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Every mathematician will meet a good dose of linear
algebra in his/her battle to reach nirvanna, be it as
stepping stone to infinite dimensions, or as an entry
into more abstract algebra, or as a computational tool
in numerical analysis.

In this article we examine the story of the “companion
matrix”

L[f(x)] =


0 . . . −f0

1 −f1

. . .

0 1 −fn−1

 ,
which is associated with the monic polynomial f(x) =
f0 + f1x+ · · ·+ fnx

n with fn = 1, over a field F.

These matrices are the “molecules” that lie at the heart
of the whole field of linear algebra and its many appli-
cations, ranging from Canonical Forms to Systems The-
ory, Digital Image Processing and Numerical Analysis.

Their membership includes the “least periodic” matrix
in the form of a nilpotent Jordan block, as well as the
“most periodic” matrix, which undoubtedly is the cir-
culant matrix.

Companion matrices really represent polynomials and
appear whenever polynomials are involved. Add to this
that polynomials are one of the most important concept
in applicable mathematics, and so there is some ground
for examining them.

They are in fact a realization of “finiteness”. Indeed,
finiteness implies periodicity, periodicity implies the ex-
istence of annihilating polynomials and these in turn
imply the existence of companion matrices.

Companion matrices and annihilating polynomials are
two concepts which like “foot soldiers” are always
“there” in the background! In fact, as in real life, it
is the behavior of these “molecules” that dictates the
behavior of matrices in general.

There are numerous reasons why these matrices play
such a dominant role, and we shall not attempt to give

a complete “all you should know about your compan-
ion” presentation.

In this note we shall demonstrate that many of the use-
ful results involving companion matrices are a conse-
quence of the companion shift property. We shall go
through several of these and develop the notation as
we go along. Since there are so many areas of applica-
tion, some secrets of our companion will be left to the
literature.

Before we present the shift condition, we mention some
of its well known properties.

• Its transpose LT is similar to L, which translates
into the fact that any matrix is similar to its trans-
pose.

• f(x) is a (left) annihilating polynomial for L(f).
Indeed f`(Lf ) = Ln + Ln−1fn−1 + · · ·+ If0 = 0,
which ensures that any matrix has an annihilating
polynomial.

• Companion matrices are irreducible Hessenberg
matrices that represent polynomials.

• They are the simplest matrices that one can write
down with a prescribed characteristic polynomial.
As such they are crucial building blocks in the
construction of Canonical Forms.

• They are non-derogatory, i.e. the characteris-
tic and minimal polynomials are equal. (blame
Sylvester!)

• They are sparse (= most of their entries are zero).

• They are closely associated with cyclic sub-
spaces, which are the most important subspaces of
linear algebra, module theory, etc. Indeed, their
use ranges from Canonical Forms to chain compu-
tations, as found in coding and numerical analysis
(GMRES).

• The link to the cyclic subspaces is provided by the
cyclic chains, which play a key role in the question
of minimal polynomials and basis changes.
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• Companion matrices induce a companion shift, on
a chain of matrices, which can be manipulated
in numerous ways. These shifts may be compen-
sated for when the terms in the string satisfy suit-
able recurrence relations. It is this cancelation
phenomena that is at the bottom of the some of
the deeper theorems.

• Cyclic subspaces parallel cyclic groups, which in
turn are fundamental building blocks in all of
group theory.

• The companion matrix of L(xn − 1) is special. It
presents itself when dealing with permutation ma-
trices and is the linch pin in the whole field of Dis-
crete Fourier Transform. Indeed, the roots of its
polynomial generate the “mother of all groups”,
i.e. the group of n-th roots of unity.

Before we enter the realm of the companion matrix let
us first clear up some more of the needed definitions
and notations. Throughout this article all matrices will
be over a field F, but many results extend to the non-
commutative (block) case.

Let A ∈ Fn×n and x ∈ V = Fn. The characteristic
and minimal polynomials of A are denoted by ∆A(x)
and ψA(x) = ψV (x), respectively. The minimal an-
nihilating polynomial (m.a.p.) of x relative to A is
the monic polynomial ψx(λ), of least degree, such that
ψx(A)x = 0. A Polynomial will be denoted by p(x) or
by p(λ), when there is no ambiguity, and we use ∂(.) for
degree. The reciprocal polynomial of f(x) is given by
f̃(x) = xnf(1/x). We shall freely interchange Lf and
L(f) and will suppress the subscript where convenient.
We use rk(.) and ν(.) for r rank and nullity and denote
the Kronecker product by ⊗. A is regular if AA−A = A
for some A− and col[x1, ..,xn] stands for [xT

1 , ..,x
T
n ]T.

Besides L(f), there are several other matrices that are
also determined by f(x). In particular we need its
n × n symmetric Hankel matrix G = G[f(x)], and the
(n+ t)× t basic shift matrix St(f), generated by f(x),
which are given by

Gf =


f1 f2 . . . fn
f2 f3 · · · fn 0
...

fn−1 fn 0 · · · 0
fn 0 · · · 0

 , and

St(f) =



f0 0
f1 f0
...

. . .

fn fn−1 · · · f0

0 fn
...

...
. . .

0 fn


.

For later use, we denote the “flip matrix” G(xn) by F .
In many settings it is essential to use the transposed

companion matrix LT , rather than L – as for example
with eigenvectors – because left and right multiplica-
tion are different. The fundamental relation between L
and LT is given by

LfGf = (LfGf )T = GfL
T
f or G−1LG = LT ,

and even holds in the non-commutative case. This iden-
tity is the reason why G is often referred to as the “in-
tertwining” matrix or symmetrizer.

Consider Lf , where f(x) = f0+f1x+· · ·+xn. We asso-

ciate the coefficient vectors f = [f0, . . . , fn−1]T and f̂ =
[f0, . . . , fn]T and the chain matrices X ′n = [1, x, ., xn−1]

and Yn =


1
y
...

yn−1

. The companion shift takes the

form

(i) xX ′n−X ′nLf = f(x)eTn or (ii) LTfXn−xXn = −f(x)en
(0.1)

which is trivial to verify and yet is the most important
property of the companion matrix!

The basic shift matrix Sm(f) has been introduced to
take care of polynomial multiplication, i.e. of convolu-
tion. Again, let f(x) = f0 + f1x + · · · + fnx

n, g(x) =
g0 + g1x + · · · + gmx

m, and h(x) = f(x)g(x) = h0 +
h1x + · · · + hm+nx

m+n, with coordinate columns f̄ , ḡ
and h̄. The two key results that we need are

f(x)X ′n = X ′2nSn(f) (0.2)

Sm+1(f)ḡ = h̄.

The latter reflects the convolution product hk = fkg0 +
fk−1g1 + · · ·+ f0gk.

There are numerous types of operations that we can
now perform on this shift equation.

(i) We can multiply through by a suitable matrix.

(ii) We can embed this shift into a unimodular poly-
nomial matrix – which will enable us show the
equivalence of xL− L to its Smith Normal Form
diag(f(x), I).

(iii) We can consider it as a matrix equation of the
form AX−XB =C, and use the telescoping trick,
– i.e. repeatedly pre-multiplying by A and post
multiplying by B, and add – to arrive at

AkX−XBk = Γk = Ak−1C+Ak−2CB+ · · ·+CBk−1

(0.3)

(iv) We may (formally) differentiate to give

X ′
(k)
n (Lf − xI) = kX ′

(k−1)
n − f (k)(x)eTn

(v) We may evaluate the identity at x = a or replace
x by a matrix B, giving us useful block identities.
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(vi) We may combine any of the above such as the
companion shift with the basic shift Sn(g), or dif-
ferentiation followed by multiplication.

Let us now present each of the above and see how this
application can be used.

1 Multiplication

If we multiply (0.1) by G, we meet the family of adjoint
polynomials fi(x) given by

F ′n = [f0(x), f1(x), . . . , fn−1(x))] = [1, x, x2, . . . , xn−1]Gf ,

or in detail

fk(x) = fk+1 + fk+2x+ · · · + fnx
n−k−1, k = 0, 1, . . . , n− 1.

It should be noted that f−1(λ) = f(λ) and that
fn−1(λ) = fn = 1.

If we multiply (0.1)-(i) on the right by G we obtain the
adjoint shift condition

xF ′n − F ′nLTf = f(x)eT1 , (1.4)

which is equivalent to the recurrence relation fk−1(x) =
fk + xfk(x), k = 0, 1, . . . , n− 1.

If we right multiply (0.1) by adj(xI − L) then we gen-
erate f(x)eTnadj(xI − L) = XT

n (xI − L)adj(xI − L) =
XT
n f(x)I, from which we may cancel f(x) to give

X ′n = [1, x, ., xn−1] = eTn [adj(xI − Lf )].

2 Substitution

Given a matrix A ∈ Fn×n, if we replace x by A in (0.1)
and (1.4) we see that

A[I, A, . . . , Am−1] =

[I, A, . . . , Am−1][LA(f) ⊗ I] + [0, . . . , 0, f(A)]. (2.5)

and

A[A0, A1, . . . , Am−1] =

[A0, A1, . . . , Am−1][LTA(f) ⊗ I] + [f(A), 0, . . . , 0].

If in addition f(x) = ∆A(x) and f(A) = 0, then we
obtain the coefficients Ai = fi(A) in the expansion

adj(xI − A) =
n−1∑
i=0

Aix
i. Not surprisingly we can use

the companion shift to actually characterization a com-
panion matrix. Indeed,

Proposition 2.1. Given a matrix B with minimal
polynomial p(x) of degree n. An n×n matrix X equals
L(p) iff

B[I,B, . . . , Bn−1] = [I,B, . . . , Bn−1](X ⊗ I). (2.6)

Proof. If X = L(p) then take f = p in (2.5). Con-
versely, if (2.6) holds we select f = p in (2.5). Sub-
tracting shows that [I,B, . . . , Bn−1][(L(p)−X)⊗I] = 0.
Since the powers in the chain are independent it follows
that X = L(p).

We may now introduce a second matrix B, and mul-
tiply (2.5) through by (I ⊗ B) to give for any monic
polynomial f(x)

A[B,AB, . . . , Ar−1B] =

[B,AB, . . . , Ar−1B](Lf ⊗ I) + [0, . . . , 0, f(A)B].

Chains of the form [B,AB, . . . , Ar−1B] are of consid-
erable importance in linear control and systems the-
ory. We shall mainly focus on the case where B is a
column x, in which case the chain matrix Kr(x, A) =
[x, Ax, A2x, . . . , Ar−1x] is referred to as a Krylov ma-
trix. There are now two cases of interest.

(i) Suppose that the m.a.p of ψx has degree ∂(ψx) =
r. Then Arx is the smallest (= first) power that
is a linear combination of the previous powers, and
as such the r links in the chain matrix Kr(x , A) =
[x, Ax, A2x, . . . , Ar−1x] are linearly independent and

AKr(x, A) = Kr(x, A)L[ψx(λ)].

Completing the matrix Kr(x, A) to an invertible matrix
Q = [Kr, B], we then arrive at

AQ = Q

[
L(ψx) E

0 D

]
i.e. Q−1AQ =

[
L(ψx) E

0 D

]
.

This will shortly be used as the first step in the deriva-
tion of the Cyclic-Decomposition Theorem.

(ii) If, on the other hand, we take the first n links in the
chain we obtain Kn(x, A) = [x, Ax, A2x, . . . , An−1x].
Now Anx must be a linear combination of lower pow-
ers, say Anx = −[(f0x +f1Ax+ · · ·+fn−1A

n−1x]. We
see that

AKn = KnL(f),

where f(x) = f0 + f1x + · · · + xn. It is clear that
Kn(x, A) will be non-singular iff ∂(ψx) = n, in which
case A is non-derogatory and A = KnL(f)K−1

n .

Associated with the above chain is the cyclic subspace
Zx(A) =< x, Ax, A2x, . . . , > generated by x. It is also
referred to as the Krylov subspace generated by x, and
is used, for example, in the GMRES method of numer-
ical analysis.

A vectorspace V is called cyclic if V = Zu(A) for some
vector u in V . For the case where V = Fn this means
that V =< u, Au, . . . , An−1u >= R(Kn(u, A)).

Cyclic subspaces parallel the concept of cyclic groups,
which are by far the most important type of group. The
following is, for example, the analog to the fundamental
theorem of finite cyclic subgroups.
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Proposition 2.2. If V = Zu(A) and W is an A-
invariant subspace then

(i) W is also a cyclic (sub)space.

ii) W = Zg(A)u for some polynomial g(λ).

It is easily verified that the vector y = g(A)u indeed
has a m.a.p equal to ψy = ψA/g.

As such, it should come as no surprise that cyclic sub-
spaces also play an important role in several areas of
applied linear algebra such as in coding and in linear
control and pole placement. Indeed, cyclic codes contain
the BCH codes, which are one of the most important
families of error-correcting codes. The key question:
When is a vectorspace V cyclic? is really a question
about companion matrices

3 Embedding

Next, we embed X ′n into a unimodular matrix

K(x) =



1 x x2 . . . xn−1

0 1 x xn−2

1
...

. . . x
0 1

 ,

and then compute K(x)[xI − L(f)] =

[
0T f(x)
−I u

]
,

where uT = [f0(x), f1(x), . . . , fn−2(x)]T . Selecting

R(x) =

[
u −I
1 0

]
, we see that

K(x)[xI − L(f)]R(x) =

[
f(x) 0

0 I

]
.

Since K(x) and R(x) are unimodular with K(x)−1 =
I − xJn(0), we have obtained the Smith Normal Form
diag(f(x), I) of L(f).

Taking determinants shows further that ∆L(x) = f(x)
so that Lf is indeed non-drogatory.

4 Some basic Identities

Before we progress, we shall need several basic identities
that illustrate how companion matrices deal with poly-
nomial properties. The key shift property of L comes
from the following.

Proposition 4.1. If L = Lf and f = [f0, . . . , fn−1]T ,
then

(i) Lie1 = ei+1 for i = 0, 1, . . . , n− 1 and Lne1 = f .

(ii) I = [e1, Le1, . . . , Len−1] = [e1, Le1, . . . , L
n−1e1].

(iii) Lk = [ek+1, Lek+1, . . . , L
n−1ek+1], for k =

1, 2, . . .

From these we obtain the curious by-product that

col([I, L, L2, . . . , Ln−1]) = col(


I
L
...

Ln−1

).

We next show that polynomials in L and LT generate
Krylov chains and that they are completely determined
by their first and last columns respectively.

Lemma 4.2. Let L = L(f), g(x) =
∑n
i=0 gix

i and

h(x) =
∑k
i=0 hix

i, with k < n, hk 6= 0 and associated
vectors g = [g0, g1, . . . , gn−1]T , h = [h0, h1, . . . , hn−1]T

and γ = g − gnf . Then

(i) g[L(f)] = [γ, Lγ, . . . , Ln−1γ].

(ii) rk[h(L)] ≥ n− k with equality if h|f .

(iii) g(L)Gf = [f0(Lf )γ, . . . , fn−1(Lf )γ].

(iv) g[L(f)]h = h[L(f)]γ.

(v) g(LT )ej = fj−1(LT )g(LT )en.

Proof. (i) g(L)e1 =
∑n−1
i=0 (gi−gnfi)Lie1 =

∑n−1
i=0 (gi−

gnfi)ei+1 = γ.
(ii) Matrix [h, . . . , Ln−k−1h] = Sn−k(h) has rank n−k.
If f = hq, then ∂(q) = n−k and rk[q(L)] ≥ n− (n−k).
Also 0 = h(L)q(L), which shows that ν[h(L)] ≥ k.
(iii) [f0(Lf )γ, . . . , fn−1(Lf )γ] = [I, L, . . . , Ln−1](Gf ⊗
I)(I ⊗ γ) = [I, L, . . . , Ln−1](I ⊗ γ)Gf =
[γ, Lγ, . . . , Ln−1γ]G = g(L)G.
(iv)[γ, Lγ, .., Ln−1γ]h = h(L)γ.
(v) g(LT )ej = G−1[g(L)G]ej = G−1fj−1(L)γ =
[G−1fj−1(L)]g(L)e1 = [G−1fj−1(L)]g(L)Gen =
fj−1(LT )g(LT )en.

Part one shows that the map must have degree n.
Part two shows that if d = (f, g) then rk[g(Lf )] =
rk[d(Lf )] = n − ∂(d), which illustrates the close con-
nection between gcds and companion matrices, and is
crucial in systems theory.
Next we observe that G does symmetrize all powers of
L, i.e. LkfGf is symmetric. In fact it follows by induc-
tion that, for k = 1, 2, . . .,

LkfGf = diag(−

 0 f0

..
. ...

f0 · · · fk−1

 ,
 fk+1 · · · fn

... ..
.

fn 0

).

We now come to a couple of useful inverses.
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The inverse of L(f) exists exactly when f0 is invertible
and has the form of flipped companion matrix, i.e.

L(f)−1 = −[I(f1f
−1
0 ) + L(f2f

−1
0 ) + · · ·+ Ln(f−1

0 ].

The inverse of G on the other hand, is again a Hankel
matrix. Indeed,

G[en, L
T en, . . . , (L

T )n−1en] = [Gen, GL
T en, . . . , G(LT )n−1en]

= [e1, LGen, . . . , L
n−1Gen]

= [e1, Le1, . . . , L
n−1e1] = I.

Transposing now gives

G−1 = [en, L
T en, . . . , (L

T )n−1en] =


eTn
eTnL
eTnL

2

...
eTnL

n−1

 .

Using this in turn yields

I = GG−1 = G


eTn
eTnL
eTnL

2

...
eTnL

n−1

 =

 eTnf0(L)
...

eTnfn−1(L)

 ,

establishing that eTnfi(L) = eTi+1. We conclude this
section with some of the interaction between L(f) and
the matrix N = E1,n and assume that ∂(g) < n.

Proposition 4.3. The following hold:

(i) L[f(x) + g(x)] = L(f)− engT .

(ii) L[f(x)− 1] = L+N and f(L+N) = I.

(iii) L[f(x)− xk] = L+ Ek+1,n and f(L+ Ek+1,n) =
(L+ Ek+1,n)k.

(iv) NLkfN = 0 for k = 0, 1, . . . , n−1 and NLn−1N =
N .

(v) g(Lf +N)N = g(Lf )N + gn−1N .

(vi) f(Lf +N)N = N = Nf(Lf +N).

(vii) (L + N)r − Lr = Γr(L,N,L) = Lr−1N +
Ln−2NL+ · · ·+NLr−1, r = 1, . . . , n− 2.

Proof. (ii)-(iii) f(x)− xk is an ap for L+ Ek+1,n. (iv)
Follows from (4.1)-(i). (v) g(L+N)e1 = g[L(f−1)]e1 =
L(f − 1)g = (L+N)g = Lg +Ng = g(L)e1 + gn−1e1.
(vi) NΓr = 0 for r = 0, . . . , n− 1.

5 Corner matrices

Besides multiplication or evaluation there are two other
operations that we can apply to the companion shift,
and these are telescoping or differentiation. Actually
the corner matrix acts very much like “differentiation”.
For example, for any polynomial g(x),

g(

[
x 1
0 x

]
) =

[
g(x) g′(x)

0 g(x)

]
= g(

[
x 0
0 x

]
) + g′(x)

[
0 1
0 0

]
.

More generally, the corner matrices Γk appear in the

powers of

[
A C
0 D

]
. The difference form now becomes[

A C
0 B

]k
−
[
A 0
0 B

]k
=

[
0 Γk
0 0

]
, where Γk satis-

fies the down-shift recurrence relation

Γk+1(A,C,D) = AΓk + CDk = AkC + ΓkD.

If we now have a second polynomial g(x) = g0 + g1x+

· · ·+ xN then g(M) =

[
g(A) ΓgA,C,B)

0 g(D)

]
, where

Γg =

N∑
i=1

giΓi =

n−1∑
i=0

gi(A)CBi

= [I, A, . . . , An−1][Gg ⊗ C]


I
B
...

Bn−1

 (5.7)

and the gi(x) are the adjoint polynomials affiliated

with g(x). The difference now becomes g(

[
A C
0 D

]
) −

g(

[
A 0
0 D

]
) =

N∑
i=1

[
fi(A) 0

0 0

] [
0 C
0 0

] [
0 0
0 Bi

]
.

6 Companion matrices, Resul-
tants and Bezoutians

We now present an example in which we telescope the
companion shift equation resulting in a simple rela-
tion between companion matrices, resultants and Be-
zoutians. The latter enters the realm of root location,
stability analysis, and gcd-degree computation.

Given two monic polynomials f(x) and g(x) of degree n.
The bilinear form associated with f(x) is the difference
quotient

f(x) − f(y)

x− y
= X ′nGfYn =

n−1∑
i=0

fiΓi(x, y).

With the polynomial pair f(x), g(x) we may associate,
the form

B(f, g) =
f(x)g(y) − f(y)g(x)

x− y
=

n−1∑
i,j=0

bijx
iyj = X ′nBYn.
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It is bilinear and anti-symmetric, i.e. B(g, f) =
−B(f, g). The n × n matrix B = B(f, g) is called the
Bezoutian (of Hankel type), and is symmetric. It is
clear that

B(f, g) = g(x)
f(x)− f(y)

x− y
− f(x)

g(x)− g(y)

x− y
= g(x)[X ′nGfYn]− f(x)[X ′nGgYn]

In order to tackle the bilinear form [g(x)X ′n]GfYn
we use the basic shift on g(x)X ′n to simplify the re-
sult. Since t = n, it is convenient to split Sn(f) =[
S−n (f)
S+
n (f)

]
, where

S−n (f) =

 f0 0
...

. . .

fn−1 · · · f0

 , S+
n (f) =

 fn · · · f1
. . .

0 fn

 .
Because of their Toeplitz structure, representing poly-
nomial multiplication, we know that S−n (f) and S−n (g)
commute, as do their “plus” counter parts. We can now
split the basic shift (0.2) into

f(x)X ′n = X ′2nSn(f) = X ′nSn(f)− + xnX ′nSn(f)+. (6.8)

Next we recall the companion shift (0.1), which has the
form AX−XB = C, where A = x, B = L(f), X = X ′n
and C = f(x)eTn . Telescoping as in (0.3) we obtain

xkX ′n −X ′nL
k = Γk(xI, f(x)eTn , L) = f(x)eTnΓk(xI, L)

(6.9)
If the second polynomial is given by g(x) = g0 + g1x+
· · · + xn, then we pre-multiply (6.9) by gk and sum,
giving

g(x)X ′n −X ′ng(Lf ) = f(x)eTnΓg(xI, L) = f(x)qT (x),
(6.10)

We next use the adjoint polynomials in

qT = eTnΓg =

n−1∑
i=0

gi(x)eTnL
i
f

= [g0(x), . . . , gn−1(x)]


eTn

eTnLf
...

eTnL
n−1
f


= X ′nGgG

−1
f = X ′nQ, where Q = (GgG

−1
f ).

Applying the basic shift in (6.10) now gives

X ′2nSn(g) −X ′2n

[
g(Lf )

0

]
= X ′2nSn(f)Q,

from which we obtain the identity

Sn(g)Gf −
[
g(Lf )

0

]
Gf = Sn(f)Gg.

We could also have telescoped the adjoint shift equa-
tion. Splitting this then produces[

S−n (g)Gf
S+
n (g)Gf

]
−
[
S−n (f)Gg
S+
n (f)Gg

]
=

[
g(Lf )Gf

0

]

in which we equate blocks to yields

S−n (g)Gf−S−n (f)Gg = g(Lf )Gf and S+
n (g)Gf = S+

n (f)Gg)
(6.11)

The latter follows from the fact that S+
n (f) and S+

n (g)
commute and

S+
n (f)F = Gf , FGf = S−n (f̃), S+

n (f)T = S−n (f̃), (6.12)

where f̃ is the reciprocal polynomial. Using the split
basic shift (6.8) we see that

[g(x)X ′n]GfYn = X ′nS
−
n (g)GfYn + xnX ′nS

+
n (g)GfYn

while

[f(x)X ′n]GgYn = X ′nS
−
n (f)GgYn + xnX ′nS

+
n (f)GgYn .

Subtracting them, we obtain

B(f, g) =X ′n[S−n (g)Gf − S−n (f)Gg]Yn

+ xnX ′n[S+
n (g)Gf − S+

n (f)Gg]Yn,

in which the second term vanished because of (6.11).
Extracting the matrix we see that B(f, g) = S−n (g)Gf−
S−n (f)Gg which on account of (6.11) gives Barnett’s for-
mula

B(f, g) = S−n (g)Gf − S−n (f)Gg = g(Lf )Gf .

Lastly we introduce the resultant matrix M(g, f) =[
S−n (g) S−n (f)
S+
n (g) S+

n (f)

]
and the two row matrices

T =

[
I −S−n (f)[S+

n (f)]−1

0 I

]
and U =

[
I 0
−Q I

]
.

We subsequently compute the triplet TM(g,f)U in two
ways, establishing that[
ζ 0
0 S+

n (f)

]
=

[
ζ 0

S+
n (g) S+

n (f)

] [
I 0

−Q I

]
=

[
I −S−n (f)[S+

n (f)]−1

0 I

][
g(Lf ) S−n (f)

0 S+
n (f)

]
=

[
g(Lf ) 0

0 S+
n (f)

]
.

As such we see that

g(Lf ) = ζ = S−n (g)− S−n (f)[S+
n (f)]−1S+

n (g) ,

which is the (2,2) Schur complement of M(g,f). In con-
clusion we may use (6.12) to compute

M(f, g)MT(g̃,−f̃) =

[
S−n (f) S−n (g)
S+
n (f) S+

n (g)

][
S+
n (g) S−n (g)

−S+
n (f) −S−n (f)

]
,

which reduces to diag(K,N), where

K = −B(f, g)F and N = −FB(f̃ , g̃).

Needless to say, there are numerous generalizations of
this concept to multivariate or non-commutative set-
tings.
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7 Generalized Adjoint chains

The idea of an adjoint chain may be extended by using a
block Hankel matrix G. Indeed, suppose we are given the
m×n polynomial matrix F (x) = F0+F1x+· · ·+FNxN .
The adjoint polynomials associated with this master
polynomial are defined by

Fk(x) = Fk+1 +Fk+2x+ · · ·+FNx
N−k−1, k = 0, . . . , N −1,

with in addition FN (x) = 0, F−1(x) = F (x) and
FN−1(x) = FN . As in the scalar case they can be
expressed in block matrix form as

[F0(x), F1(x), · · · ,FN−1(x)] = [1, x, · · · , xN−1]G(F ),

where G = G(F ) is the block Hankel matrix

G =


F1 F2 . . . FN
F2 F3 FN 0
...

Fn−1 FN 0
FN 0 . . . 0

 .

The key feature of these polynomials is that they satisfy
the down-shift Recurrence Relation

x.Fk(x) = Fk−1(x)− Fk k = 0, 1, · · · , N − 1,

in which we may replaced x by a suitable square matrix
A on the left, or D, on the right.

Using the block recurrence we may write

 F1(x)
...

FN (x)

 .x =

 F0(x)
...

FN−1(x)

−

 F1

...
FN


and by using the companion structure we also have

(Lf⊗I)

 F1(x)
...

FN (x)

 =


0

F1(x)
...

FN−1(x)

−
 f0I

...
fN−1I

FN (x).

Subtracting these we arrive at the generalized adjoint-
companion shift identity

(Lf⊗I)

 F1(x)
...

FN (x)

−
 F1(x)

...
FN (x)

x =

 F1

...
FN

−


F0(x)
0
...
0


(7.13)

together with a row analog. It should be noted that
the indices differ by one from those in (1.4), and it goes
without saying that we may now again replace x by a
suitable matrix D.

8 The Cyclic Decomposition
Theorem

This theorem is a statement about the periodicity of
finite dimensional objects, and is realized in terms of
companion matrices.
There are essentially two versions of this theorem. A
weak version, which is easier to prove, and a strong ver-
sion, which requires much more firepower. The weak
version says that any matrix A in V = Fn×n is similar
to a direct sum of companion matrices. Or equivalently,
that any vectorspace over a field F can be decomposed
as a direct sum of “cyclic” subspaces. It may be con-
sidered as a special case of the fundamental, theorem
of abelian groups.

The best example is that of a permutation, which is
a product of distinct cycles. In terms of matrices this
says that any permutation matrix is similar to direct
sum of matrices of the form L(xr − 1).

We shall use the adjoint-companion shift (7.13) to de-
rive the “strong”’ version of this theorem – which is
often called the Rational Canonical Form – in which,
in addition, the minimal polynomials of the companion
matrices interlace. The proof is short and does not
use quotient spaces.

When this theorem is combined with the Primary De-
composition Theorem, they will spawn the Jacobson
and Jordan Canonical Forms.

Given a matrix A in V = Fn×n, with minimal poly-
nomial ψA. Select a maximal vector x, for which
ψx = ψA = f(λ) = f0 + f1λ+ · · ·+ λm. The existence
of such a vector follows as for finite abelian groups G,
when we replace the order O(.) of an element by the
m.a.p of a vector. Indeed in G, if O(a) - O(b) then
there exists z in G such that O(b)|O(z) but b 6= z and
if O(y) is maximal then O(a)|O(y) for all a in G.

We then form the chain matrix K =
[x, Ax, . . . , Am−1x], which has rank m, and complete it

to a basis Q = [K,B] for V . Then AQ = Q

[
Lf C
0 D

]
,

for some C and D. Since Q is invertible, Q−1AQ =[
L C

0 D

]
= M , and thus ψM = ψA = f . It now fol-

lows that 0 = f(M) =

[
f(L) Γf

0 f(D)

]
, in which the

corner block takes the form

Γf =

m∑
k=0

fk

k−1∑
j=0

Lk−j−1CDj =

m−1∑
i=0

fi(L)CDi = 0 (8.14)

and the fk(λ) are the usual adjoint polynomials of

f(x). Suppose now that C =

 γT1
...
γTm

 and set Fk(x) =
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m−1∑
i=k

γTi+1x
i−k and Fm(x) = 0. It is easily seen that

Fk(x) satisfies Fk(x).x = Fk−1(x) − γTk so that we
can use the adjoint-shift identity (7.13)

L(f)

 F1(D)
...

Fm(D)

−

 F1(D)
...

Fm(D)

D = C −


F0(D)

0
...
0

 ,

in which F0(D) =
m−1∑
i=0

γTi+1D
i =

m−1∑
i=0

eTi+1CD
i. Us-

ing the fact that eTmfi(L) = eTi+1, this reduces to

F0(D) =
m−1∑
i=0

eTmfi(L)CDi = eTm
m−1∑
i=0

fi(L)CDi = eTmΓf ,

and thus, by (8.14), vanishes. In other words
we have constructed a solution X to the matrix
equation L(f)X − XD = C. This means that[
I X
0 I

] [
L(f) C

0 D

] [
I −X
0 I

]
=

[
L(f) 0

0 D

]
,and

consequently A ≈ M ≈
[
L(f) 0

0 D

]
, in which

ψD|ψM = f . It goes without saying that we may re-
peat the above steps with D to obtain a direct sum
decomposition

A ≈ diag[L(ψ1), L(ψ2), . . . , L(ψt)],

where ψt | ψt−1 | · · · | ψ2 | ψ1.

The polynomials JA = (ψ1, . . . , ψt−1) are unique, and
are called the invariant factors of A. They completely
characterize similarity and do not depend on any possi-
ble factorization of polynomials, and were obtained by
only using “rational operations”. Hence the alternative
name of “Rational Canonical Form”.

The uniqueness of this Canonical Form follows at once,
if we recall that ψ1 = ψA is unique and then apply the
following elementary result.

Lemma 8.1. If M =

[
A 0
0 B

]
≈
[
A 0
0 C

]
= N

then ψB = ψC .

Proof. ψB(M) =

[
ψB(A) 0

0 0

]
≈
[
ψB(A) 0

0 ψB(C)

]
.

Taking ranks shows that rk[ψB(C)] = 0 and thus
ψB(C) = 0 and ψC | ψB . By symmetry, it also fol-
lows that ψB | ψC , ensuring equality.

Now if A ≈ diag[L(ψ), D] ≈ diag[L(ψ), E] then, by ap-
plying Lemma (8.1), we see that ψD = ψE , so that we
can indeed continue the reduction process with D or
with E. The same polynomials will be obtained.

It is of interest to note that the above method can actu-

ally also be used to prove that similarity of

[
A C
0 D

]
and

[
A 0
0 D

]
, ensures that AX −XD = C has a so-

lution.

9 Differentiation

If the field is closed we may use the companion shift
to obtain the Jordan form for L(f), but since we use
right eigenvectors, it is more convenient to use LTf . The
transposed companion shift takes the form

LTfXn(x)−Xn(x)x = −f(x)en.

Now f(a) = 0 iff Xn(a) is an eigenvector for LT associ-
ated with eigenvalue a. The corresponding eigenvector

for Lf will be F (a) = GfXn(a) =

 f0(a)
...

fn−1(a)

. Now

because rk[LT − aI] = n − 1, it follows that there can
only be one independent eigenvector for a, and thus
there is exactly one Jordan block per eigenvalue, as ex-
pected, for a non-derogatory matrix.

In the simplest case f(x) =
n∏
i=1

(x − λi) has n dis-

tinct roots and LT (f) has n distinct evalues, and as
such is diagonalizable via its evector matrix V =
[Xn(λ1), . . . , Xn(λn)]. Needless to say this is the cel-
ebrated Vandermonde matrix

V =


1 1 1
λ1 λ2 · · · λn
λ2
1 λ2

2 · · · λ2
n

...
λn−1
1 λn−1

2 · · · λn−1
n

 .

We may conclude that if f(x) has distinct roots then

V −1LT (f)V = diag(λ1, . . . , λn) = Λ

Likewise L(f) is diagonalized by the matrix basis
change GV , i.e. L(GV ) = (GV )D, where (GV )ij =
fi(λj), i, j = 0, 1, . . . , n− 1.

We next note that, because f(x)−f(y)
x−y = X ′nGfYn, if

α and β are two distinct roots of f(x) then the quo-
tient vanishes and so X ′n(α)GfYn(β) = 0. Also let-
ting x approach y, or by summing directly, we see that
X ′n(x)GfYn(x) = f ′(x). This means that V TGfV =
diag(f ′(λ1), ., f ′)λn)) = D or V −1 = DV TG, which
can then be used to establish that

V TB(f, g)V = V T g(Lf )GfV = V TGfg(LTf )V

= (V TGV )Λ = DΛ.

The companion matrix Ω = L(xn−1) = [e2, . . . , en, e1]
is called the basic circulant, and any polynomial p(Ω)
in Ω is a circulant matrix.

For example if p(x) = p0 + p1x+ · · ·+ pn−1x
n−1 then

p(Ω) =


p0 pn−1 p2 p1
p1 p0 pn−1 · · · p2
p2 p1 p0
... pn−1

pn−1 · · · p1 p0

 .
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The matrix Ω is one of the most important matrices
in all of applied mathematics. Indeed, since ∆Ω(λ) =
λn − 1, its eigenvalues are the n distinct n-th roots of
unity, σ = {1, ω, ω2, . . . , ωn−1}, where ω = exp( 2πi

n ).

Consequently it also has n independent eigenvectors
vn(ωk), k = 0, 1, . . . , n−1 (called phasers), and as such
Ω can be diagonalized via

ΩTV = V D, and ΩV = V D−1,

where D = diag(1, ω, . . . , ωn−1) and V is the Vander-
monde matrix

V =


1 1 1 . . . 1
1 ω ω2 ωn−1

1 ω2 ω4 ω2(n−1)

...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)

 = V T .

Now V is not only symmetric but its columns v(ωk),
are also pairwise orthogonal ! Indeed,

v(ωk)∗v(ωr) =

n−1∑
s=0

ωs(r−k) =

{
n if r = k
0 if r 6= k.

Consequently we may normalize the eigenvectors and
use the unitary matrix W = 1√

n
V for which W−1 =

W̄T = W̄ .

The matrix multiplication

y = Wx

is referred to as the Discrete Fourier Transform. It
is of cardinal importance in the theory of filtering. We
shall now examine the case of repeated roots of f(λ).

Like Janus, differentiation is a “two-faced” personality.
On the one hand it is used to compute tangents and
tangent planes, and as such is all important in opti-
mization, while on the other hand it also serves as the
ultimate counting machine. This makes it indis-
pensable in combinatorics and in fact anywhere where
polynomials are used. Recall that the term λk is after
all just a place holder, and that its coefficient can be
“counted” by differentiating k times. As such we have
two counting tools, matrix multiplication and differen-
tiation and our main trick is is to convert differential
identities into matrix identities.

Suppose If f(λ) =
s∏
i=1

(λ−λi)mi = (λ−λi)miφi(x). We

shall now differentiate the companion shift in column
form to solve this problem. Consider

LTfXn(x) = Xnx− f(x)en

and differentiate both sides k times. Using the product
rule gives

LTfX
(k)
n = xX(k)

n + kX(k−1)
n − f (k)(x)en.

Dividing by k! and setting Mk = Xn/k!, yields LTMk =
xMk + Mk−1 − (f (k)/k!)en, which is a step down re-
currence relation. Stacking r of these columns in
Wr,n(x) = [M0, .,Mr−1] shows that

LTWr,n(x) = Wr,n(x)Jr(x)− enFr(x)T ,

where Fr(x)T = [f(x), f
′(x)
1! , . . . , f

(r−1)(x)
(r−1)! ]. If we sub-

stitute λi for x and take r = mi, then F (λi) = 0 leaving
LTWmi,n(λi) = Wmi,n(λi)Jmi(λi), where

WT
m,n+1(λ) =


1 λ λ2 · · · λm−1

(n
n

)
λn

0 1 2λ · · · (m− 1)λm−2
( n
n−1

)
λn−1

0 0 1
...

0 0 0 · · · 1
( n
n−m+1

)
λn−m+1


is an m× (n+ 1) confluent Vandermonde block. Stack-
ing these blocks for each of the distinct eigenvalues we
arrive at

LT [Wλ1
, . . . ,Wλs

] =

[Wλ1
, . . . ,Wλs

]diag(Jm1
(λ1), . . . , Jms

(λs)),

which is the desired Jordan form. Several points should
now be noted:

(i) Wm,(α) precisely equals the chain matrix
Kn[e1, J

T
m(α)].

(ii) it relates the derivatives to the coefficients of a poly-
nomial in the stacked form

f(λ)
f ′(λ)/1!

...
f(m−1)(λ)
(m−1)!

 = Wm,n(λ)


f0
f1
...
fn

 .
(iii) The matrix W = [Wλ1

, . . . ,Wλs
] is the general-

ized Vandermonde matrix. It is also known as the
Caratheodory matrix, which appears in the study of
moment problems.

(iv) W also equals the Wronskian Matrix of the set of
functions {tjeλkt}, k = 1, . . . , s and j = 0, . . . ,mk − 1
and appears in the study of differential equations.

(v) If [f0, . . . , fn]W = 0 then f (j)(λk) = 0 for k =
1, . . . , s and j = 0, . . . ,mk, with m1 + · · ·+ms = n+ 1.
But then π(x) =

∏s
i=1(λ−λi)mi |f(x), in which ∂(π) =

n+ 1 while ∂(f) = n. Thus forcing f(x) = 0, ensuring
that W is non-singular. As a check we can compute

(vi) det(W ) =
∏

1≤j<i≤s
(λi − λj)mimj .

(vii) The generalized Vandermonde matrix also appears
naturally in Hermite interpolation where one aims to
find a polynomial f(x) with prescribed derivatives at
prescribed points.

Lastly, recall that B(f, g) = g(Lf )Gf , and suppose that
W−1LTfW = J is the Jordan form of L. Then

WTB(f, g)W = WT g(Lf )GfW = WTGf [g(LTf )W ]

=
(
WTGfW

)
g(J).
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Now WTGW is made up of blocks WT
α GfWβ , where α

and β are eigenvalues of L. When α 6= β we see from
the difference quotient that this vanishes. On the other
hand, when α = β, we shall need more care. First re-
call that the adjoint polynomial satisfy F ′n = X ′nG, and

hence that F ′n
(k)

= X ′n
(k)
G. Now since the rows of WT

α

are the derivatives of XN at α we obtain

WT
α Gf =


X′n(α)

1!
...

X′n
(k−1)(α)

(k−1)!

Gf =


F ′n(α)

1!
...

F ′n
(k−1)(α)
(k−1)

 ,
which is the weighted Wronskian of the adjoint poly-
nomials at α. It is now clear that (WT

α GfWα)pq =
F ′n

(p)Xn
(q)

p!q! . To compute this we first differentiate the

adjoin shift equation (1.4) which gives

xF ′n
k)

+ kxF ′n
k−1) − F ′n

k)
LT = f (k)(x)eT1 .

Now post mutiply by Xn, and substitute the column
companion shift (0.1). This gives

kF ′n
(k−1)

(x)Xn(x) = f (k)(x),

where we used the fact that F ′n
(k)

en = 0. It now follows
by induction that

F ′n
(k)
Xn

(r) =
f (k+r+1)(x)r!k!

(r + k + 1)!
,

and thus the matrix WT
α GfWα can now be identified

as Fφ(Jmi
(α)).

10 The group Inverse of a Com-
panion Matrix

We have seen that the inverse, if any, of a companion
matrix L(f), again has companion structure. When L is
singular we require in some settings the group inverse
L# (over a ring R with 1), which satisfies

LXL = L, XLX = X and LX = XL.

It exists iff p0 is regular and w = p0 − (1 − p0p
−
0 )p1 is

invertible, in which case it has the form L# = [x,y, B]

where B =

 0T

In−2

0T

, x =

[
u
x

]
, y =

[
v
y

]
, v =

e1+ f̂y and u =


v2

...
vn−1

y

+ f̂x and f̂ = [p1, . . . , pn−1]T .

The parameters x and y can be expressed in terms of
w−1, p0, p1 and p2. Its structure is again sparse, but is
closer to that of a perturbed companion matrix. The
expression for the Drazin inverse however, is still un-
known.

11 Conclusions

We have seen that the companion shift equation is cen-
tral to many of the applications involving L. It is in
combination with other shift conditions that cancella-
tion can occur and the best results materialize. There
are numerous generalizations of a companion a matrix,
such as the comrade and congenial matrices which use
other bases besides the powers of x. Many of the chain
relations generalize to the block case and provide a in-
exhaustible supply of challenging problems.
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