of circles around
the center (1, 0) by an angle ψ ∈ R in the (t, z)-plane,
while the t-axis rotates around the z-axis and spans the
(x, y)-plane. If φ denotes the angle of the t-axis against
the x-axis in the (x, y)-plane, we set up the condition

2ψ = 3φ.

This condition yields exactly 3 twists (i.e., rotations
by π in the (t, z)-plane) of the two tubes generated by
the rotating circles before glueing them together after
a full rotation around the z-axis. Thus, we imitate ex-
actly the construction of the trefoil knot as a (2, 3)-torus
knot.

We implement this idea by a coordinate rotation in the
(t, z)-plane around (1, 0)

(t− 1) 7→ c(t− 1) + sz z 7→ −s(t− 1) + cz,

where c := cos(ψ) and s := sin(ψ). This gives the equa-
tion for the rotated pair of circles[
(c(t− 1) + sz)2 + (−s(t− 1) + cz)2 + a2 − b2

]2 −
4a2(c(t− 1) + sz)2 = 0.

Expansion of the two inner brackets gives equation E:[
(t− 1)2 + z2 + a2 − b2

]2 − 4a2
[
c2(t− 1)2+

2cs(t− 1)z + s2z2
]

= 0.

At the same time, we have in the (x, y)-plane

t2 = x2 + y2, x = t cos(φ) and y = t sin(φ).

As a special case, we obtain the standard torus for
a = 0 (and b < 1), as then the two circles coincide. We
note that in this case a = 0, the SURFER has problems
with the visualization as there are two surfaces at the
same place which is numerically an unstable situation.

Construction of the polynomial
equation

Now we will construct an implicit polynomial represen-
tation p(x, y, z) for the solid trefoil knot by elimination
of the variables φ (i.e., C and S), ψ (i.e., c and s) and
t.

The relation 2ψ = 3φ yields with the formulas for the
double angle and for the triple angle the following rela-
tions:

C3 − 3CS2 = c2 − s2 and 3C2S − S3 = 2cs.

Because of c2+s2 = 1 we obtain c2 = 1
2 (1+C3−3CS2)

and s2 = 1
2 (1− C3 + 3CS2), hence

c2 =
t3 + x3 − 3xy2

2t3
, s2 =

t3 − x3 + 3xy2

2t3
and

cs =
3x2y − y3

2t3
.

Inserting this into the equation E and multiplying with
2t3 in order to clear denominators gives

2t3
[
(t− 1)2 + z2 + a2 − b2

]2
+ 2(3x2y − y3)(t− 1)z −

4a2 [((t3 + x3 − 3xy2)(t− 1)2 + (t3 − x3 + 3xy2)z2
]
= 0.

Separating even powers of t to the left side and odd
powers to the right yields

3



− 8t4
[
(t2 + 1 + z2 + a2 − b2) + 4a2 [2t4 − (x3 − 3xy2)(t2 + 1)

]
+ 8a2(3x2y − y3)z + 4a2(x3 − 3xy2)z2

]
=

t
[ [

2t2(t2 + 1 + z2 + a2 − b2)2 + 8t4 + 4a2(2(x3 − 3xy2)− t2(t2 + 1)
]
− 8a2(3x2y − y3)z − 4t2a2z2

]
.

Squaring and inserting t2 = x2 + y2 yields the polynomial equation for the solid trefoil knot of degree 14:

[
− 8(x2 + y2)2(x2 + y2 + 1 + z2 + a2 − b2) + 4a2[2(x2 + y2)2 − (x3 − 3xy2)(x2 + y2 + 1)

]
+

8a2(3x2y − y3)z + 4a2(x3 − 3xy2)z2
]2

− (x2 + y2)
[
2(x2 + y2)(x2 + y2 + 1 + z2 + a2 − b2)2 + 8(x2 + y2)2+

4a2[2(x3 − 3xy2)− (x2 + y2)(x2 + y2 + 1)
]
− 8a2(3x2y − y3)z − 4(x2 + y2)a2z2

]2
= 0

In this article we present some visualizations for differ-
ent parameter values and points of view. We remark
that in some pictures, the z-axis appears as a ghost
which is probably due to numerical instabilities in the
SURFER software.
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surfaces,
Preprint, 10 p. (2010, submitted), Mathematis-
ches Forschungsinstitut Oberwolfach

Stephan Klaus is one of the invited speakers of MatCampus2010.

4

http://www.matcampus2010.org/pt


Feature Article

Symplectic topology: rigidity and flexibility of ellipsoids

J. Basto-Gonçalves

Centro de Matemática da Universidade do Porto
Portugal

jbg@fc.up.pt

Abstract

Very basic results and ideas of symplectic topology are presented in the context of
symplectic embeddings of ellipsoids. A simple version of symplectic capacities is
defined and used to prove rigidity results, and the “symplectic folding” construction
is explained and used to prove flexibility results.

1 Classical Results

Consider the space R2n, with coordinates (p, q), and a
smooth map H : R2n −→ R. Denote by ϕt the flow
ϕt : R2n −→ R2n of Hamilton equations:

q̇ =
∂H

∂p

ṗ = −∂H
∂q

.

Theorem 1.1 (Liouville). The flow ϕt is volume pre-
serving.

The changes of coordinates (P,Q) = ϕ(p, q) in R2n

that preserve the form of the Hamilton equations for
any Hamiltonian H (called canonical transformations
in Mechanics) form the relevant group for symplectic
geometry. They can be characterized by preserving the
standard 2-form ω0:

dP ∧ dQ = dp ∧ dq, (P,Q) = ϕ(p, q)

where:

ω0 = dp ∧ dq =

n∑
i=1

dpi ∧ dqi.

It is an important fact that, for any fixed t:

Theorem 1.2. The flow of Hamilton equations

ϕt : R2n −→ R2n, (pt, qt) = ϕt(p, q)

is a canonical transformation:

dpt ∧ dqt = dp0 ∧ dq0.

Equivalently, ω = dp∧ dq is an integral invariant of ϕt:

ϕ∗tω = ω.

All this can be generalized to a symplectic manifold:
a pair (M,ω), where M is a 2n−dimensional differen-
tiable manifold and ω is a symplectic form, a 2-form
satisfying:

Ω =
1

n!
ωn is a volume form, and ω is closed: dω = 0.

Locally all symplectic manifolds look the same: there
are no local invariants; this is in contrast to Rieman-
nian geometry, where curvature, for instance, is a local
invariant. The precise formulation is:

Theorem 1.3 (Darboux). A symplectic manifold
(M,ω) is locally symplectomorphic to:

(R2n, ω0 = dp ∧ dq)

i.e. given x ∈ M , there exists a neighbourhood U of x
and a diffeomorphism ϕ : U −→ V ⊂ R2n such that:

ϕ∗(dp ∧ dq) = ω.

Liouville theorem is valid for any canonical transfor-
mation, besides the flow of Hamilton equations. More
generally, defining a symplectic map as a map ϕ :
(M,ω) −→ (M ′, ω′) such that ϕ∗ω′ = ω, we have:

Theorem 1.4 (Liouville). A symplectic diffeomor-
phism ϕ : (M,ω) −→ (M ′, ω′) is volume preserving

ϕ∗ω′ = ω =⇒ ϕ∗Ω′ = Ω.
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There is no interesting topology associated to volume
preserving maps; in fact:

Theorem 1.5 (Moser). If U ⊂ R2n is diffeomorphic
to a ball B, and vol (U) = vol (B), then there exists a
volume preserving diffeomorphism Φ : B −→ U .

The work of Gromov in the 80’s showed a completely
different picture for symplectic topology. In the sym-
plectic camel problem, the camel is represented by the
closed unit ball in R4, and the wall with a hole by:

W =
{
x ∈ R4|x1 = 0, x22 + x23 + x24 ≥ 1

}
.

Then the problem, passing the camel through the wall
hole, is to move the ball from one side of the wall (say,
x1 > 0) to the other, preserving the standard symplec-
tic form.

That this is impossible shows a form of rigidity in sym-
plectic geometry. We will consider other results on
rigidity, but also on flexibility, in the context of em-
bedding an ellipsoid into another one.

This type of problem has a Hamiltonian dynamics in-
terpretation ([7]): let (pi, qi) be the moment-position
of the ith particle; we can consider an initial ellipsoid
as a representation of our knowledge of the particles,
a smaller i−axis meaning more information, or smaller
error, for particle i; it is important to know whether in
future time the image of the ellipsoid by the flow can be
contained in a different ellipsoid. As the flow, for fixed
time, is a canonical transformation, albeit of a special
type, we have an embedding problem for ellipsoids.

2 Basic definitions

A volume form on a smooth n-dimensional manifold
M is a nowhere vanishing n-form Ω. On every open
set U ⊂ Rn we consider the standard volume Ω0 =
dx1 ∧ . . . ∧ dxn; a smooth embedding ϕ : U ↪→ M is
said to be volume preserving if:

ϕ∗Ω = Ω0.

Let D(n) be the group of symplectic diffeomorphisms
(also called symplectomorphisms or canonical transfor-
mation) of R2n, and Sp(n) its subgroup of linear iso-
morphisms.

On every open set U ⊂ R2n we consider the standard
symplectic form ω0 = dx∧dy = dx1∧dy1 + · · ·+ dxn∧
dyn; a smooth embedding ϕ : U ↪→ M is said to be
symplectic if it is a symplectic map:

ϕ∗ω = ω0, and therefore ϕ∗Ω = Ω0

where Ω and Ω0 are the volume forms induced by the
symplectic forms.

Definition 1. An open symplectic ellipsoid of Cn ∼=
R2n with radii ri =

√
ai/π is the set:

E(a) = E(a1, . . . , an)

=

{
z

∣∣∣∣ π|z1|2a1
+ · · ·+ π|zn|2

an
< 1

}
,

where we assume a1 ≤ . . . ≤ an, and zj = xj + iyj.

Definition 2. An open symplectic cylinder of Cn ∼=
R2n with radius r =

√
a/π is the set:

Z(a) = {(x, y) ∈ R2n : π|(x1, y1)|2 < a}
= {z ∈ Cn : π|z1|2 < a}.

Remark 2.1. The ball of radius r is denoted by
B(πr2):

B(a) = E(a, a, . . . , a), Z(a) = E(a,∞, . . . ,∞).

In dimension 2, an embedding is volume preserving if
and only if it is symplectic; in higher dimensions there
exists symplectic rigidity, as first shown in [5]:

Gromov Theorem (1985). If there is a symplectic
embedding ϕ : B(a) −→ Z(A) of a ball into a symplec-
tic cylinder, then a ≤ A.

Remark 2.2. It is essential for the cylinder to be sym-
plectic; the Lagrangian cylinder:

L(a) = {(x, y) ∈ R2n : π|(x1, x2)|2 < a}

can be embedded into L(A) for any positive A, as the
map:

(x1, y1, x2, y2) 7→
(
A

2a
x1,

2a

A
y1,

A

2a
x2,

2a

A
y2

)
is a symplectomorphism.

The detection of embedding obstructions and the proof
of the corresponding rigidity results will be based on
symplectic capacities:

Definition 3. An extrinsic symplectic capacity c on
(R2n, ω0) is a map c such that, for every A ⊂ R2n,
c(A) ∈ [0,+∞], satisfying the following properties:

Monotonicity: c(A) ≤ c(A′) if there exists ϕ ∈ D(n)
such that ϕ(A) ⊂ A′.

Conformality: c(αA) = α2c(A), for any α ∈ R∗.

Nontriviality: 0 < c(B(π)), c(Z(π)) <∞.
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3 Rigidity

When considering linear symplectic embeddings, there
exists symplectic rigidity:

Theorem 3.1 ([8]). Given two ellipsoids E(a) and
E(a′), there exists a linear symplectic map S ∈ Sp(n)
such that S (E(a)) ⊂ E(a′) if and only if ai ≤ a′i, for
all i = 1, . . . , n.

Even when allowing nonlinear symplectomorphisms,
symplectic rigidity can still be present:

Theorem 3.2 ([4]). Given two ellipsoids E(a1, a2) and
E(a′1, a

′
2) with:

ν ≤ a1, a2, a′1, a′2 ≤ 1,
1

2
< ν < 1

there exists a symplectic embedding ϕ such that
ϕ (E(a)) ⊂ E(a′) if and ony if ai ≤ a′i, for i = 1, 2.

Gromov theorem can also be seen as a rigidity result
for embeddings of ellipsoids and it follows immediatly
from it that, if E(a) embeds symplectically into E(a′),
then:

a1 ≤ a′1.

Going back to the Hamiltonian dynamics interpreta-
tion, this means that we cannot improve our knowledge
of the best known particle, but (flexibility results) if we
allow a loss in information for that particle, the error
in the others can become smaller.

In C2 ∼= R4 it is natural to characterize the shape of a
symplectic ellipsoid by:

Definition 4. Two ellipsoids E(a1, a2) and E(a′1, a
′
2)

in C2 ∼= R4 have the same shape type if:

∃k ∈ N : k ≤ a2
a1

< k + 1, k ≤ a′2
a′1

< k + 1.

In higher dimensions the definition will be more general:

Definition 5. Given an ellipsoid E(a1, . . . , an), let
{µi} be the sequence of the numbers {kaj}, with k ∈ N
and j = 1, . . . , n, written (maybe with repetitions) in in-
creasing order. The Ekeland-Hofer i-capacity for E(a)
is given by:

ci (E(a)) = µi.

Definition 6. Two ellipsoids E(a) and E(a′) in Cn ∼=
R2n have the same shape type if:

∃α1 = 1 < · · · < αn : µαi(a) = ai, µαi(a
′) = a′i.

Example 1. An ellipsoid E(a) ⊂ Cn ∼= R2n has the
shape type of a ball whenever an ≤ 2a1; then the asso-
ciated sequences are:

µ ={
n︷ ︸︸ ︷

A,A . . . , A,

n︷ ︸︸ ︷
2A, . . . , 2A, 3A, . . .} for B(A)

µ′ ={a1, a2, . . . , an, 2a1, . . . , 2an, 3a1, . . .} for E(a)

and we can choose αi = i, i = 1, . . . , n.

Example 2. E(1, 2, 3) and E(1, 3, 4) have the same
shape type, their associated sequences being respectively:

µ ={1, 2, 2, 3, 3, 4, 4, 5, 6, 6, 6, 7 . . .}
µ′ ={1, 2, 3, 3, 4, 4, 5, 6, 6, 7, . . .}

We can choose α1 = 1, α2 = 3 and α3 = 5.

Having the same shape type is an equivalence relation
if we exclude resonant ellipsoids, for which the sequence
{µi} is not strictly increasing; it is easy to see that then
the two definitions agree for n = 2.

Example 3. B(a) and E(a, 2a) have the same shape
type using the definition 6: their associated sequences
are respectively:

µ ={a, a, 2a, 2a, 3a, 3a, 4a, 4a, . . .}
µ′ ={a, 2a, 2a, 3a, 4a, 4a, 5a, 6a, . . .}

and we can choose α1 = 1 and α2 = 2. On the other
hand, they have different shape types using the first def-
inition (def. 4).

Theorem 3.2 considers ellipsoids with the shape type
of a ball (k = 1), but the result can be extended to
ellipsoids having the same shape type:

Theorem 3.3 ([1]). If the two ellipsoids E(a) and
E(a′) in Cn ∼= R2n have the same shape type, there
exists a symplectic embedding ϕ such that ϕ (E(a)) ⊂
E(a′) if and only if:

ai ≤ a′i, i = 1, . . . , n.

Proof. If E(a) embeds in E(a′) then it follows from the
definition of capacity that:

cj (E(a)) ≤ cj (E(a′))

for all Ekeland-Hofer capacities, in particular if they
have the same shape type:

ai = cαi
(E(a)) ≤ cαi

(E(a′)) = a′i, i = 1, . . . , n.

This is a generalization of a result of F. Schlenk [12, 13]:
If an ≤ 2a1, there exists no symplectic embedding of the
ellipsoid E(a) = E(a1, . . . , an) into a ball B(A) with
A < an (the shape type of the ellipsoid is that of a
ball).
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4 Flexibility

The following result shows that, if the shape type of the
ellipsoids is sufficiently different, there is flexibility:

Theorem 4.1 ([6, 4]). For any a > 0, and for a suffi-
ciently small ε > 0, there exists a symplectic embedding
ϕ such that:

ϕ (E(ε, . . . , ε, a)) ⊂ B(π).

There are no estimates on the size of ε, but F. Schlenk,
using symplectic folding, proved:

Theorem 4.2 ([12, 13]). If β > 2α, there exists
a symplectic embedding ϕ of the ellipsoid E(r) =
E(α, . . . , α, β) ⊂ Cn ∼= R2n into a ball B(A) with:

E(α, . . . , α, β) ↪→ B(A), A >
β

2
+ α.

Remark 4.1. This theorem has been much improved in
(complex) dimension 2 ([11]). But the methods used to
obtain the best embedding results do not have a straight-
forward generalization to higher dimensions.

Definition 7. An open polydisk is the set:

P (a) = P (a1, . . . , an) = B(a1)× · · · ×B(an)

=

{
z

∣∣∣∣π |z1|2a1
< 1, . . . , π

|zn|2

an
< 1

}
,

where we assume a1 ≤ · · · ≤ an.

A very impressive result concerning flexibility of poly-
disks is due to L. Guth:

Theorem 4.3 ([7]). There is a dimensional constant
Cn such that, given two polydisks P (r) and P (r′), if:

Cna1 < r′1, Cna1 . . . an < a′1 . . . a
′
n

there exists a symplectic embedding of P (a) into P (a′).

This result has an obvious application to ellipsoids:

Example 4. In C3 ∼= R6, there exists a constant
K > C3π such that:

E(π, a, a) ↪→ E

(
3K, 3K,

4

K
a2
)

a > 3K.

This follows from the embedding:

P (π, a, a) ↪→ P

(
K,K,

a2

C3π

)
and the inclusions E(π, a, a) ⊂ P (π, a, a) and:

P

(
K,K,

a2

C3π

)
⊂ E

(
3K, 3K,

4

K
a2
)
.

A similar result is valid in any dimension; it shows that
if the shape type of the ellipsoid is sufficiently different
from that of a ball (a > 3K above) then there exists
considerable flexibility and the relevant obstructions are
(derived from) just the first capacity and the volume.

Capacities (in general) involve the 2-dimensional area
of some object; volume can considered a generalized
capacity and is 2n-dimensional. It is natural to search
for intermediate capacities that involve 2k-dimensional
volumes; it follows from the results of [7] that there are
no reasonably continuous intermediate capacities.

Symplectic folding is described in [9, 10, 12, 13]; we
shall use a slightly different version [1], but the very
careful and detailed presentation in [12, 13] should be
considered for all technical aspects.

We define T (a, b) as the set:

T (a, b) =
{

(z1, z2) = (u1, v1, u2, v2) ∈ R4
∣∣

(u1, v1) ∈]0, a[×]0, 1[, (u2, v2) ∈]0, b[×]0, 1[
u1
a

+
u2
b
< 1
}

and T (a) = T (a, a). The projection of T (a, b) on the
(u1, u2) plane is a triangle and the fibres are the unit
square.

Lemma 4.4 ([12, 13]). Assume ε > 0. Then:

1. E(a, b) symplectically embeds into T (a+ ε, b+ ε).

2. T (a, b) symplectically embeds into E(a+ ε, b+ ε).

Sketch of the proof. The main fact involved in the proof
is the existence of an area preserving map (u, v) = σ(z)
in the plane [12, 13] that, outside an arbitrarily small
neighbourhood of the origin, where it is a translation,
essentially takes open circles of area a into open rect-
angles ]0, a[×]0, 1[ (figure 1).

RR

R

Figure 1: Area preserving map in the plane

Let D(a) be the disk of area a; then:

E(a, b) =
{
z
∣∣ z1 ∈ D(a), z2 ∈ D

(
b(1− π|z1|2/a)

)}
The symplectic embedding of E into T is then:

(z1, z2) 7→ ((u1, v1), (u2, v2)) = (σ(z1), σ(z2))

The inverse of this map is used to embed T into E.
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Here and subsequently we ignore everything ‘small’: an
arbitrary small δ is involved in the construction of σ,
we should therefore consider maps σδ with sufficiently
small δ, but it is easier to proceed as if δ could be zero.

It follows from lemma 4.4 that embedding results for el-
lipsoids can be obtained from the corresponding results
for sets of the form T (a, b), and we describe symplectic
folding for these sets in section 5. Figure 2 summarises
the process (cf. figure 3.13 in [12]).

Since U embedding symplectically into V is equivalent
to λU embedding symplectically into λV for λ 6= 0,
we normalize the ellipsoids E(a), and therefore the sets
T , so that a1 = π. In the figures we really represent
T (a, π) instead of T (π, a), as in [12].

Theorem 4.5 ([1]). If the ellipsoid E(r) = E(r1, r2)
in C2 ∼= R4 has shape type k ≥ 3 with:

3 ≤ k < r2/r1 < k + 1

there exists a symplectic embedding ϕ such that
ϕ (E(r)) ⊂ E(r′) with:

r2 > r′2 and n ≤ r′2
r′1
< n+ 1

for all shape types n = 1, . . . ,

[
2k

3

]
.

Proof. We consider the normalised ellipsoid E(π, a),
with kπ < a < (k + 1)π and k ≥ 3. Symplectic folding
gives an embedding (figure 2):

T (π, a) ↪→ T
(a

2
+ π + ε

)
and lines above the image of T (π, a) in the
(u′1, u

′
2)−plane correspond to sets T (α, β) into which

T (π, a) embeds; (α, 0) and (0, β) are the intersections
of the line with the coordinate axes.

Going from T -type sets to ellipsoids:

E(π, a) ↪→ E

(
3

2
π + ε,

3

4
(a+ π) + ε

)
,

with:

3

4
(a+ π) < a⇐⇒ k ≥ 3.

The same construction also gives an embedding:

E(π, a) ↪→ B
(a

2
+ π + ε

)
and clearly embeddings for all in between shape types.
For any b such that:

3

4
(a+ π) < b < a

there is a trivial embedding (again see figure 2):

E

(
3

2
π + ε,

3

4
(a+ π) + ε

)
↪→ E

(
3

2
π + ε, b

)
and the shape type can thus be extended up to[

2k

3

]
.

Open Question ([12, 13]). Does the ellipsoid
E(a, 2a, 3a) symplectically embed into B(A) for some
A < 3a?

Ekeland-Hofer capacities show that:

• E(a, 3a, . . . , 3a) does not symplectically embed
into a ball B(A) with A < 3a.

• E(a, 2a, . . . , 2a, 3a) does not symplectically em-
bed into a ball B(A) with A < 2a.

On the other hand, there is also some flexibility, as it
follows from theorem 4.2 that:

E(a, 3a) ↪→ B

(
5

2
a+ ε

)
The change introduced in the symplectic folding pro-
cess allows estimates (lemma 4.7) that are decisive in
the proof of:

Theorem 4.6 ([1]). For any positive ε, there exists a
symplectic embedding:

E(π, b1, . . . , bn−2 = b, a) ↪→ B(A+ ε), A < a

when a > b+ π, with A given by:

A =
a+ b+ π

2
.

Remark 4.2. For n = 3, b = 2π, a = 3π:

E(π, 2π, 3π) ↪→ B(A+ ε), A =
3π + 2π

2
+
π

2
= 3π

and thus E(π, 2π, 3π) is in the boundary of (known)
flexibility.

Remark 4.3. b = π gives theorem 3.1.1 in [12] (or
theorem 4.2): for all ε > 0,

E(π, . . . , π, a) symplectically embeds into B
(a

2
+ π + ε

)
Lemma 4.7 ([1]). For any ε > 0, symplectic folding
gives an embedding ψ : T (π, a) ↪→ C2 ∼= R4:

ψ((u1, v1), (u2, v2)) = ((u′1, v
′
1), (u′2, v

′
2))

such that

u′1 + u′2 < A− b+
b

π
u1 +

b

a
u2 + ε, A =

a+ b+ π

2
.
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a

a

a

b

ball

ellipsoids

Figure 2: Scheme of symplectic folding in the (u1, u2) plane

Theorem 4.6 follows from lemmas 4.7 and 4.8:

Lemma 4.8 ([1]). If for any positive ε there exists a
symplectic embedding ψ : T (π, a) ↪→ C2 ∼= R4:

ψ((u1, v1), (u2, v2)) = ((u′1, v
′
1), (u′2, v

′
2))

such that:

u′1 + u′2 < A− b+
b

π
u1 +

b

a
u2 + ε

then there exists a a symplectic embedding Φ:

E(π, b1, . . . , bn−2 = b, a) ↪→ B(A+ ε)

Proof. It follows from lemma 4.4 and the estimate on
ψ that there exists a symplectic embedding σ:

σ : E(π, a) ↪→ C2 ∼= R4, σ(z1, z2) = (z′1, z
′
2)

such that:

π|z′1|2 + π|z′2|2 < A− b+
b

π
π|z1|2 +

b

a
π|z2|2 + ε

with:

A =
a+ b+ π

2
.

Then σ× idn−2, after a suitable permutation τ , defined
by τ(z1, z2, . . .) = (z1, zn, z2, . . .), gives the desired sym-
plectic embedding:

Φ = (σ × idn−2) ◦ τ : E(π, b1, . . . , bn−2, a) ↪→ Cn ∼= R2n

5 Symplectic folding

Step 1: We separate the region u2 > π from the region
u2 < π, the large fibres from the small ones: here the
fibres are related to the projection on the (u1, v1) plane,
and the symplectic map is the product ϕ× id of an area
preserving map ϕ in the (u1, v1) plane (figure 3) and
the identity on the (u2, v2) plane.

Figure 3: Separating the fibres: black regions have the same
area

Remark 5.1. Again we should consider the regions
u2 > b/2 + δ and u2 < b/2 − δ and deform b/2 − δ <
u2 < b/2 + δ for a conveniently small δ (the black re-
gion); the map outside that region is the identity on the
left and a translation on the right.

The result can also be seen in the (u1, u2) plane:

Figure 4: Separating the fibres, (u1, u2) plane

Remark 5.2. The (u1, v1) and (u2, v2) planes are sym-
plectic, the symplectic form on them is an area form,
and it is convenient to preserve the area on them; but
the plane (u1, u2) is Lagrangean, the symplectic form
vanishes on it and therefore no area preserving on that
plane is involved.

Step 2: We rearrange the fibres: the symplectic map is
the product of an area preserving map σ1 in the (u2, v2)
plane (figure 5), and the identity on the (u1, v1) plane.
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Figure 5: Rearranging the fibres in the (u2, v2) plane

The result can again be seen in the (u1, u2) plane, the
top triangle goes to the bottom:

Figure 6: Rearranging the fibres, in the (u1, u2) plane

Step 3: We lift the region a/2 +π/2 < u1 < a+π/2 by
π/2 along the u2 direction. Now the symplectic map is
not a product of area preserving maps: its action can
be seen in the (u1, u2) and (u1, v1) planes (figure 7),
but we refer to [12] for the construction of the lift map.

Figure 7: Lifting

The grey region in the plane (u1, v1) is the projection
on that plane of points lifted less than π/2, and more
than 0, and has area bigger than π/2.

Step 4: We contract along the v1 direction, and extend
along the u1 direction, by a/(a+π), keeping (u2, v2) un-
changed (figure 8); again this is the product of an area

preserving map on the (u1, v1) plane and the identity
on the (u2, v2) plane.

Figure 8: Rearranging in the (u1, v1) plane

Step 5: We now turn T over B: we extend the grey
area, then we fold twice in the base (figure 9).

Figure 9: Folding in the (u1, v1) plane

The transformation of the grey area (in the (u1, v1)
plane) is as in the previous step, with a factor of π/a
now, but using the identity outside that area on the left
and a translation on the right. The end result in the
(u1, u2) plane is:

Figure 10: Folding in the (u1, u2) plane

Step 6: We rearrange the fibres in the (u2, v2) plane
again:

11



Figure 11: Rearranging the fibres in the (u2, v2) plane

The symplectic map is the product of an area preserving
map σ2 in the (u2, v2) plane (figure 11), and the iden-
tity on the (u1, v1) plane. Seen in the (u1, u2) plane,
the bottom triangle goes to the top (figure 2).

The symplectic folding construction is summarised in
figure 2 (it should be compared to figure 3.13 in [12]):
the advantage of the change relative to [12, 13] is that
we can get embeddings into ellipsoids, keeping the same
estimates obtained for embeddings into balls.
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On GAeL: Géometrie Algébrique en Liberté XVIII

Margarida Melo

Department of Mathematics
University of Coimbra, Portugal

mmelo@mat.uc.pt

Abstract

Géometrie Algébrique en Liberté is a school and conference organized by and for
algebraic geometers in the beginning of their scientific careers. The 18th edition
of GAeL took place in the Mathematics Department of the University of Coimbra,
Portugal, on June 7-11 2010. It gathered together about 70 participants coming
from whole parts of the world who got the opportunity to learn and discuss together
and “en Liberté” the most recent developments in this area of research. The senior
speakers for this year were the Professors Olivier Debarre (C.N.R.S.-Paris), Gerard
van der Geer (Amsterdam) and Bernd Sturmfels (Berkeley).

Algebraic Geometry

Algebraic Geometry is the branch of mathematics that
consists of the study of algebraic varieties: geometric
incarnations of solutions of systems of polynomial equa-
tions. The simplicity and generality of this idea, that
involves a big number of mathematical objects, allowed
the concept to grow in many different directions deve-
loping an amazingly rich theory. It is nowadays a wide
area of mathematics that combines tools from many
different disciplines as Abstract Commutative Algebra,
Number Theory, Complex Analysis, Differential and
Complex Geometry, Algebraic Topology, Category The-
ory, Homological Algebra, Algebraic Combinatorics and
Representation Theory to study problems arising from
Geometry. The following words by the fields medalist
David Mumford reflect how rich and complex are the
ideas and problems that appear in this area of pure
mathematics.

Algebraic geometry seems to have acquired the reputa-
tion of being esoteric, exclusive, and very abstract, with
adherents who are secretly plotting to take over all the
rest of mathematics. In one respect this last point is
accurate. David Mumford

Even if it is one of the most classical areas of pure
mathematics, it is certainly one of the most active as
well. The importance of this area of research in the
global context of mathematical sciences is clear, for in-
stance, by the strong presence of algebraic geometers
among the speakers of the next ICM conference (http:
//www.icm2010.org.in/about-icm-2010/) that will
take place in Hyderabad, India on August 19-27 2010.

The great developments of Algebraic Geometry in the
last decades are also clear by the list of the field medal-
ist winners: about a quarter of the total number of field
medals so far was delivered to algebraic geometers. The
field medalists Kodaira, Serre, Atiyah, Grothendieck,
Hironaka, Bombieri, Mumford, Deligne, Yau, Donald-
son, Faltings, Drinfel’d, Mori, Witten, Kontsevich, Laf-
forgue and Okounkov got their award by their contri-
butions in algebraic geometry or closely related areas.
To these we should also add the name of Andrew Wiles,
who got a “Special Tribute” of the Fields Institute for
his proof of the famous “Fermat’s last theorem” which
relies upon methods from Algebraic Geometry, namely
elliptic curves and modular forms.

One can say that the roots of Algebraic Geometry date
back to the arabian and greek mathematicians, who
often used the geometry of plane curves and their in-
tersection properties to solve algebraic equations. The
same kind of ideas were also used much later by some
mathematicians in the renaissance period like Cardano
and Tartaglia while studying the cubic equation. How-
ever, after a long period of great development of ana-
lytical methods in Geometry, the systematic use of
algebraic methods in Geometry was established only
at the end of the 19th century by the italian school
of Algebraic Geometry composed by mathematicians
like Enriques, Chisini, Castelnuovo and Segre. The
foundations of Algebraic Geometry using notions from
Commutative Algebra like the theory of ideals were
established in the beginning of the 20th century by
mathematicians like van der Waerden, Oscar Zariski
and André Weil. In the 1950’s and 1960’s Serre and
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Grothendieck used sheaf theory and techniques from
Homological Algebra to introduce in Algebraic Geom-
etry the notion of scheme. This led to an enormous
transformation in the whole theory: classical Projective
Geometry was more concerned with the geometric no-
tion of point while the later emphasizes the concepts of
regular function and regular map. Moreover, this new
point of view provided Algebraic Geometry with tools
to treat a wide number of problems from other areas of
mathematics like Commutative Algebra and Algebraic
Number Theory (recall for instance elliptic curve cryp-
tography and Wiles’ celebrated proof of Fermat’s last
theorem). It also allowed to solve classical problems on
algebraic varieties like moduli problems or resolution of
singularities. Nowadays, Algebraic Geometry is again
in great transformation after the introduction of stacks
by Grotendieck, Deligne, Mumford and Artin and, more
recently, by the development of the theory of Derived
Algebraic Geometry.

Even if Algebraic Geometry is fundamentally a rather
abstract discipline, recently it has been heavily used in
other rather applied areas of mathematics like statistics,
control theory, robotics and also in other sciences. For
instance, it is fundamental in the development of the
physics’ theory of strings and it has deep connections
with the Phylogenetics theory of biology.

GAeL origins

The origins of “GAeL: Géometrie Algébrique en Lib-
erté” date back to France, as one can guess by its
name. In fact, the first 13th editions of GAeL took
place at the “CIRM: Centre International des Ren-
contres Mathématiques” (Marseille, France). However,
nowadays all communication and talks are in English.
Most recently, GAeL has taken place in in Bedlewo
(Poland), Istanbul (Turkey), Madrid (Spain), and Lei-
den (The Netherlands). This year edition was the 18th
GAeL conference and it took place in the Mathemat-
ics Department of the University of Coimbra, Portugal.
GAeL has been, since its beginning, a reference meeting
for young algebraic geometers specially from European
countries.

As the name indicates, the aim of GAeL is to give
young algebraic geometers the opportunity to learn and
discuss the most recent developments of Algebraic Ge-
ometry in a relaxed atmosphere with no fear to ask
questions of any type. Young participants have the op-
portunity to lecture, often for the first time, in front
of an international audience. At the same time, se-
nior experts deliver courses in selected topics at the
cutting edge of modern and classical Algebraic Ge-
ometry. Among the speakers of previous editions of
GAeL are Batyrev, Beauville, Bridgeland, Campana,

Ciliberto, Colliot-Thélène, Corti, Demailly, Faber, Fan-
techi, Farkas, Hassett, Huybrechts, Itenberg, Izvoskiy,
Lehn, Manivel, Mukai, Muller-Stäch, Mustaţa, Okonek,
Oort, Oxbury, Peskine, Reid, Siebert, Sottile, Teissier,
Thomas, Tyurin, Vakil, Van Straten, Vistoli, Voisin,
and Zak.

Between the senior speakers’ mini-courses and the ju-
nior speakers talks there is also time for discussions and
for exercise sessions. The junior participants who do
not give a talk must present their work on the poster
session at the beginning of the conference. Posters re-
main available for the rest of the week so that at the
end everybody gets the opportunity to learn about each
others own research. For that reason the number of
participants of GAeL is quite limited: each person can
participate at most in two editions of GAeL.

The organizing committee is also made of young re-
searchers in Algebraic Geometry. Each organizer will
organize GAeL for two years: in each edition orga-
nizers with some experience help the beginning ones.
This year organizing committee was Vı́ctor González
Alonso (Universitat Politècnica de Catalunya, Nathan
Ilten (Freie Universität, Berlin), Pedro Macias Marques
(Universidade de Évora), Margarida Melo (Universi-
dade de Coimbra), Kaisa Taipale (University of Min-
nesota) and Filippo Viviani (Università Roma Tre and
Universidade de Coimbra).

There is also a scientific committee that helps the or-
ganizing committee in aspects like the choice of topics
or funding advice. The actual scientific committee for
GAeL is composed by Professor Frances Kirwan (Ox-
ford), Professor Yuri Manin (Max-Planck Institute für
Mathematik) and by Professor Farns Oort (Utrecht).

This year’s GAeL

This year edition of GAeL, the XVIII, took place in the
Mathematics Department of the University of Coimbra,
Portugal, on June 7-11. It was possible thanks to the
financial support of the Foundation Compositio Mathe-
matica, the Center for Mathematics of the University of
Coimbra (CMUC), the International Center for Mathe-
matics (CIM), the Foundation for Science and Technol-
ogy of Portugal (FCT), the FCT project “Geometria
Algébrica em Portugal” and of the Mathematics De-
partment of the University of Coimbra.

As in the previous editions of GAeL, the program of
the conference consisted of 3 mini-courses of 4 hours
each delivered by selected experts in different areas of
Algebraic Geometry and of 25 contributed talks by the
junior participants. The poster session was organized
in the first afternoon of the program: we had this year
almost 30 posters presented by participants at different
stages of their careers. The talks and posters presented
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by the junior participants where quite various: there
were talks on moduli spaces of curves and sheaves, mod-
uli spaces of surfaces, moduli spaces of abelian varieties,
toric geometry, tropical geometry, derived algebraic ge-
ometry, arithmetic geometry, deformation theory, sin-
gularity theory, minimal resolutions among others. The
program of the conference as well as a list of partici-
pants and abstracts can be found in http://severian.

mit.edu/gael/files/quickschedule.pdf. This di-
versity of subjects allowed the young participants to
learn from their colleagues several recent achievements
and ongoing projects in this vast discipline and also
favored discussions and questions in a GAeL flavor: al-
ways “en Liberté”!

The senior speakers of this edition of GAeL were
the Professors Olivier Debarre (http://www.math.
ens.fr/~debarre/) from the C.N.R.S. -École Normale
Supérieure of Paris, Gerard van der Geer (http://
www.science.uva.nl/~geer/) from the University of
Amsterdam, The Netherlands, and Bernd Sturmfels
(http://math.berkeley.edu/~bernd/) from the Uni-
versity of Berkeley, California.

Professor Olivier Debarre lectured on “Rational curves
on algebraic varieties”, a very classical argument that
had important developments on the last few years yield-
ing important contributions to the recent spectacular
advances towards the proof of the minimal model pro-
gram (see [1]). One of the most classical arguments of
algebraic geometry concerns the classification of alge-
braic varieties. The most classical case is the classifica-
tion of algebraic curves, which was already understood
by Riemann in the 19th century. The classification of
algebraic surfaces is more intricate and was one of the
biggest achievements of the italian school of the begin-
ning of the 20th century. After several decades with-
out significant progress towards the higher dimensional
case, S. Mori proposed a program, the so-called “min-
imal model program”, which would lead to the clas-
sification of algebraic varieties in any dimension. The
presence of rational curves on algebraic varieties detects
several important information on birational invariants
of the same varieties (see [4]). Professor Debarre lec-
tures were mainly on the contributions of S. Mori him-
self and later of J. Kollár on this part of the program.
Professor Debarre notes for this course are available at
http://www.math.ens.fr/~debarre/NotesGAEL.pdf.

Professor van der Geer delivered a course on “Alge-
braic cycles on abelian varieties”. Abelian varieties are
among the most studied objects in Algebraic Geome-
try due to their extremely interesting and rich prop-
erties: they combine the structure of a projective va-
riety with the structure of a compact algebraic group
(see, for instance, [2] or [3]). The study of algebraic cy-
cles on varieties is closely related to the famous “Hodge
conjecture”, which is one of the millennium problems.
Moreover, the case of abelian varieties is commonly con-

sidered to be a crucial test case towards the validity or
disproval of this famous conjecture. Among abelian va-
rieties the so called jacobian varieties are of particular
interest. Recent conjectures relate classical aspects of
the geometry of algebraic curves, namely the study of
their linear series which is the subject of Brill-Noether
theory, with the existence of cycles on their associated
jacobian varieties. Professor van der Geer lectures cul-
minated in this important aspect of this theory.

Professor Sturmfels’ lectures were on a new branch of
algebraic geometry that lies on the border line between
Algebraic Geometry and Optimization Theory: “Con-
vex algebraic geometry”. This new area of mathemat-
ics arises from the necessity of studying certain con-
vex objects arising from linear and/or semidefinite pro-
graming. These objects seem particularly featured to
be studied with tools from algebraic geometry. Pro-
fessor Sturmfels lectures were centered on several ex-
amples that are crucial to understand the foundations
of this new discipline in an attempt to systematically
study such convex objects. References as well as the
slides of Professor Sturmfels lectures are available at
http://severian.mit.edu/gael/sturmfels.html.

To relax a bit of such an intense program there were
also some social activities scheduled. Monday June 7th
there was a visit to “Pátio das Escolas” and the his-
torical buildings of the University of Coimbra. There
was also a small reception while the poster session was
held. On June 10th afternoon a visit to “Conimbriga”
was organized and, after that, the participants were
transported to Figueira da Foz were the social dinner
was held.

Even if algebraic geometry is a very classical sub-
ject of mathematics there were not many portuguese
mathematicians working on it until recently. How-
ever things are changing rapidly and a proof of this
is the fact that there were more then 10 portuguese ju-
nior participants. Most of these obtained their PhD
in Algebraic Geometry either in Portugal or abroad
in the last 3 years. Most algebraic geometers in Por-
tugal participate in the project “Algebraic Geometry
in Portugal”, run by Margarida Mendes Lopes, that
aims to promote a strong portuguese Algebraic Geom-
etry community. Already in this century, there have
been several other events in Portugal related to al-
gebraic geometry. among which we recall the “IST
courses on algebraic geometry” that are regularly or-
ganized by Margarida Mendes Lopes: there were al-
ready 5 editions, the “Oporto meeting on Geometry,
Topology and Physics”, the “Geometry in Lisbon Sum-
mer school”, the 2010 edition of “VBAC: Vector bun-
dles on algebraic curves”, the “Lisbon Summer Lec-
tures in Geometry” in IST (Lisbon) and the “Coimbra-
Salamanca Algebraic Geometry seminar”, whose first
edition was held in Coimbra in February 2010. On
the “GA-P: Geometria Algébrica em Portugal” web-
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page, http://home.utad.pt/~ga-p/index.html, run
by Carlos Rito from UTAD, is possible to find updated
information on people working in Algebraic Geometry
in Portugal, on events in Algebraic Geometry either in
Portugal and abroad as well as several useful links and
other information concerning this beautiful discipline,
that is creating solid roots in Portugal as well.
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Summer School and Workshop on Imaging Sciences and Medical
Applications

Isabel M. Narra Figueiredo

Department of Mathematics,
University of Coimbra, Portugal

http://www.mat.uc.pt/~isabelf

The Summer School and Workshop on Imaging Sci-
ences and Medical Applications was an initiative of the
UTAustin|Portugal Program, for Mathematics, in part-
nership with CIM (Center for International Mathemat-
ics). It took place at the Department of Mathematics
at the University of Coimbra Faculty of Sciences and
Technology, in Coimbra, Portugal, on June 15-23, 2010.
This event had also the scientific support of CMUC
(Centre for Mathematics, University of Coimbra), and
two Portuguese medical associations, the Brain Imag-
ing Network and the Society of Digestive Endoscopy.

The choice of the topic (and, a posteriori, its location)
was motivated by the fact that, currently, we have a re-
search project (reference UTAustin/MAT/0009/2008),
in the framework of the UTAustin|Portugal Program
(for Mathematics), and one of the project main sub-
jects is precisely image processing of medical images,
more exactly, endoscopic images in gastroenterology.
Moreover, this Summer School and Workshop on Imag-
ing Sciences and Medical Applications was also, in some
sense, a natural consequence (and a continuation) of the
Workshop on Mathematical Aspects of Imaging, Mod-
eling and Visualization in Multiscale Biology, in which
we were directly and strongly involved, and that took
place at the ICES (Institute for Computational Engi-
neering and Sciences), of the University of Texas, at
Austin, USA, from March 31st to April 4th 2009.

The main goal of the Summer School and Workshop
on Imaging Sciences and Medical Applications was, ob-
viously, to promote new collaborations, to exchange
and share new ideas and scientific results, and simul-
taneously, to give an opportunity to PhD students and
young researchers for improving their scientific knowl-
edge, in such a complex area as imaging sciences, which
has strong interdisciplinary features.

The Summer School featured five excellent short
courses, each one with the duration of five hours, pre-
sented by brilliant speakers, experts in imaging sciences:
Image segmentation, by Sung Ha Kang (Georgia Insti-
tute of Technology, Atlanta, USA), Flexible algorithms
for image registration, by Jan Modersitzki (McMaster
University, Canada), Image reconstruction in tomog-
raphy, by Alfred K. Louis (Saarland University, Ger-
many), Highly accurate image restoration and match-

ing, by Andrés Almansa (Télécom Paris Tech, France),
and Variational models in image inpainting, by Selim
Esedöglu (University of Michigan, USA).

In the Workshop there were nine plenary lectures, with
a predominance of Portuguese guest speakers : Inter-
est point detection and matching for 3D reconstruction
in medical endoscopy, by João Pedro Barreto (Univer-
sity of Coimbra, Portugal), Unmixing of positive sources
in hyperspectral imaging, by José Bioucas (Instituto
Superior Técnico, Lisbon, Portugal), From models of
brain function to clinical applications: new challenges
in neuroimaging, by Miguel Castelo-Branco (Univer-
sity of Coimbra, Portugal), CAGE - Computer as-
sisted gastroenterology examination, by Miguel Coimbra
(University of Porto, Portugal), A combinatorial point
of view for non-linear evolutions, by Jérôme Darbon
(Ecole Normale Supérieure de Cachan, France), Remov-
ing non-additive noise using variable splitting and aug-
mented lagrangian optimization, by Mário Figueiredo
(Instituto Superior Técnico, Lisbon, Portugal), Spa-
tially adapted regularization in total variation based im-
age restoration, by Michael Hintermüller (Humboldt-
University of Berlin, Germany), New trends in pho-
togrammetry and computer vision applied to 3D city
modeling and culturage heritage, by Marc Pierrot-
Deseilligny (Laboratoire MATIS, IGN, France), and
Tracking moving objects in image sequences, by João
Manuel R. S. Tavares (University of Porto, Portugal).
The Workshop also included four sessions of contributed
talks and one poster session, which gave the possibility
to young researchers to report their on going work and
results.

A broad audience of sixty participants attended this
event. It included mathematicians, electrical and com-
puter engineers, mechanical engineers, biomedical engi-
neers, geographical engineers, computer scientists and
a neuroscientist.

This was a remarkable event, with distinguished guest
speakers, who have strongly contributed to a top level
scientific atmosphere, promoting and encouraging inter-
actions and collaborative research among all the partic-
ipants.

[Note - For more information visit the event website
http://www.mat.uc.pt/~isma2010/?menu=home]
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Coming Events

July, 05 and 07, 2010: Pedro Nunes Lectures,
by Maxim Kontsevich. Please see last page and

http://www.cim.pt/?q=glocos-pedronunes

July, 07, 2010: Jornada Matemática SPM/CIM
on “Trends in Quantum Geometry”

Rio Tejo, Portugal.

Organizer

Ricardo Schiappa (CAMGSD/IST)

Aims

This Jornada SPM/CIM takes place on the occasion
of the Pedro Nunes Lectures in Portugal by Professor
Maxim Kontsevich (1997- Henri Poincaré Prize, 1998 -
Fields Medal, 2008 - Crafoord Prize) and aims to gather
young researchers, in an informal setting, to discuss re-
cent advancements in topics related to Quantum Geom-
etry and other aspects of Kontsevich’s work (which con-
centrates on geometric aspects of mathematical physics,
most notably on knot theory, deformation quantization
and mirror symmetry). At the end of these talks a small
discussion session will be held, led by Maxim Kontse-
vich.

Invited Speakers

J. Baptista (University of Amsterdam)

M. Cirafici (Instituto Superior Técnico)

C. Rossi (Instituto Superior Técnico)

G. Tabuada (Universidade Nova de Lisboa)

For more information about the event, see

http://www.cim.pt/?q=spm_cim_jornada_Quantum_

Geometry_2010

October, 11-15, 2010: Educational Interfaces
between Mathematics and Industry. This con-
ference, first scheduled to April, 2010, was postponed
due to volcano Eyjafjllajokull.

Fundação Calouste Gulbenkian and Universidade de
Lisboa.

Organizers

José Francisco Rodrigues (Universidade de Lisboa)

Assis Azevedo (Universidade do Minho)

António Fernandes (Instituto Superior Técnico)

Adérito Araújo (Universidade de Coimbra)

For more information about the event, see

http://www.cim.pt/eimi

July, 9-10, 2010: 8th EUROPT Workshop “Ad-
vances in Continuous Optimization”

Aveiro

Organizers

Domingos M Cardoso (Universidade de Aveiro)

Tatiana Tchemisova (Universidade de Aveiro)

Miguel Anjos (University of Waterloo)

Edite Fernandes (Universidade do Minho)

Vicente Novo (Univ. Nac. Educación a Distancia)

Juan Parra (Universidad Miguel Hernández de Elche)

Gerhard-Wilhelm Weber (Middle East Tech. Univ.)

Aims

This meeting continues in the line of the EUROPT
workshops, the first held in 2000 in Budapest, followed
by the workshops in Rotterdam in 2001, Istanbul in
2003, Rhodes in 2004, Reykjavik in 2006, Prague in
2007, and Remagen in 2009.

The workshop aims to provide a forum for researchers
and practitioners in continuous optimization and re-
lated fields to discuss and exchange their latest works.
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Invited Speakers

Immanuel M. Bomze (University of Vienna)

Mirjam Dür (University of Groningen)

Alexander Shapiro (Georgia Tech)

Tamás Terlaky (Lehigh University)

Lúıs Nunes Vicente (University of Coimbra)

Henry Wolkowicz (University of Waterloo)

For more information about the event, see

http://www.europt2010.com/

July, 18-31, 2010: MatCampus2010

Braga & Santiago de Compostela

Organizers

Maŕıa Victoria Otero Espinar, Maŕıa Elena Vázquez
Abal, Rosa Maŕıa Crujeiras Casais, Pilar Garćıa Agra,
Rafael Fernández Casado, Alexandre Cortés Ayaso
(Santiago de Compostela)

Paula Mendes Martins, Assis Azevedo, Cláudia Mendes
Araújo, Suzana Mendes Gonçalves, Isabel Leite (Braga)

For more information about the event, see

http://www.matcampus2010.org/pt

September 26-29, 2010: Raising European Pub-
lic Awareness in Mathematics

Please see first page.

For updated information on these events, see http://www.cim.pt/?q=events

Ten years ago CIM sponsored MACAO 2000

The international conference on MATHEMATICS
AND ITS ROLE IN CIVILIZATION that took place
in Macau, China on January 11-14 2000, was one
of the first initiatives of the World Mathematical
Year 2000 (http://www.emis.de/misc/cdrom/WMY2000/
Macau/mo2000.html#about). The conference was a joint
Portuguese-Chinese organisation, and was held under
the advice of an international Scientific Committee,
chaired by the former IMU president J.-L. Lions. It
covered several communications and round tables on
topics such as: Comparison of the role of Mathematics
in different cultures, Exchanges and interactions of the
East-West mathematical cultures, The role of Mathe-
matics as a driving force in human progress, Contribu-
tions of Mathematics for sustainable economical, indus-

trial and social development, Mathematical research,
education and popularization in diverse cultures, and
Mathematics in the future of civilization and its role in
the Information Society (more details can be read in the
conference report (http://wmy2000.math.jussieu.fr/9_
macao.htm).

Editors: Assis Azevedo (assis@math.uminho.pt)
António Fernandes (amfern@math.ist.utl.pt).

Address: Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal.

The CIM Bulletin is published twice a year. Material intended for publication should be sent to one of the editors.
The bulletin is available at www.cim.pt.

The CIM acknowledges the financial support of FCT - Fundação para a Ciência e a Tecnologia.
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Maxim Kontsevich

Professor Maxim Kontsevich work concentrates on geometric 

aspects of mathematical physics, most notably on knot 

theory, quantization, and mirror symmetry. His most famous 

result is a formal deformation quantization that holds for any 

Poisson manifold. He also introduced knot invariants defined 

by complicated integrals analogous to Feynman integrals. 

In topological field theory, he introduced the moduli space 

of stable maps, which may be considered a mathematically 

rigorous formulation of the Feynman integral for topological 

string theory.

He received a Fields Medal in 1998, at the 23rd International 

Congress of Mathematicians in Berlin. He also received the 

Henri Poincaré Prize in 1997 and a Crafoord Prize in 2008. 

ABOUT PEDRO NUNES LECTURES

Pedro Nunes Lectures is an initiative of 
Centro Internacional de Matemática (CIM) 
in cooperation with Sociedade Portuguesa de 

Matemática (SPM), with the support of the 
Fundação Calouste Gulbenkian, to promote 

visits of notable mathematicians to Portugal. 
Each visitor is invited to give two or three 

lectures at Portuguese Universities on the recent 
developments in mathematics, their applications 
and cultural impact. Pedro Nunes Lectures are 

aimed to a vast audience, with wide mathematical 
interests, especially PhD students and youth 

researchers. 

Towards non-commutative integrability
7th July / 14.30 h / Lisboa 
www.ciul.ul.pt 

Review of homological mirror symmetry
5th July / 15.00 h / Porto
www.fc.up.pt/cmup

SPONSORS:

Webstreaming available at:
www.cim.pt/?q=glocos-pedronunes

For further information:
CENTRO INTERNACIONAL DE MATEMÁTICA

www.cim.pt

SOCIEDADE PORTUGUESA DE MATEMÁTICA
www.spm.pt

PEDRO NUNES LECTURES

CAMGSD


