
Feature Article

Hydrodynamic limit of particle systems
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Abstract

In these notes I present a classical particle system, namely exclusion type processes
evolving on the one-dimensional lattice. I consider both settings, the nearest neigh-
bor jumps of symmetric and asymmetric rates and long-jumps. For nearest neighbor
jumps, for the symmetric and asymmetric case, one obtains the particle density evolv-
ing according to the heat equation and the inviscid Burgers equation, respectively,
while for the long-jumps one gets to the fractional heat equation. From this global
behavior I present a simple argument to obtain the limit distribution for the position
of a tagged particle from the joint distribution of the empirical density of particles
plus the current through the origin.

1 Introduction

The study of Interacting Particle Systems goes back
to the late seventies and were introduce by Spitzer.
The goal was to understand the macroscopic tempo-
ral evolution of physical systems through the underly-
ing microscopic dynamics, ie the dynamics between the
molecules constituting the physical system. The sce-
nario is the following, first one supposes to have two
scales for space and time and to have, for example, a
fluid or a gas evolving in a certain volume. The idea is
to split this volume into a certain number of cells and
in each one of these cells one can have a random num-
ber of molecules that move according to a fixed rule,
a probability transition rate. For details on the formal
definition of Interacting Particle Systems, I refer the
reader to [13].

The microscopic behavior of a physical system is very
hard to obtain in a reasonable way, since the number
of molecules is huge, typically of the Avogadro’s num-
ber and in order to have some meaningfully descrip-
tion some simplifications have to be assumed. In this
theory it is supposed to have a stochastic motion of
molecules instead of a deterministic one, and with this
assumption a probabilistic analysis of the system can
be performed. The underlying motion relies on having
each molecule waiting a random time and each one of
them performing a random walk subjected to local re-
strictions. So, Interacting Particle Systems consist

in a random motion of a collection of particles, each
one waiting an exponential random time after which it
moves from one cell to another, according to a proba-
bility transition rate. Probabilistic speaking, since the
random times are variables with exponential law, these
processes belong to the class of Markov processes and
since the microscopic space is discrete these processes
have compact space state.

In the Hydrodynamic Limit theory one is interested
in deducing the macroscopic hydrodynamic equation
that governs the temporal evolution of some physical
quantity of interest, see [12] and [17]. So, for pro-
cesses in which the microscopic dynamics conserves a
macroscopic thermodynamic quantity, as for example,
the density or energy, I will deduce the partial differ-
ential equation that governs the temporal evolution of
this quantity of interest, through the random motion
between particles. This partial differential equation is
known as the hydrodynamic equation of the particle
system.

In these review I will concentrate on particle systems
which are of exclusion type and ergodic. The ex-
clusion type means that, at each cell one has at most
one particle per site, but nevertheless one could also
consider more general Interacting Particle Systems in
which one can have any number of particles per site,
called Zero-Range processes, see [11], [12] and refer-
ences therein, but in order to keep the presentation
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simple and capture the main ideas I will consider only
exclusion type models of ergodic kind. The ergodicity
property means that one can split the state space of the
process into a disjoint set of invariant pieces, namely
the hyperplanes with a fixed number of particles, but
each one of them being a unique ergodic piece in the
sense that fixing any two configurations on the same
hyperplane it is possible to get from one to the other
by allowed jumps of the dynamics. Anyway, it is also
possible to consider more general particle systems in
which the invariant pieces split into the ergodic com-
ponent plus an isolated set of blocked configurations
- these systems belong to the class of kinetically con-
strained lattice gases, which are of very well interest in
the physics community since they model, for example,
the liquid/glass transition. In these models particles
can only move from on cell to the other if there is a
certain number of particles in the cells at their vicinity,
otherwise they are blocked [6]. So, for these systems
there is a phase transition, since for higher densities
of particles each hyperplane is a unique erdogic piece,
but below a critical density each hyperplane splits into
the irreducible component plus a number of blocked
configurations. In [6] it was first proved the hydrody-
namic limit for a non ergodic particle system of gradi-
ent type. The result for non-gradient systems is still
open as well as for the case of non-erdogic gradient sys-
tems for which below the critical density each hyper-
plane splits into the irreducible component, plus iso-
lated blocked configurations, plus a set in which there
is a mixture of the behavior in each one of this sets,
lets say to have a path of possible moving configura-
tions that get blocked after a certain number of jumps.
For details on the universe of this kind of constrained
models, we refer the reader to [6], [17] and references
therein.

After having the hydrodynamic result, one has the
knowledge about the global macroscopic behavior of
the system. Now, one can focus the attention on a
single tagged particle and analyze its motion. Since
each particle performs a random walk, it is known that
if instead having a system with an arbitrary number
of particles, we consider it to have just one, then the
limit distribution of the position of this tagged particle
is given by a Brownian motion or a Levy process,
depending on the properties of the probability transi-
tion rate. But what about the limit distribution for one
fixed or tagged particle when the system is in the pres-
ence of more than one particle? It is known since the
work of Robert Brown that for a transition rate with
finite second moment, the movement of a single particle
in a random medium is given by a Brownian motion. In
this setting the motion of a single particle is influenced
by the position of the other particles in the system,
but can one get to the Brownian motion in the limit
as well, or do other processes come along as the Levy
processes? Here I am going to present, an argument

which allows to deduce the limit distribution for the
position of a tagged particle, through the global anal-
ysis of the system in the equilibrium setting. Recently
there have been obtained partial results about the limit
distribution for the position of a tagged particle when
the system is out of equilibrium, for details see for ex-
ample [8], [9], [10] and references therein. When we
are restricted to one-dimensional systems with jumps
to neighboring sites, the initial order of particles is pre-
served and the main idea is to relate the position of the
tagged particle with the current of particles through a
fixed bond together with the empirical density of par-
ticles in a certain box. From this relation the limit
distribution for the position of a tagged particle is an
easy consequence of the joint Central Limit Theorem
(C.L.T.) for the current and the empirical measure. In
these notes I will define different dynamics for particle
systems, that lead us to very different hydrodynamic
equations and for which the limit distribution for the
position of a tagged particle, one will get to the Brow-
nian motion, to the Fractional Brownian motion and to
a Levy process.

Here follows an outline of this review. On the second
section I introduce the particle systems by means of
their generators and describe its invariant measures.
On the third section the empirical measure is intro-
duced and I present an heuristic argument to get to
the hydrodynamic equation from the explicit definition
of the microscopic dynamics. On the fourth section
is stated the hydrodynamic limit result for the pro-
cesses considered here. On the fifth section I present
the C.L.T. for the empirical measure and in the follow-
ing section the current through the origin is defined and
its C.L.T. is stated. On the last section I present the
C.L.T. for the position of a tagged particle.

2 The Particle Systems

Here I consider the most classical example of an Inter-
acting Particle System: the Exclusion process. In
order to capture the fundamental ideas behind the hy-
drodynamic limit theory I will restrict this exposition
to one-dimensional particle systems evolving on Z. For
more general processes and larger state space we refer
the reader to [13].

Figure 1: one possible configuration of the Exclusion
process

At first one fixes a probability p(·) on Z and each par-
ticle, independently from the others, waits a mean one
exponential time, at the end of which being at the site
x it jumps to x+ y at rate p(y).
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Figure 2: a jump possible jump occurring at rate p(−2)

For this process there can be at most one particle per
site, and if a clock rings and a particle attempts to
jump to an occupied site, the jump is suppressed in
order to respect the exclusion rule and after that the
clock restarts.

Figure 3: a forbidden jump

The space state for this Markov process is Ω = {0, 1}Z
in such a way that a 1 means to have the site occupied
while the 0 denotes that it is empty. Now, we give the
precise definition of the process by means of its gener-
ator.

The Exclusion process is denoted as the Markov pro-
cess ηt ∈ Ω with generator given on local functions
f : Ω→ R by

L f(η) =
∑
x,y∈Z

η(x)(1−η(x+y))p(y)[f(ηx,x+y)−f(η)],

where

ηx,x+y(z) =

 η(z), if z 6= x, x+ y
η(x+ y), if z = x

η(x), if z = x+ y
.

I recall here that a core for the operator L is the set of
local functions, ie functions defined on the state space
of the process that depend on the configuration η only
through a finite number of coordinates η(x), see [13] for
a proof of this result. So, in this process configurations
are denoted by η, so that η(x) = 0 if the site x is vacant
and η(x) = 1 otherwise, as mentioned above. In these
notes I consider three different kind of dynamics:

• Symmetric Simple Exclusion Process (ssep), for
which the probability transition rate is given by
p(1) = p(−1) = 1/2, ie jumps occur to neighbor-
ing sites at the same rate.

• Asymmetric Simple Exclusion Process (asep), for
which the probability transition rate is given by
p(1) = 1− p(−1) = p > 1

2 , ie jumps also occur to
neighboring sites but with a drift to the right.

• Long-jump Exclusion Process, for which the prob-
ability transition rate satisfies

p(x, y) = |y − x|−(1+α), α ∈ (0, 2),

ie jumps occur from any site x to y, but the fur-
ther the distance the smaller the probability of
jumping.

Following the Boltzmann ideas from Statistical mechan-
ics the first step to do when one analyzes the temporal
evolution of a macroscopic thermodynamical quantity
of a physical system, is to obtain the knowledge of its
invariant states. For particle systems, the invariant
states are translated as invariant measures of the sys-
tem. So in this setting, µ is an invariant measure of the
system, if starting the process from µ, ie if the distri-
bution of η0 is µ, then for any time t, the distribution
of the system at time t, ie the distribution of ηt is again
given by µ - this means that the trajectory of the mea-
sure distributions is constant in time and equal to µ.

Now we describe a set of invariant measures for the
processes considered above. Fix 0 ≤ ρ ≤ 1 and denote
by νρ the Bernoulli product measure on Ω with density
ρ, ie its marginal at the site x is given by:

νρ(η : η(x) = 1) = ρ.

So, for any site x, η(x) has Bernoulli distribution of pa-
rameter ρ and since νρ is a product measure (η(x))x∈Z
are independent random variables. It is known that
(νρ)ρ with ρ ∈ [0, 1] is a family of invariant measures
for the exclusion process. I note here that this family
is homogeneous (since the marginal at the site x does
not depend on x) and translation invariant (since it is
invariant by the shift application).

3 Hydrodynamic equation

In this section I deduce the hydrodynamic equation for
two of the processes described above by means of the
random microscopic dynamics. For simplicity I present
here the computations for the Simple Exclusion Pro-
cess: symmetric and asymmetric rates. For details on
the hydrodynamic limit for the Long-jump process we
refer the reader to [7], but the hydrodynamic equa-
tion for this process is the fractional heat equation
∂tρ(t, u) = −(−∆)α/2, where −(−∆)α/2 is the frac-
tional Laplacian.

Now, I introduce the empirical measure associated to
the Markov process η·. For each configuration η, denote
by πN (η, du) the measure given by

πN (η, du) =
1

N

∑
x∈Z

η(x)δ x
N

(du)

and define the process of empirical measures by
πNt (η, du) = πN (ηt, du). Here δu is the Dirac measure
at u.

In the sequence I present an heuristic argument to ob-
tain the conservation law that describes the temporal
evolution of the density of particles. Any of the dy-
namics introduced above, does not create or destroy
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particles, it simply move particles according to some
pre-determined rule and as a consequence the number
of particles is a conserved quantity. So, the density
of particles is the thermodynamical quantity of
interest for these processes.

From the classical theory of Markov processes it is
known that for a test function H

MN,H
t =< πN

t , H > − < πN
0 , H > −

∫ t

0

L < πN
s , H > ds

is a martingale with respect to the natural filtration.
Note that < πNt , H > denotes the integral of H with
respect to the measure πNt . For a particle system with
generator L and whose dynamics conserves the number
of particles L (η(x)) = Wx−1,x(η) −Wx,x+1(η), where
for a site x and a configuration η, Wx,x+1(η) denotes
the instantaneous current between the sites x and x+1,
namely it is the difference between the jump rate from
x to x + 1 and the jump rate from x + 1 to x. This
gradient property allows us to perform a summation
by parts and write down the martingale as

MN,H
t = < πN

t , H > − < πN
0 , H > (3.1)

−
∫ t

0

1

N2

∑
x∈Z

∇NH
( x
N

)
Wx,x+1(ηs)ds,

where ∇NH denotes the discrete derivative of H.

From this point on, we split the argument depending
on the behavior of the expectation of the current. For
the asep, the instantaneous current between the sites x
and x+1 is given by Wx,x+1(η) = pη(x)(1−η(x+1))−
qη(x+ 1)(1− η(x)) and its expectation with respect to
the invariant measure νρ equals to (p−q)ρ(1−ρ) which
is non-zero for ρ ∈ (0, 1). For the ssep, the instanta-
neous current between the sites x and x + 1 is given

by Wx,x+1(η) = 1
2

(
η(x) − η(x + 1)

)
and its expecta-

tion with respect to the invariant measure νρ vanishes.
This property of the expectation of the instantaneous
current is crucial to the following conclusions.

We proceed by closing the integral part of the martin-
gale as a function of the empirical measure. Since, for
the asep, the expectation of the current does not van-
ish, by re-scaling time by tN and performing a change
of variables, one gets to

MN,H
tN =

1

N

∑
x∈Z

H
( x
N

)(
ηtN (x)− η0(x)

)
−

∫ t

0

1

N

∑
x∈Z

∇NH
( x
N

)
Wx,x+1(ηsN )ds.

Now we introduce the notion of conservation of lo-
cal equilibrium. Physical reasoning suggests that due
to the huge number of particles, physical systems may
not present a global equilibrium picture, but microscop-
ically by the interaction among particles its reasonable
to assume that for a macroscopic time t the system is
locally in equilibrium. This means, loosely speaking,

that the expectation of ηtN , is close to the expectation
of η(0) with respect to the equilibrium measure of the
system, but with parameter predicted by the hydrody-
namic equation:

E(ηtN (x)) ∼ Eνρ(t,x/N)
[η(0)] = ρ(t, x/N).

Applying expectation with respect to the distribution
of the system at the microscopic time tN to the martin-
gale above and since this martingale vanishes at time
0, it holds that

1

N

∑
x∈Z

H
( x
N

)(
ρ(t, x/N)− ρ(0, x/N)

)
=

∫ t

0

1

N

∑
x∈Z

∇NH
( x
N

)
W̃ (ρ(s, x/N))ds

Taking the limit as N → +∞, ρ(t, u) is identified as a
weak solution of the hyperbolic conservation law:{

∂tρ(t, u) +∇W̃ (ρ(t, u)) = 0

ρ(0, ·) = ρ0(·) (3.2)

where W̃ (ρ) = Eνρ [W0,1] = (p−q)ρ(1−ρ). This partial
differential equation is known as the inviscid Burgers
equation.

Now we analyze the case for the ssep. Since for this

process Wx,x+1(η) = 1
2

(
η(x)− η(x+ 1)

)
, this allows us

to perform a double summation by parts in the integral
part of the martingale and write (3.1) as:

MN,H
t = < πN

t , H > − < πN
0 , H > −∫ t

0

1

N2

∑
x∈Z

∆NH
( x
N

)1

2
ηs(x)ds.

We note here that particle systems for which the in-
stantaneous current can be written as a function minus
its translation are called gradient systems. The ssep
is an example of a gradient system since Wx,x+1(η) =
1
2η(x)− 1

2η(x+1). Now, following the same argument as
above, by re-scaling time by tN2, performing a change
of variables and by the local equilibrium assumption,
when taking the limit as N → +∞, ρ(t, u) is a weak
solution of the well known heat equation:{

∂tρ(t, u) = 1
2∆ρ(t, u)

ρ(0, ·) = ρ0(·). (3.3)

4 Law of Large Numbers for the
empirical measure

In order to introduce the notion of hydrodynamic limit
we have to fix some notation. Let ρ0 : R → [0, 1] be
an initial profile and denote by (µN )N≥1 a sequence of
probability measures defined on Ω. Assume that a time
0, the system starts from a initial measure µN that is
associated to the initial profile ρ0:
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Definition 1. A sequence (µN )N≥1 is associated to
ρ0, if for every continuous function H : R→ R and for
every δ > 0

lim
N→+∞

µN
[
η :
∣∣∣ 1

N

∑
x∈Z

H
( x
N

)
η(x)−

∫
R
H(u)ρ0(u)du

∣∣∣> δ
]

=0.

Note that the term on the left hand side of the ex-
pression above, corresponds to the integral of H with
respect to πN0 . Thus the above definition corresponds
to asking that empirical measure at time 0 satisfy a law
of large numbers, namely that the sequence πN (η, du)
converges in µN -probability to ρ0(u)du.

The goal in hydrodynamic limit consists in showing
that, if at time t = 0 the empirical measures are associ-
ated to some initial profile ρ0, then at the macroscopic
time t they are associated to a profile ρt which is the
solution (in some topology) of the corresponding hydro-
dynamic equation. In other words, the aim is to prove
that the random measures πN· converge in probability to
the deterministic measure ρ(t, u)du, which is absolutely
continuous with respect to the Lebesgue measure and
whose density evolves according to the hydrodynamic
equation.

Since the work of Rezakhanlou in [16], it is known that
for the asep starting from a sequence of measures (µN )N
associated to a profile ρ0(·) and some additional hy-
potheses (see [16] for details) under the hyperbolic
time scale tN

πNtN −−−−−→
N→+∞

ρ(t, u)du,

in µNSN (t)-probability, where ρ(t, u) is the entropy so-
lution of (3.2) and SN (t) is the semigroup associated to
the generator of the asep.

For the ssep, the hydrodynamic limit can be derived by
the entropy method since the local equilibrium conver-
gence holds for this process, see [12] for details. Under
the parabolic time scale tN2, it holds that

πNtN2 −−−−−→
N→+∞

ρ(t, u)du,

in µNSN (t)-probability, where ρ(t, u) is the weak solu-
tion of (3.3) and SN (t) is the semigroup associated to
the generator of the ssep.

Probabilistic speaking, hydrodynamic limit is a Law
of Large Numbers for the empirical measure associ-
ated to a Markov process starting from a general set
of initial measures. A natural question that follows
has to do with the fluctuations of this measure around
the equilibrium state. ”Does a Central Limit Theorem
holds?” and ”How is the behavior of the limit process?”
In order to analyze the C.L.T. for the empirical mea-
sure, we consider the simplest case in which the process
is equilibrium, ie the initial measure is νρ. This will
be developed in the next section. The scenario out of
equilibrium is much harder to obtain and few cases are
know, here we leave this issue out of discussion.

5 Central Limit Theorem for the
empirical measure

In this section we state the C.L.T. for the empirical
measure for the simple exclusion process: ssep and asep.
Let S (R) denote the Schwartz space of test functions.
Fix ρ and an integer k. Denote by Y N

. the density fluc-
tuation field, ie a linear functional acting on functions
H ∈ S (R) as

Y N
t (H) =

√
N
[
< πNt , H > −Eνρ < πNt , H >

]
=

1√
N

∑
x∈Z

H
( x
N

)
(ηt(x)− ρ).

For an integer k ≥ 0, let Hk be the Hilbert space in-
duced by S (R) and < f, g >k=< f,Kk

0 g >, where
< ·, · > denotes the inner product of L2(R), K0 =
x2 −∆ and denote by H−k its dual. Let D(R+,H−k)
(resp. C(R+,H−k)) be the space of H−k-valued func-
tions, right continuous with left limits (resp. continu-
ous), with the uniform weak topology, by QN the prob-
ability measure on D(R+,H−k) induced by Y N

. and
νρ.

Theorem 5.1 (G. [4])). Fix an integer k > 2. Let η·
be the asep evolving on the time scale tN , starting from
the invariant measure νρ and QN be the probability mea-
sure on D(R+,H−k) induced by Y N

. and νρ. Denote by
Q the probability measure on C(R+,H−k) correspond-
ing to a stationary Gaussian process with mean 0 and
covariance given by

EQ[Yt(H)Ys(G)] =

ρ(1− ρ)

∫
R
H(u+ (p− q)(1− 2ρ)(t− s))G(u)du

for every 0 ≤ s ≤ t and H, G in Hk. Then, (QN )N
converges weakly to Q.

For the asep the limit density field satisfies

Yt(H) = Y0(H)−
∫ t

0

Ys((p− q)(1− 2ρ)∇H)ds,

ie Yt satisfies:

dYt = (p− q)(1− 2ρ)∇Ytdt.

In this case we obtain a simple expression for Yt
given by Yt(H) = Y0(TtH) with TtH(u) = H(u +
(p − q)(1 − 2ρ)t), which is the semigroup associ-
ated to (p − q)(1 − 2ρ)∇. Restricted to F0 (the σ-
algebra on D([0, T ],H−k) generated by Y0(H) and H
in S(R)) Q is a Gaussian field with covariance given by
EQ(Y0(G)Y0(H)) = ρ(1 − ρ) < G,H > . In this case
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the limit density field at time t is just a translation (by
the characteristics velocity) of the initial limit density
field, so the systems does only depends on the initial
configuration of the system.

For the ssep a more sophisticated process appears in
the limit, it is known as an Onrstein-Uhlenbeck process
and the temporal evolution depends highly on the initial
configuration of the system but also on the randomness
of the dynamics.

Theorem 5.2 (Ravishankar [15]). Fix an integer k >
3. Let η· be the ssep evolving on the time scale tN2,
starting from the invariant measure νρ and QN be the
probability measure on D(R+,H−k) induced by Y N

.

and νρ. Denote by Q be the probability measure on
C(R+,H−k) corresponding to a stationary mean zero
generalized Ornstein-Uhlenbeck process with character-
istics A = 1/2∆ and B =

√
χ(ρ). Then (QN )N con-

verges weakly to Q.

For the ssep the limit density field satisfies

dYt =
1

2
∆Ytdt+

√
χ(ρ)∇dBt

where Bt is a Brownian motion.

For the C.L.T. for the long-jump process I refer the
reader to [7].

6 Current fluctuations

In this section I introduce the notion of flux or cur-
rent of particles through the origin. Let J−1,0(t) be the
number of particles that jump from the site −1 to 0
minus the number of particles that jump from the site
0 to −1 during the time interval [0, t]. Since

J−1,0(t) =
∑
x≥0

(
ηt(x)− η0(x)

)
,

the current can be written in terms of the density fluc-
tuation field as

1√
N

{
J−1,0(t)− Eνρ [J−1,0(t)]

}
= Y N

t (H0)− Y N
0 (H0),

where H0 is the Heaviside function, H0 = 1[0,+∞). Us-
ing this relation and the C.L.T. for the empirical mea-
sure, a C.L.T. for the current through the origin can be
obtained.

Theorem 6.1 (G. [4]). Let η· be the asep evolving on
the time scale tN and starting from νρ. Then

1√
N

(
J−1,0(tN)− Eνρ(J−1,0(tN))

)
−−−−−→
N→+∞

σa(J)Bt

where (σa(J))2 = ρ(1−ρ)|(p−q)(1−2ρ)| and Bt is the
standard Brownian motion.

Theorem 6.2 (Arratia [1], De Masi-Ferrari [2], Pel-

ligrad-Sethuraman [14]). Let η· be the ssep evolving on
the time scale tN2 and starting from νρ. Then

1√
N
J−1,0(tN2) −−−−−→

N→+∞
σs(J)W H

t

where (σs(J))2 =
√

2
πρ(1−ρ) and W H

t is the Fractional

Brownian motion of Hurst parameter H = 1/4.

7 Tagged Particle

Now we want to prove the C.L.T. for a single tagged
particle that we suppose to be initially at the origin:

Figure 4: tagged particle at the origin

For that, let η be a configuration of Ω such that
η(0) = 1. For the other sites x consider η(x) distributed
according to the invariant measure of the system, de-
noted by νρ. This means that now we are starting the
process from the measure νρ conditioned on configura-
tions with a particle at the origin:

ν∗ρ(·) = νρ(·|η(0) = 1).

This measure is no longer an invariant measure of the
system, since the clock at the origin can ring and the
particle initially at the origin can move to an empty site
according to the transition probability rate p(·).
In order to keep track of the position of this particle, let
Xt denote the position at time t of the tagged particle
initially at the origin (X(0) = 0).

Since in the one-dimensional setting and for nearest
neighbor jumps the order of particles is preserved, this
allows us to obtain a simple relation between the po-
sition of the tagged particle, the current through the
origin and the empirical density of particles as:

{
X(t) ≥ n

}
=
{
J−1,0(t) ≥

n−1∑
x=0

ηt(x)
}

Theorem 7.1 (Ferrari-Fontes [3], G. [4]). Let η· be the
asep evolving on the time scale tN , starting from ν∗ρ
and let X(tN) denote the position at time tN of the
particle initially at the origin. Then

1√
N

(
X(tN)− Eν∗

ρ
(X(tN))

)
−−−−−→
N→+∞

σa(X)Bt

where (σa(X))2 = |p− q|(1− ρ) and Bt is the standard
Brownian motion.
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Theorem 7.2 (Arratia [1], De Masi-Ferrari [2],

Peligrad-Sethuraman [14], G.-Jara [5]). Let η· be the ssep
evolving on the time scale tN2 and starting from ν∗ρ
and let X(tN2) denote the position at time tN2 of the
particle initially at the origin. Then

1√
N
X(tN2) −−−−−→

N→+∞
σs(X)W H

t ,

where (σs(X))2 =
√

2
π

1−ρ
ρ and W H

t is the Fractional

Brownian motion of Hurst parameter H = 1/4.

When one considers the long-jump process the rela-
tion above between the position of the tagged parti-
cle, the current and the density of particles does not
hold since now particles can move to sites arbitrarily
away from each other - so the order of particles is no
longer preserved. Anyway for this process the C.L.T.
for the tagged particle is achieved by considering the
process seen from an observer sitting on the position of
the tagged particle, namely ξt(x) = ηt(x + X(t)). For
this new process the position of the tagged particle be-
comes the number of shifts of the system, which can be
written as a martingale plus an additive functional of
the Markov Process, for details see [8]. For a transition
rate p(·) homogeneous and regular of degree α, ie such
that there exists a function q : R\{0} → R of class C2

such that p(x) = q(x) for any x ∈ Z\{0} and such that
q(λu) = λ1+αq(u) for any λ 6= 0 and u ∈ R\{0} it was
proved in the equilibrium case that:

Theorem 7.3 (Jara [8]). Let η· be the exclusion pro-
cess with homogeneous regular transition rate of degree
α, evolving on the time scale tNα, starting from ν∗ρ and
let X(tNα) be the position at time tNα of the particle
initially at the origin. Then

XtNα

N
−−−−−→
N→+∞

(1− ρ)Zt,

where Zt is the Levy process whose characteristic func-
tion is given by − logE[exp iβZt] = tψ(β) with

ψ(β) =

∫
R

(1− eiβu)q(u)du

and q as above.

In fact this theorem as stated holds for a general class of
transition rates, which includes the jump-rate defined in
the setting of this review, namely p(x, y) = |y−x|−(1+α)

with α ∈ (0, 2).
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