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Abstract

One growth industry over recent years has been fish farming. Fish are raised in large
cages kept within sea inlets, estuaries or lakes. The fish are fed with food pellets
which are scattered onto the water above the cages. Ideally the pellets sink within
fifteen seconds and can then be eaten by the caged fish. Sometimes there have been
problems at fish farms with the fish food floating for too long, whereas in simple
laboratory experiments with the same batch of pellets, throwing a handful onto water
in a bucket, the pellets were observed to sink quickly. The aim is to understand why.

1 Introduction

An agricultural industry which has expanded rapidly in
recent decades has been fish farming. The fish, which
are being reared for food, are kept in large cages in in-
lets from the sea or fresh-water lakes. The fish, in turn,
need to be fed and this is commonly done by scattering
food pellets, each of which has a shape approximately
that of a circular cylinder, onto the surface of the water
above the caged fish. Ideally the pellets sink quickly –
as might be expected because their density is greater
than that of water, although the two densities are com-
parable. As the pellets sink they can be eaten by the
fish. Sometimes, however, batches of pellets have been
prone to prolonged floating, allowing them to drift away
from the fish cages and/or be eaten by birds. In such
cases the pellet manufacturers might run tests with pel-
lets of the same batch, throwing them onto the surface
of water in a bucket. The pellets in such tests might
proceed to sink rapidly, even if the water used is identi-
cal (in terms of dissolved impurities and temperature)
to that at the fish farm. It is important to understand
the difference between the two cases, and hence to be
able to conduct better tests which can more accurately
represent what is done in practice – and improve the
quality of the manufacturers’ products.

One hypothesis has been that the surface tension of the
water plays a key role. This short article is aimed at
seeing how this effect can help determine whether or
not an object, such as a fish-food pellet, will float on

the surface of a liquid. For simplicity, and also mo-
tivated by the shape of the pellets – circular cylinders
with lengths greater than their diameters – the object is
imagined to be an infinitely long cylinder with circular
cross-section, rather than the true, approximately cylin-
drical shape (with one concave and one convex end), as
sketched in Fig. 1.

2.5 − 4.5 mm

‘‘Vertical’’
cross−section

Figure 1: Schematic diagram of a food pellet.

It is then possible to to consider a two-dimensional sit-
uation, with a circular object floating at the surface of
an infinite expanse of liquid (which would occupy a half
plane if the object had not been present); see Fig. 2.
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Figure 2: The two-dimensional case (or a cross-section
of a long cylindrical pellet), with a circular object of
radius a. Its centre lies a distance H below the undis-
turbed level of the water while angle α is subtended at
the centre, C, by the point on the circle vertically be-
low, B, and the point where the water surface meets the
pellet, A.

We start by writing down the standard equations for the
free surface of water, z = h(x), where z is measured ver-
tically downwards from the undisturbed water level, i.e.
the water surface is z = h = 0 at x = ±∞, and x is the
horizontal azis, in the plane of the pellet cross-section,
measured from the centre of the circle. (This choice
makes things symmetric about the z axis, x = 0.) Next
the equilibrium conditions for a floating pellet are ob-
tained and used to get equations relating H, the depth
of the pellet centre line below the undisturbed surface
(so that the circle centre is at C, (x, z) = (0, H)), and
the points at which the water surface meets the circle.
These points can be specified by the angle α between
CA, with A the meeting point with x > 0, and the
downward vertical (see Fig. 2). The contact angle, ϕ
in Fig. 2 plays an important role these equations. This
particular angle is between the water/air interface and
pellet surface, measured through the water. The con-
tact angle depends on the nature of the solid surface: ϕ
will be small for “hydrophilic” materials (it is energet-
ically favourable for the water and the pellet to be in
contact) and close to π for “hydrophobic” materials (as
would be the case for a waxy or oily substance). Special
cases include ϕ = π, ϕ = π/2, which for convenience
will be particularly looked at here, and ϕ = 0, which
also deserves comment and corresponds to “wetting” of
the pellet surface.

We shall end by considering the implications of the re-
sults for floating, and for the experiments.

2 The Model

2.1 Equations for the water surface

Throughout, for simplicity, we shall subtract off atmo-
spheric pressure from all pressures appearing in the

model. This means that at large distances the pres-
sure p can be taken to be zero at the water surface, so
p = 0 at z = 0. Because there is equilibrium, pressure
is hydrostatic in the water:

p = ρgz for z > h . (2.1)

At an interface between two fluids there is a jump in
pressure. Here

p = pwater − pair = σκ , (2.2)

where σ is the surface tension between water and air
and κ is the curvature of the surface, taken to be pos-
itive if the surface curves towards the water. To be
precise,

κ = −dθ
ds

, (2.3)

with θ = angle of slope (positive for a surface rising as
x increases) and s = distance along the surface (in the
x – z plane), so

cos θ =
dx
ds

, tan θ = −dh
dx

, sin θ = −dh
ds

, (2.4)

see Fig. 3.
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Figure 3: (a) The water surface away from the pellet.
(b) A small element of a curve along the surface in the
x – z plane. (c) Forces which must balance for a small
section of the surface between s−ds and s+ ds (shown
for a case of κ < 0).

These are standard results. Eqn. (2.2) comes from re-
quiring that normal forces balance on a small section
of the surface: force from water pressure (towards the
air) is equal to

pressure× length = 2pds,
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is the same as normal force from surface tension (to-
wards the water), namely

−2σ sin dθ ≈ −2σdθ = −2σ
dθ
ds

ds = 2σκds,

since dθ is small. See Fig. 3(c).

Note that it follows from (2.4) that

κ cos θ =
d2h

ds2
. (2.5)

Using the known hydrostatic pressure, there is then a
differential equation for the depth of the water surface:

p = ρgh = −σdθ
ds

= −σ dθ
dh

dh
ds

= σ
dθ
dh

sin θ

(2.6)

or
h

dh
dθ

=
σ

ρg
sin θ . (2.7)

The quantity σ/ρg has dimensions of area and we
choose to write it as `2:

` =
√
σ/ρg ≈ 3 mm (2.8)

for water with normal gravity. This distance is the
length scale characteristic of a water meniscus. Now

h
dh
dθ

= `2 sin θ . (2.9)

(The problem can be made somewhat simpler by scal-
ing. On writing ĥ = h/`, (2.9) becomes ĥdĥ/dθ =
sin θ.)

As x and s tend to infinity, h→ 0 and the slope θ also
goes to zero. The ODE (2.9) is therefore subject to the
condition

h = 0 at θ = 0 . (2.10)

The solution to (2.9) and (2.10) satisfies

h2 = 2`2(1− cos θ) = 4`2 sin2 θ

2
. (2.11)

Two cases might be considered:

(1) The presence of the pellet raises the water level,
so h < 0 and θ < 0, in which case (2.11) gives
−h = −2` sin(θ/2).

(2) The presence of the pellet lowers the water level,
so h > 0 and θ > 0, in which case (2.11) gives
h = 2` sin(θ/2).

We see that in either case

h = 2` sin
θ

2
. (2.12)

For more on surface tension and on curvature of curves
and of surfaces, see, for example, the books [1], [2] and
[3].

2.2 Equations for the pellet position

Referring back to Fig. 2, the depth of the pellet cen-
tre, H, pellet radius, a, angle α giving the location, A,
of the intersection of the free surface with the pellet
boundary, and the local depth of A, say h∗, are related
through

h∗ = H + a cosα . (2.13)

Looking at, θ∗, the local angle of slope of the free sur-
face, it is seen that

θ∗ = α+ ϕ− π , (2.14)

with ϕ the contact angle. Note that |θ∗| > π/2 corre-
sponds to a free surface which turns over; see Fig. 4.

water
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Figure 4: A water surface which turns over. (a) The
case of h > 0, so π/2 < θ∗ < π. (b) The case of h < 0,
so −π < θ∗ < −π/2.

With h∗ and θ∗ related through (2.12), (2.13) and (2.14)
give

H = 2` sin
(
α+ ϕ− π

2

)
− a cosα

= −
(

2` cos
(
α+ ϕ

2

)
+ a cosα

)
.

(2.15)

A final equation relating the unknowns H and α is ob-
tained from requiring that the total force on the pel-
let be zero for it to float in equilibrium. Because of
symmetry it is only necessary to look at the vertical
components.

The surface tension at the two sides provides an upward
force of

2σ sin θ∗ = −2σ sin(α+ ϕ) .

There is also an upward buoyancy force from the water
pressure of∫ α

−α
(p cosφ)(a dφ) = 2ρga

∫ α

0

(H + a cosφ) cosφdφ

= ρga

(
2H sinα+ a

(
α+

sin 2α
2

))
,

12



taking a variable of integration φ = angle from vertical
from the pellet centre to a point on its surface, so that
the local depth is z = H + a cosφ. These two upward
forces must balance the weight of the pellet, ρpgπa

2,
with ρp = the pellet’s density as πa2 is the relevant
cross-sectional area:

ρpgπa
2 =ρga

(
2H sinα+ a

(
α+

sin 2α

2

))
− 2σ sin(α+ ϕ).

(2.16)

Note that the right-hand side of (2.16) should, by
Archimedes’ principle, be the weight of water displaced,
i.e. twice that in 0 < z < H + a cosφ for 0 < φ < α
plus twice that in 0 < z < h(x) for x > a sinα, think-
ing of 0 ≤ θ∗ ≤ π/2 for simplicity. It is clear that
ρg
∫ a sinα

0
(H + a cosφ) dx gives, on writing x = a sinφ,

the first part of (2.16). The second part comes from

σ sin θ∗ =
∫ ∞
a sinα

(
−σ dθ

dx
cos θ

)
dx

=
∫ ∞
a sinα

(
−σdθ

ds
cos θ

dx/ds

)
dx =

∫ ∞
a sinα

ρghdx

from (2.6) and (2.4).

2.3 Negligible surface tension

Taking σ → 0, so `→ 0, (2.15) reduces to H = −a cosα
and floating, (2.16), gives

ρp =
ρ

π

(
α− 1

2
sin 2α

)
. (2.17)

This says that, without surface tension, the centre of
the pellet is at depth

H = −a cosα with 0 ≤ α ≤ π

and

ρp = ρf(α) , defining f(α) =
1
π

(
α− 1

2
sin 2α

)
.

(2.18)
Note that

df
dα

=
1
π

(1− cos 2α) > 0 for 0 < α < π ,

f(0) = 0 , f(π/2) = 1/2 , f(π) = 1

0 < f(α) < 1 for 0 < α < π ,

(2.19)

see Fig. 5.
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Figure 5: Graph of the function f(α) (f gives the pellet
density in terms of the position angle α in the absence
of surface tension).

Clearly dH/dα = a sinα > 0 for 0 < α < π, H(0) =
−a, H(π/2) = 0 and H(π) = a. We get the expected
result that as long as the density of the pellet, which
must be non-negative, is no greater than that of water,
0 ≤ ρp ≤ ρ, the pellet can float. Moreover: an increased
pellet density leads to a lower floating position; ρp → 0
corresponds to H → −a (with zero density it sits on the
surface of the water like a balloon); ρp → ρ corresponds
to H → a (the pellet becomes totally submerged and
just reaches the surface of the water). Fig. 6 shows dif-
ferent cases. Note that, for this case, if, and how, the
pellet floats has nothing to do with the pellet size, a.

(d)(c)(b)(a) (e)

Figure 6: Floating pellet without surface tension: (a)
ρp = 0 (α = 0); (b) 0 < ρp < ρ/2
(0 < α < π/2); (c) ρp = ρ/2 (α = π/2); (d) ρ/2 <
ρp < ρ (π/2 < α < π); (e) ρp = ρ (α = π).

3 How Flotation Depends on
Surface Tension

With significant surface tension, σ > 0, the floating po-
sition, i.e. the angle α, is related to the pellet density
through (2.16) and (2.15). These give

πρpga
2 =ρga

(
a

(
α− sin 2α

2

)
− 4` sinα · cos

(
α+ ϕ

2

))
−2σ sin(α+ ϕ)

which can be rewritten as

R = f(α) − 1

π

(
4L sinα · cos

(α+ ϕ

2

)
+2L2 sin(α+ ϕ)

)
,

(3.20)
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where

R =
ρp

ρ

is the ratio of the pellet
and water densities,

f(α) =
α− 1

2 sin 2α
π

as in (2.18),

L =
`

a
=

√
σ/ρg

a

is the ratio of the length
scale of the meniscus to
the pellet size.

The dimensionless quantity L can be thought of as a
measure of the importance of surface tension. If L is
small, we can regard the surface tension as being weak,
or the pellet as large. If L is large, the surface tension
should be thought of as strong or the pellet as small.
(This latter case will be true for insects such as pond
skaters which can “walk” on water.) For the pellets of
interest, L is likely to be around 1, so surface tension is
important but does not dominate.

Floating is now controlled by (3.20). This equation
could be solved numerically to find α from known val-
ues of the dimensionless quantities L and R, and con-
tact angle ϕ. Equivalently, for given L and ϕ, α can be
varied from 0 to π to see what density ratios (and hence
densities) allow floating; the results of such calculations
can be plotted graphically.

It can be noted that for α = π, R = 1 + 2L2 sinϕ so,
at least for 0 < ϕ < π, the presence of surface tension
allows pellets with density greater than that of water
(R > 1) to float. (Intuitively, it is to be expected that
a higher contact angle ϕ makes the pellet more likely
to float, in other words higher values of R and ρp are
possible, as the water attracts the pellet less, or repels
it more.) In fact it only makes sense to take α = π
for 0 < ϕ ≤ π/2 because, for π/2 < ϕ ≤ π, there will
be some position angle αc, π/2 < αc < π, such that
the water surfaces on the two sides of the pellet will
overhang sufficiently to touch at some point (x, z) with
x = 0 and z > 0, see Fig. 7.

pellet

air

z = 0

x = 0

water

αc

Figure 7: A critical case, with π/2 < ϕ ≤ π, with the
free water surface touching itself when position angle
α = αc, π/2 < αc < π.

However, it is clear from Archimedes principle that,
since there is air lying below the undisturbed level
z = 0, R is again greater than 1.

Rather than consider (3.20) in full generality, atten-
tion is focused on special cases for simplicity but some
graphs illustrating the behaviour of (3.20) are plotted
in Sec. 5. One such particular case is when water wets
the pellet, ϕ = 0. Now

R = f(α)− 1
π

(
4L sinα · cos

α

2
+ 2L2 sinα

)
.

Since sinα·cos α2 = sin α
2 ·cos2 α

2 ≥ 0 for 0 ≤ α ≤ π, it is
apparent that R ≤ f(α) and that the maximum float-
ing density is given by α = π: R = 1 and ρp = ρ. This
should be expected as, for 0 < α < π, i.e. 0 < ρp < ρ,
the free-surface slope at the the pellet, θ∗, is negative
and surface tension pulls the pellet down (see Fig. 8).

(a)

(b)

Figure 8: A floating pellet with contact angle ϕ = 0:
(a) π/2 < α < π; (b) 0 < α < π/2.

The other extreme is ϕ = π, when the water acts to
expel the pellet, see Fig. 9.

(a)

(b)

Figure 9: A floating pellet with contact angle ϕ = π:
(a) π/2 < α < π; (b) 0 < α < π/2.

Although it is expected, physically, that increasing ϕ,
will increase the maximum pellet density which can be
supported, this is only demonstrated here for 0 ≤ ϕ ≤
π/2; this avoids any difficulty with one part of the free
surface touching another part above the pellet, as noted
earlier, for ϕ ≥ π/2.

It has already been observed that for 0 < ϕ < π, R > 1
for some α: for 0 < ϕ < π/2 there is some αm with

Rm(ϕ) = max
0≤α≤π

{R(ϕ,L, α)} = R(ϕ,L, αm) > 1

(clearly π/2 < αm < π here). From (3.20), Rm > 1
requires, since f(α) ≤ 1,

4L
(

sinαm + L sin
(
αm + ϕ

2

))
cos
(
αm + ϕ)

2

)
< 0

(3.21)
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Because 0 < αm < π and 0 < (αm + ϕ)/2 < π,
sinαm > 0 and sin((αm + ϕ)/2) > 0, and (3.21) gives
cos((αm + ϕ)/2) < 0 and hence αm + ϕ > π. Then

dRm

dϕ
=

∂Rm

∂ϕ

∣∣∣∣
α=αm

=
2L

π

(
sinαm · sin

(αm + ϕ

2

)
− L cos(αm + ϕ)

)
> 0,

since 0 < αm < π, 0 < (αm + ϕ)/2 < π, and
π < αm + ϕ ≤ αm + π/2 < 3π/2.

This means that for a given L, the largest density of
pellet which can be supported with 0 ≤ ϕ ≤ π/2 is
that for ϕ = π/2.

We now concentrate our attention on this special value
of π/2 for the contact angle. This special case avoids
any possibility of having self-intersecting water surfaces,
either above the pellet (noted above) for π/2 < ϕ ≤ π
or below for 0 ≤ ϕ < π/2 (which would need a negative
density for the pellet!).

4 Right-Angled Contact Angles

With ϕ = π/2, (3.20) becomes

R = f(α)− 2L
π

(
2 sinα · cos

(α
2

+
π

4

)
+ L cosα

)
.

(4.22)
The change from the surface-tension-free density ratio
is then given by the function

g(α;L) = 2 sinα · cos
(α

2
+
π

4

)
+ L cosα (4.23)

and which is of the form sketched in Fig. 10.

α

g

L

−L

0 π/2 π

Figure 10: Graph of g as a function of α.

Note that:

• g > 0 for 0 ≤ α < π/2; surface tension pulls the
pellet down in this case (Fig. 11(a));

• g = 0 for α = π/2; surface tension has no ef-
fect, with the water surface being flat (h ≡ 0)
(Fig. 11(b));

• g < 0 for π/2 < α ≤ π; surface tension now pulls
the pellet up (Fig. 11(c));

• dg/dα > 0 for α = π.

(a) (b) (c)

Figure 11: Sketches of the free surface near the pellet
with contact angle = π/2.

Then the maximum of R is achieved at some αm, with
π/2 < αm < π, since



R ≤ f(α) ≤ 1
2

for 0 ≤ α ≤ π

2
,

∂R

∂α

∣∣∣∣
α=π

= f ′(π)− 2L
π

∂g

∂α

∣∣∣∣
α=π

< f ′(π) = 0

R|α=π = f(π)− 2L
π

∂g

∂α

∣∣∣∣
α=π

< f(π) = 1.

It is clear that this maximum, Rm, has value Rm =
R(αm) > 1.

It is easily seen, in this case, that increasing surface ten-
sion or decreasing pellet size (making L larger) raises
the maximum density which can be supported. For α
near αm, π/2 < α < π so the terms in (4.22) due to sur-
face tension, 4L

π sinα ·
(
− cos

(
α
2 + π

4

))
+ 2L2

π (− cosα)
are positive, and are then clearly increasing functions
of L. Conversely, decreasing L, which corresponds to
increasing the pellet size (or decreasing surface tension)
leads to a smaller density of pellet which is able to float.

5 Numerical Calculations of
Supported Densities

We conclude by plotting some graphs of pellet density,
R, against floating-position angle α.

The first set of graphs, Fig. 12, shows graphs for the
case of the normal contact angle, ϕ = π/2, as discussed
in Sec. 4, for different values of L. Note how the maxi-
mum density ratio R increases with dimensionless sur-
face tension L. The dashed line in Fig. 12 is a blow-up of
the zero-surface-tension case. In this figure, and others
below, negative densities are indicated in places. These
are not of physical interest here and would correspond
to a pellet being pulled up by some external force.
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Figure 12: Plots of the floating density ratio, R, (ver-
tical axis) vs. position angle, α, (horizontal axis) for
contact angle ϕ = π/2. Values of dimensionless sur-
face tension, L, are 0, 0.6, 1, 1.5 and 2 (increasing L
corresponds to increasing amplitude). The broken curve
shows 10R for L = 0.

The second set of graphs, Fig. 13, again shows graphs
of the density ratio, but taking five different values of
contact angle with a fixed value of L = 1. Because of
having a self-intersecting water surface, below or above
the pellet, the extreme left-hand parts of curves 1 and
2 (contact angle = 0 and π/4) and the extreme right-
hand parts of curves 4 and 5 (contact angle = 3π/4
and π) have no physical significance. Note that, with
the exception of the zero-contact-angle case, curve 1,
ϕ = 0, the maximum of the density, i.e. the maximum
of R, is raised above 1 by the effect of the surface ten-
sion. We can also observe that this maximum floating
density is raised by having an increased contact angle.

0 0.5 1 1.5 2 2.5 3 3.5
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Figure 13: Plots of the floating density ratio, R, (ver-
tical axis) vs. position angle, α, (horizontal axis) for
dimensionless surface tension L = 1. Values of contact
angle ϕ are 0 (curve 1), π/4 (curve 2), π/2 (curve 3),
3π/4 (curve 4) and π (curve 5).

The final pair of graphs, Fig. 14, show how surface ten-
sion affects pellet buoyancy for the two special cases of
ϕ = 0 and ϕ = π. The left-hand graphs show how with
L = 1 the pellet is pulled down when wetting occurs
(ϕ = 0): R for L = 1 is below that for L = 0 (zero sur-
face tension) and the maximum floating density ratio
is R = 1 for both cases. The right-hand graphs show
how with L = 1 the pellet is pushed up for a hydropho-
bic surface (ϕ = π): R for L = 1 is above that for
L = 0 (zero surface tension) and the maximum floating
density ratio for L = 1 is now much bigger than 1.

0 0.5 1 1.5 2 2.5 3 3.5
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Figure 14: Plots of the floating density ratio, R, (ver-
tical axis) vs. position angle, α, (horizontal axis) for
contact angle = 0 (left-hand graphs) and contact angle
= π (right-hand graphs). In the left-hand graphs the
upper curve is for L = 0 and the lower one is L = 1.
In the right-hand graphs the lower curve is for L = 0
and the upper one is L = 1.

6 Consequences and Discussion

The results of Secs. 4 and 5 indicate that surface ten-
sion can play an important role helping objects which
are heavier than water to float. To ensure that pellets
of size of a few millimetres sink, if their density is com-
parable with but larger than that of water, their com-
position would ideally be such that the contact angle
is small. Of course control of contact angle is unlikely
to be practical as the make-up of the pellets will be
determined by the nature of the fish food.

The significance of surface tension is also suggested by
the sizes of quantities involved. Typically, with wa-
ter density ρ = 103 kg m−3, acceleration due to gravity
g = 10 m s−2, surface tension σ = 7×10−2 N m−1, and a
pellet radius a = 3× 10−3 m, the dimensionless surface
tension is L ≈ 1. Note that a pellet can be expected
to have density fairly close to, but rather greater than,
that of water, say R = ρp/ρ ≈ 1.2. Fig. 13 indicates
that for such a pellet to sink its contact angle should
be significantly less than π/4.

The results show (see Fig. 12) that the maximum den-
sity depends crucially upon the dimensionless surface
tension: small objects can float with greater density
than larger ones. This indicates a possible reason for
problems with testing the floatation of pellets in small
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bodies of water, such as buckets, compared with their
use on large expanses. If several pellets are put together
onto a water surface they can act like a single large ob-
ject, giving a small value of L and hence a good chance
of sinking. With widely scattered pellets, each acts a
single individual, with a large value of L, and they can
be prone to floating.

Of course all the work here has been for the effectively
two-dimensional case of a long cylindrical object. How-
ever, the same qualitative behaviour is to be expected
for more general shapes: the larger the body (and the
smaller the contact angle), the smaller the density has

to be for it to float. It will be possible to do similar
calculations as here, and to get to the same qualita-
tive conclusions, for spherical pellets when there is axial
symmetry about the vertical (z) axis.

References

[1] D. J. Acheson, Elementary Fluid Dynamics, Oxford
University Press, 1990.

[2] G. K. Batchelor, An Introduction to Fluid Dynamics,
Cambridge University Press, 2000.

[3] B. Spain, Vector Analysis, Chapman and Hall, 1977.

CIM Early History

The near origins of CIM can be traced to the end of
1990 at the foundation of the European Mathematical
Society (EMS) and to an initiative of the Portuguese
Mathematical Society (SPM, Sociedade Portuguesa de
Matemática), which was one of the EMS founding mem-
bers.

Since then, the need of a forum of European Research
Centres in the Mathematical Sciences was recognized
and the SPM had promoted the idea of creating a
Portuguese Center. In particular, it would have the
aim to cooperate with similar centres and to enhance
the development and promotion of research in Math-
ematics in Portugal, as well as to assist mathemati-
cians in developing countries, priority being given to
the Portuguese speaking countries in Africa (Angola,
Mozambique, Cape Verde, Guinea-Bissau, São Tomé
and Pŕıncipe).

Several mathematicians gave their personal and insti-
tutional support to the idea, such as J. M. Lemaire, at
the time director of the CIMPA from Nice (France) who
came to Portugal for a visit in 1991, Angelo Marzollo
from UNESCO, and F. Hirzbruch, the first president of
the EMS, who expressed his support on behalf of the
Society.

During 1992 a national discussion took place among
the Portuguese mathematical community and the De-
partment of Mathematics of the University of Coimbra
offered to house the future Centre on the campus of its

Astronomical Observatory. Delegates from the Mathe-
matics Departments of all public Portuguese Universi-
ties, the president of the Portuguese Mathematical So-
ciety and a representative of the Academy of Sciences
of Lisbon were invited to participate in the constitutive
meetings. Indeed almost all of them had participated in
the two meetings that have created the consensus that
the new Centre should promote activities to encourage
the development of Mathematical Sciences in general
and to foster international cooperation, as well as to
help the improvement of the level of Mathematics and
its Applications in Portugal.

CIM was legally incorporated on December 3, 1993.
Until the election of its first direction, on July 1996,
CIM was run by an organizing committee formed by the
president of the Portuguese Mathematical Society and
other mathematicians from the Universities of Coimbra,
Lisbon, Porto and Minho. Since then CIM is managed
by a Board of Directors elected by the associates in the
General Assembly.

CIM started to publish its Bulletin in December 1996,
the first meetings were organised in the following year
and the first Thematic Term was held in 1998. It has
been regularly in operation as can be seen in the list
of events, in particular, with sponsorships from the
Calouste Gulbenkian Foundation and from the Por-
tuguese Foundation for Science and Technology. In
March 2008, CIM has hosted the annual ERCOM meet-
ing in Coimbra, Portugal.
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