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1 Introduction

Mathematical activity (research, applications, educa-
tion, exposition) has changed a lot in the last 50 years.
Some of these changes, like the use of computers, are
very visible and are being implemented in mathemati-
cal education quite extensively. There are other, more
subtle trends that may not be so obvious. Should these
influence the way we teach mathematics? The answer
may, of course, be different at the primary, secondary,
undergraduate and graduate level. Here are some of the
general trends in mathematics, which we should take
into account.

1. The size of the community and of mathemati-
cal research activity is increasing exponentially; it
doubles every 25 years or so. This fact has a num-
ber of consequences: the impossibility of keeping
up with new results; the need of more efficient
cooperation between researchers; the difficulty of
identifying “core” mathematics (to be mastered
at various levels); the need for better dissemina-
tion of new ideas. How can mathematical edu-
cation prepare future researchers and appliers of
mathematics, future decision makers and the in-
formed public for these changes?

2. New areas of application, and their increasing
significance. Information technology, sciences,
the economy, and almost all areas of human ac-
tivity make more and more use of mathemat-
ics, and, perhaps more significantly, they use all
branches of mathematics, not just traditional ap-
plied mathematics. How can we train our stu-
dents to recognize problems where mathematics
can help in the solution?

3. New tools: computers and information technol-
ogy. This is perhaps the most visible new fea-
ture, and accordingly a lot has been done to intro-
duce computers in education. But the influence
of computers on our everyday life and research
is also changing fast: besides the design of algo-
rithms, experimentation, and possibilities in illus-

tration and visualization, we use email, discussion
groups, on-line encyclopedias and other internet
resources. Can education utilize these possibil-
ities, keep up with the changes, and also teach
students to use them in productive ways?

4. New forms of mathematical activity. In part as an
answer to the issues raised above, many new forms
of mathematical activity are gaining significance:
algorithms and programming, modeling, conjec-
turing, expository writing and lecturing. Which
of these non-traditional mathematical activities
could and should be taught to students?

I will say some more about these trends, and discuss the
question of their influence on mathematical education.
I will make use of some observations from my earlier
articles [6, 7].

2 The size of the community and
of mathematical research ac-
tivity

The number of mathematical publications (along with
publications in other sciences) has increased exponen-
tially in the last 50 years. Mathematics has outgrown
the small and close-knit community of nerds that it used
to be; with increasing size, the profession is becoming
more diverse, more structured and more complex.

Mathematicians sometimes pretend that mathematical
research is as it used to be: that we ¯nd all the in-
formation that might be relevant by browsing through
the new periodicals in the library, and that if we pub-
lish a paper in an established journal, then it will reach
all the people whose research might utilize our results.
But of course 3=4 of the relevant periodicals are not
on the library table, and even if one had access to all
these journals, and had the time to read all of them,
one would only be familiar with the results of a small
corner of mathematics.
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A larger structure is never just a scaled-up version of
the smaller. In larger and more complex animals an
increasingly large fraction of the body is devoted to
“overhead”: the transportation of material and the co-
ordination of the function of various parts. In larger
and more complex societies an increasingly large frac-
tion of the resources is devoted to non-productive activ-
ities like transportation information processing, educa-
tion or recreation. We have to realize and accept that a
larger and larger part of our mathematical activity will
be devoted to communication.

This is easy to observe: the number of professional
visits, conferences, workshops, research institutes is in-
creasing fast, e-mail is used more and more. The per-
centage of papers with multiple authors has jumped.
But probably we will reach the point soon where mutual
personal contact does not provide sufficient information
flow.

There is another consequence of the increase in mass:
the inevitable formation of smaller communities, one
might say subcultures. One response to this problem is
the creation of an activity that deals with the secondary
processing of research results. For lack of a better word,
I’ll call this expository writing, although I’d like to con-
sider it more as a form of mathematical research than as
a form of writing: finding the ramifications of a result,
its connections with results in other fields, explaining,
perhaps translating it for people coming from a different
subculture.

Are there corresponding changes in mathematical cur-
ricula and, more generally, in the way we teach math-
ematics? The first, and most pressing, problem is the
sheer size of material that would be nice (or absolutely
necessary) to teach. In addition, as we will see, we
should put more emphasis on (which also means giv-
ing more teaching time to) some non-traditional math-
ematical activities like algorithm design, modeling, ex-
perimentation and exposition. I also have to emphasize
the necessity of preserving problem solving as a major
feature of teaching mathematics.

How to find time to learning concepts, theorems, proofs,
especially with the rapid expansion of material, and at a
time when class time devoted to mathematics is being
reduced in many countries? Which of the new areas
should make its way to education (on the secondary
or college level), and which of the traditional material
should be left out? This is not a one-time crisis: math-
ematical research is not showing any signs of slowing
down.

One possible answer to this question is to leave the
teaching of any recently developed area of mathemat-
ics to later in the education, to Masters and PhD pro-
grams. The trouble with this approach is that many
educated people will never meet the mathematics of
the last 200 years, which will contribute to the unfor-

tunate but persistent misconception that mathematics
is a closed subject. Many of the new areas of mathe-
matics are important for understanding developments
in technology and science, and by not teaching them we
give up illuminating the increasing role of mathematics
in modern life.

The other possible answer is to remove from the cur-
riculum traditional material that is deemed less impor-
tant. This approach has the negative effect of erod-
ing well-established methods for teaching mathematical
thinking. For example, elementary geometry has been
purged from the curriculum in many countries. While
this kind of geometry is indeed peripheral in modern
mathematical research, it is of course still important
in applications, and, perhaps even more important, its
study is very instrumental in the development of spa-
tial conception, and, perhaps even more significantly, in
understanding the real nature of mathematical proofs,
the “Aha” event when an incomprehensible connection
becomes clear through looking at it the right way.

I have no easy answer to this question. Probably one
must concentrate on mathematical competencies like
problem solving, abstraction, generalization and spe-
cialization, logical reasoning and use of mathematical
formalism, along with the non-traditional skills men-
tioned above (see e.g. [10]). One could select a mixture
of classical and more modern mathematical topics that
are best suited to develop these competencies and (of
course) basic skills, and at the same time give some sort
of picture of the historical roots as well as contemporary
applications.

Another question raised by the increasing complexity
of the world of mathematics is whether exposition style
mathematics has any place in education. One aspect
of this is teaching students to explain mathematics to
“outsiders”, teaching them how to summarize results
without getting lost in the details. This is not easy to
do, but to teach such skills would be very useful indeed.

A more heretical thought is to do some expository style
teaching. In most sciences like chemistry or astronomy,
it is natural to teach in high school or even college the
facts without explaining all the technical details of their
discovery (or even of their exact meaning). Some of this
is done in mathematics too: many students learn that
the regular pentagon can be constructed with ruler and
compass but the regular heptagon cannot, or that equa-
tions of degree 5 or more cannot in general be solved by
radicals. But these examples are almost 200 years old!
Can we solve the problem of exposing students to mod-
ern mathematics by working out appropriate non-exact
but still mathematical blocks of material? I hesitate to
answer “YES”, but the question is valid.
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3 New areas of application, and
their increasing significance

The traditional areas of application of mathematics are
physics and engineering. The branch of mathematics
used in these applications is analysis, primarily differ-
ential equations. But in the boom of scientific research
in the last 50 years, many other sciences have come to
the point where they need serious mathematical tools,
and quite often the traditional tools of analysis are not
adequate.

For example, biology studies the genetic code, which
is discrete: simple basic questions like finding match-
ing patterns, or tracing consequences of flipping over
substrings, sound more familiar to the combinatorial-
ist than to the researcher of differential equations. A
question about the information content, redundancy, or
stability of the code may sound too vague to a classi-
cal mathematician but a theoretical computer scientist
will immediately see at least some tools to formalize it
(even if to find the answer may be too difficult at the
moment).

Even physics has its encounters with unusual discrete
mathematical structures: elementary particles, quarks
and the like are very combinatorial; understanding ba-
sic models in statistical mechanics requires graph the-
ory and probability.

Economics is a heavy user of mathematics—and much
of its need is not part of the traditional applied math-
ematics toolbox. The success of linear programming
in economics and operations research depends on con-
ditions of convexity and unlimited divisibility; taking
indivisibilities into account (for example, logical de-
cisions, or individuals) leads to integer programming
and other combinatorial optimization models, which are
much more difficult to handle.

Finally, there is a completely new area of applied
mathematics: computer science. The development
of electronic computation provides a vast array of
well-formulated, difficult, and important mathematical
problems, raised by the study of algorithms, data bases,
formal languages, cryptography and computer security,
VLSI layout, and much more. Most of these have to do
with discrete mathematics, formal logic, and probabil-
ity.

One must add that which branches of mathematics will
be applicable in the near future is utterly unpredictable.
Just 30 years ago questions in number theory seemed
to belong to the purest, most classical and completely
inapplicable mathematics; now many areas in number
theory belong to the core of mathematical cryptography
and computer security.

A very positive development in recent decades is the
decreasing separation between pure and applied math-

ematics. I feel that the mutual respect of pure and
applied mathematicians is increasing, along with the
number of people contributing to both sides. The di-
versity of applications should also strengthen the flow
of information across all of mathematics. No field can
retreat into its ivory tower and close its doors to ap-
plications; nor can any field claim to be “the” applied
mathematics any more.

How to give a glimpse of the power of these new ap-
plications to our students? Perhaps some nonstandard
mathematical activities like programming and model-
ing (to be discussed later) can be used here.

4 New tools: computers and in-
formation technology

Computers, of course, are not only sources of interesting
and novel mathematical problems. They also provide
new tools for doing and organizing our research. We use
them for e-mail and word processing, for experimenta-
tion, and for getting information through the web, from
the MathSciNet database, Wikipedia, the Arxives, elec-
tronic journals and from home pages of fellow mathe-
maticians.

Are these uses of computers just toys or at best matters
of convenience? I think not, and that each of these is
going to have a profound impact on our science.

It is easiest to see this about experimentation with
Maple, Mathematica, Matlab, or your own programs.
These programs open for us a range of observations
and experiments which had been inaccessible before the
computer age, and which provide new data and reveal
new phenomena.

Electronic journals and databases, home pages of peo-
ple, companies and institutions, Wikipedia, and e-mail
provide new ways of dissemination of results and ideas.
In a sense, they reinforce the increase in the volume
of research: not only are there increasingly more peo-
ple doing research, but an increasingly large fraction of
this information is available at our fingertips (and of-
ten increasingly loudly and aggressively: the etiquette
of e-mail is far from solid). But we can also use them
as ways of coping with the information explosion.

Electronic publication is gradually transforming the
way we write papers. At first sight, word processing
looks like just a convenient way of writing; but slowly
many features of electronic versions become available
that are superior to the usual printed papers: hyper-
links, colored figures and illustrations, animations and
the like.

The use of computers is an area where often we learn
from our students, not the other way around. The ques-
tion here is: how to use the interest and knowledge in
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computing, present in most students today, for the pur-
poses of mathematical education? Most suitable for this
seem to be some nonstandard mathematical activities,
which I discuss next.

5 New forms of mathematical
activity

5.1 Algorithms and programming

The traditional 2500 year old paradigm of mathematical
research is defining notions, stating theorems and prov-
ing them. Perhaps less recognized, but almost this old,
is algorithm design (think of the Euclidean Algorithm
or Newton’s Method). While different, these two ways
of doing mathematics are strongly interconnected (see
[6]). It is also obvious that computers have increased
the visibility and respectability of algorithm design sub-
stantially.

Algorithmic mathematics (put into focus by comput-
ers, but existent and important way before their devel-
opment!) is not the antithesis of the “theorem-proof”
type classical mathematics, which we call here struc-
tural. Rather, it enriches several classical branches of
mathematics with new insight, new kinds of problems,
and new approaches to solve these. So: not algorithmic
or structural mathematics, but algorithmic and struc-
tural mathematics!

What does this imply in math education? As we dis-
cussed above, mathematical education must follow, at
least to some degree, what happens in mathematical
research; this is especially so in those (rare) cases when
research results fundamentally change the whole frame-
work of the subject. So set theory had to enter math-
ematical education (one would wish with more moder-
ation and less controversy than happened with “new
math”). Algorithmic mathematics is another one of
these.

However, the range of the penetration of an algorithmic
perspective in classical mathematics is not yet clear at
all, and varies very much from subject to subject (as
well as from lecturer to lecturer). Graph theory and
optimization, for example, have been thoroughly re-
worked from a computational complexity point of view;
number theory and parts of algebra are studied from
such an aspect, but many basic questions are unre-
solved; in analysis and differential equations, such an
approach may or may not be a great success; set theory
does not appear to have much to do with algorithms at
all.

Our experience with “New Math” warns us that drastic
changes may be disastrous even if the new framework

is well established in research and college mathemat-
ics. Some algorithms and their analysis could be taught
about the same time when theorems and their proofs
first occur, perhaps around the age of 14. Of course,
certain algorithms (for multiplication and division etc.)
occur quite early in the curriculum. But these are more
recipes than algorithms; no correctness proofs are given
(naturally), and the efficiency is not analyzed.

The beginning of learning “algorithmics” is to learn to
design, rather than execute, algorithms [8]. The eu-
clidean algorithm, for example, is one that can be “dis-
covered” by students in class. In time, a collection of
“algorithm design problems” will arise (just as there
are large collections of problems and exercises in al-
gebraic identities, geometric constructions or elemen-
tary proofs in geometry). Along with these concrete
algorithms, the students should get familiar with ba-
sic notions of the theory of algorithms: input- output,
correctness and its proof, analysis of running time and
space, etc.

In college, the shift to a more algorithmic presenta-
tion of the material should, and will, be easier and
faster. Already now, some subjects like graph the-
ory are taught in many colleges quite algorithmically:
shortest spanning tree, maximum flow and maximum
matching algorithms are standard topics in most graph
theory courses. This is quite natural since, as I have
remarked, computational complexity theory provides
a unifying framework for many of the basic graph-
theoretic results. In other fields this is not quite so
at the moment; but some topics like primality testing
or cryptographic protocols provide nice applications for
a large part of classical number theory.

One should distinguish between an algorithm and its
implementation as a computer program. The algorithm
itself is a mathematical object; the program depends on
the machine and/or on the programming language. It
is of course necessary that the students see how an al-
gorithm leads to a program that runs on a computer;
but it is not necessary that every algorithm they learn
about or they design be implemented. The situation is
analogous to that of geometric constructions with ruler
and compass: some constructions have to be carried
out on paper, but for some more, it may be enough to
give the mathematical solution (since the point is not
to learn to draw but to provide a field of applications
for a variety of geometric notions and results).

Let me insert a warning about the shortcomings of algo-
rithmic language. There is no generally accepted form
of presenting an algorithm, even in the research litera-
ture (and as far as I see, computer science text books for
secondary schools are even less standardized and often
even more extravagant in handling this problem.) The
practice ranges from an entirely informal description
to programs in specific programming languages. There
are good arguments in favor of both solutions; I am
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leaning towards informality, since I feel that implemen-
tation details often cover up the mathematical essence.
For example, an algorithm may contain a step “Select
any element of set S”. In an implementation, we have
to specify which element to choose, so this step neces-
sarily becomes something like “Select the first element
of set S”. But there may be another algorithm, where
it is important the we select the first element; turning
both algorithms into programs hides this important de-
tail. Or it may turn out that there is some advantage
in selecting the last element of S. Giving an informal
description leaves this option open, while turning the
algorithm into a program forbids it.

On the other hand, the main problem with the informal
presentation of algorithms is that the “running time” or
“number of steps” are difficult to define; this depends
on the details of implementation, down to a level be-
low the programming language; it depends on the data
representation and data structures used.

The route from the mathematical idea of an algorithm
to a computer program is long. It takes the careful
design of the algorithm; analysis and improvements
of running time and space requirements; selection of
(sometimes mathematically very involved) data struc-
tures; and programming. In college, to follow this route
is very instructive for the students. But even in sec-
ondary school mathematics, at least the mathematics
and implementation of an algorithm should be distin-
guished.

An important task for mathematics educators of the
near future (both in college and high school) is to de-
velop a smooth and unified style of describing and an-
alyzing algorithms. A style that shows the mathemat-
ical ideas behind the design; that facilitates analysis;
that is concise and elegant would also be of great help
in overcoming the contempt against algorithms that is
still often felt both on the side of the teacher and of the
student.

5.2 Problems and conjectures

In a small community, everybody knows what the main
problems are. But in a community of 100 000 people,
problems have to be identified and stated in a precise
way. Poorly stated problems lead to boring, irrelevant
results. This elevates the formulation of conjectures to
the rank of research results. Conjecturing became an
art in the hands of the late Paul Erdöos, who formu-
lated more conjectures than perhaps all mathematicians
before him put together. He considered his conjectures
as part of his mathematical œuvre as much as his the-
orems.

Of course, it is difficult to formulate what makes a good
conjecture. (There is even a lot of controversy around

Erdös’s conjectures.) It is easy to agree that if a conjec-
ture is good, one expects that its resolution should ad-
vance our knowledge substantially. Many mathemati-
cians feel that this is the case when we can clearly see
the place of the conjecture, and its probable solution, in
the building of mathematics; but there are conjectures
so surprising, so utterly inaccessible by current meth-
ods, that their resolution must bring something new –
we just don’t know where.

In the teaching style of mathematics which emphasizes
discovery (which I personally find the best), good teach-
ers always challenged their students to formulate con-
jectures leading up to a theorem or to the steps of a
proof. This is time-consuming, and there is a danger
that this activity too is eroding under the time pressure
discussed above. I feel that it must be preserved and
encouraged.

5.3 Mathematical experiments

In some respects, computers allow us to turn mathemat-
ics into an experimental subject. Ideally, mathematics
is a deductive science, but in quite a few situations,
experimentation is warranted:

(a) Testing an algorithm for efficiency, when the re-
source requirements (time, space) depend on the
input in a too complicated way to make good pre-
dictions 1.

(b) Cryptographic and other computer security issues
often depend on classical questions about the dis-
tribution of primes and similar problems in num-
ber theory, and the answers to these questions
often depend on notoriously difficult problems in
number theory, like the Riemann Hypothesis and
its extensions. Needless to say that in such practi-
cally crucial questions, experiments must be made
even if deductive answers would be ideal.

(c) Experimental mathematics is a good source of
conjectures; a classical example is Gauss’ discov-
ery (not proof) of the Prime Number Theorem.
Among the contemporary examples of this, let
me mention the most systematic one: the graph-
theoretic conjecture- generating program GRAF-
FITI by Fajtlowicz [2, 3].

There are several excellent books about experimental
mathematics (see e.g. [1]). Programs like Derive, Maple
or Mathematica offer us, and the students, many ways
of experimentation with mathematics. A simple exam-
ple: a student can develop a real feeling for the no-
tion of convergence and convergence rate by comparing
the computation of the convergent sums

∑
1/k2 and∑

1/2k.

1I do not include here verification of the correctness of a program, which is not a mathematical issue, but rather software engineering.
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Mathematical experimentation has indeed been used
quite extensively in the teaching of analysis, number
theory, geometry, and many other topics. The success
seems to be controversial; my feeling is that, similarly
as in the teaching of algorithms, the development of
large well-tested sets of experimental tasks takes time,
and is the most crucial element of the success of these
teaching methods.

5.4 Modeling

To construct good models is the most important first
step in almost every successful application of mathe-
matics. The role of modeling in education is well recog-
nized [9], but its weight relative to other material, and
the ways of teaching it, are quite controversial.

Modeling is a typical interactive process, where the
mathematician must work together with engineers, bi-
ologist, economists, and many other professionals seek-
ing help from mathematics. A possible approach here
is to combine teaching of mathematical modeling with
education in team work and professional interaction.

A good example is the course “Discrete Mathematical
Modeling” at the University of Washington [4] (similar
courses are taught at several other universities, e.g. at
the Eötvös University in Budapest). The main feature
of this course is that the students, in groups of 2 or 3,
must find a real-life problem in their environment. They
have to develop a model, gather data, find and code the
algorithms that answer the original question, and give
a presentation of the results. The real-life problems
raised are quite broad in scope, from problems on fa-
vorite games to attempts to help family or friends in
their business, and some of the answers obtained turn
out quite useful.

5.5 Exposition and popularization

The role of this activity is growing very fast in the math-
ematical research community. Besides the traditional
way of writing a good monograph (which is of course
still highly regarded), there is more and more demand
for expositions, surveys, minicourses, handbooks and
encyclopedias. Many conferences (and often the most

successful ones) are mostly or exclusively devoted to ex-
pository and survey-type talks; publishers much prefer
volumes of survey articles to volumes of research pa-
pers. While full recognition of expository work is still
lacking, the importance of it is more and more accepted.

On the other hand, mathematics education does little to
prepare students for this. Mathematics is a notoriously
difficult subject to talk about to outsiders (including
even scientists). I feel that much more effort is needed
to teach students at all levels how to give presentations,
or write about mathematics they learned. (One diffi-
culty may be that we know little about the criteria for
a good mathematical survey.)
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