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Abstract

We survey some results on the solution set of equations of the form −∆u = |u|p−2u+
f(x) (p > 2) with Dirichlet boundary conditions on a smooth bounded domain of
RN , from the point of view of the calculus of variations and critical point theory. We
focus on the so called perturbation from symmetry problem.

1. Introduction

In the following Ω is a smooth bounded domain of RN .
We shall be concerned with equations of the form

−∆u = g(u) in Ω, u = 0 on ∂Ω,

where g ∈ C1(R; R) is superlinear in the sense that
g(s)/s → +∞ as |s| → ∞. The model nonlinearity is
the homogeneous function

g(s) = |s|p−2s with p > 2.

Classical methods based upon fixed point theorems do
not apply easily to this problem because there are no a
priori bounds for the solutions.

In the one-dimensional case N = 1, one can apply the
shooting method to the ODE, and the existence of an
unbounded sequence (uk)k of solutions can be proved;
moreover, the number of their nodal domains increases
with k.

However, numerous open problems subsist in the case
N > 1; among others, they concern the existence of
solutions, the uniqueness in a prescribed class of func-
tions (positive solutions, ground-state solutions, radi-
ally symmetric solutions, etc), their possible symmetry,
the sign of the solutions as well as the number of their
nodal domains.

In Section 2 we list a number of known results for the
above problem. This list is not intended to be exhaus-
tive but rather to provide the reader a flavor of the
state of art. Since we aim mostly at the discussion in
Section 4, we do not include complete references in Sec-
tion 2; these can be found e.g. in [10, 31]. In Section
3 we comment briefly on the most fruitful framework
that has been used so far to prove a number of such
results. Section 4 is devoted to a special case where, al-
though some basic questions still remain unsolved, new
results have been obtained recently. Hereafter we will
restrict our attention to the case N > 3; the critical
Sobolev exponent 2∗ := 2N/(N − 2) will play an im-
portant role. Also, in order to keep the paper simple,
we do not attempt in presenting the results in its most
general form.

2. Some known results

Given p ∈ R, p > 2, consider the problem

−∆u = |u|p−2u in Ω, u = 0 on ∂Ω. (2.1)

In case p < 2∗, there is a compact embedding of the
Sobolev space H1

0 (Ω) into Lp(Ω). Using various meth-
ods one can prove that (2.1) admits a solution different
from the trivial one u ≡ 0; in fact, a positive solution
u > 0.

The situation is different if p > 2∗. For example, if Ω
is star-shaped and p > 2∗ then (2.1) has no solutions.
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While if Ω has a nontrivial homology (Hk(Ω; Z2) 6= 0
for some k > 1) and p = 2∗, then a positive solution
does exist (Bahri and Coron, 1988). On the other hand,
in any domain Ω the problem

−∆u = λu + |u|p−2u in Ω, u = 0 on ∂Ω, (2.2)

with p = 2∗ admits a positive solution provided N > 4
and 0 < λ < λ1(Ω), the first eigenvalue of (−∆,H1

0 (Ω))
(Brezis and Nirenberg, 1983).

The problem may admit several positive solutions.
For example, if p < 2∗ is sufficiently close to 2∗ then
(2.1) has at least cat(Ω)+1 positive solutions, provided
Ω has a nontrivial Ljusternik-Schnirelmann category
cat(Ω) > 1 (Benci, Cerami and Passaseo, 1991). While,
for example, if we remove k small balls from a given
ball (so that the resulting set Ω has a fixed category
cat(Ω) independent of k) then, for p close to 2∗, the
number of positive solutions of (2.1) increases up to
2k + 1, provided we count them with their multiplicity
in the sense of the critical groups (Benci and Cerami,
1994).

On the other hand, the uniqueness of positive solutions
of (2.1) does hold if Ω is a ball and p < 2∗ (Gidas, Ni
and Nirenberg, 1979). Similarly to the problem (2.2), if
λ < 0 and p < 2∗ (Kwong, 1989), or if λ > 0 and p 6 2∗

(Srikanth, 1993). In contrast, if Ω is an annulus and
p < 2∗ is sufficiently close to 2∗ then (2.1) admits one
positive radial solution and a further positive nonradial
solution (Brezis and Nirenberg, 1983).

As for sign-changing solutions, the number N(u) of
nodal domains of a solution u of (2.1) can be estimated
by its Morse index m(u) (see Section 3). It is an ele-
mentary fact that the inequality N(u) 6 m(u) always
holds, while if Ω is a ball or an annulus and u is radially
symmetric then N(u) 6 1+ m(u)

N+1 (Aftalion and Pacella,
2004).

Other, more specialized questions were studied in the
past decades. It is also of great interest to consider
more general nonlinearities, and in fact some of the re-
sults above hold for more general equations than (2.1).
In the sequel, by a superlinear and subcritical nonlin-
earity g we will mean a function g ∈ C1(R; R) such
that:

(i) g′(s)s2 > g(s)s > 0 ∀s 6= 0;

(ii) g(s)s > µG(s) for large |s|, where µ > 2;

(iii) |g(s)| 6 C(1 + |s|p−1) ∀s, with 2 < p < 2∗.

We have used the notation G(s) :=
∫ s

0
g(ξ) dξ (so

G(s) = |s|p/p if g(s) = |s|p−2s). We stress that, in

strong contrast with the one-dimensional problem, the
mere existence of solutions for a more general equation

−∆u = g(u) in Ω, u = 0 on ∂Ω, (2.3)

with g superlinear and subcritical, is not settled. In
spite of the numerical evidence suggesting the existence
of many solutions for (2.3) (Ding, Costa and Chen,
1999), only a three-solutions theorem is established so
far (Wang, 1991): (2.3) admits a positive solution, a
negative solution, and a further sign-changing solution.

However, in case g is superlinear, subcritical and odd
symmetric (g(−s) = −g(s) ∀s) then the existence of
an infinite number of solutions can be proved. In par-
ticular,

Theorem 1. [3] For any p < 2∗ and any domain Ω,
problem (2.1) admits an unbounded sequence of solu-
tions.

It is not known whether the number of nodal domains
of these solutions is arbitrary large, neither whether a
solution having at least three nodal domains does exist.
In Section 3 we develop the content of Theorem 1 from
a general point of view, while in Section 4 we present
some new results in this direction.

3. Minimax theorems

In the rest of the paper g is a superlinear and subcritical
nonlinearity. Solutions of (2.3) can be seen as critical
points of the energy functional

I(u) :=
1
2

∫
Ω

|∇u|2 −
∫

Ω

G(u), u ∈ H1
0 (Ω), (3.1)

where G(s) :=
∫ s

0
g(ξ) dξ, that is, points u such that

I ′(u) = 0. A number c ∈ R is a critical value of I if
I(u) = c for some critical point u. Since the functional
is unbounded both from below and from above, global
minimization/maximization is excluded. One can find
critical points of I by either using constrained mini-
mization or a minimax theorem.

The most celebrated minimax theorems in critical point
theory are the Mountain Pass Theorem and the Saddle
Point Theorem, due to Ambrosetti and Rabinowitz [3]
and Rabinowitz [22] respectively, in the 70s. This fol-
lowed earlier work which can be traced back to Birkhoff
(1917), Ljusternik and Schnirelmann (1934) and M.A.
Krasnosel’skĭı (1964), among others.

We specialize the underlying idea to our problem. For
every k ∈ N, let us denote by Ek the finite dimen-
sional space spanned by the first k eigenfunctions of
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(−∆,H1
0 (Ω)). For a given number Rk > 0, let Qk :=

BRk
(0)∩Ek be the ball of radius Rk in Ek, centered at

the origin, and consider the class of (continuous) maps,

Γk := {γ : Qk → H1
0 (Ω) : γ odd, γ|∂Qk

= Id}.

Then we define the number

bk := inf
γ∈Γk

sup
u∈Qk

I(γ(u)). (3.2)

It can be proved that bk > 0 if Rk is sufficiently large,
in particular bk ∈ R. Moreover,

bk 6 bk+1 ∀k and lim
k→∞

bk = +∞.

The numbers bk are natural candidates for being criti-
cal values of I. However, this will not be the case unless
I is an even functional (i.e. I(−u) = I(u) ∀u). This
amounts to ask that g(s) is an odd nonlinearity.

So, in this case I admits indeed an infinite number of
critical values; the corresponding critical points (uk)k

constitute a sequence of solutions to problem (2.3)
whose H1

0 (Ω)-norms tend to infinity as k → ∞, and
this settles Theorem 1 above.

Moreover, regardless of its symmetry, if g is asymptot-
ically dominated by a pure-power nonlinearity |s|p−2s,
then one has the following estimates on the growth of
bk.

Proposition 2. [6, 30] If g(s)s − |s|p = o(|s|p) as
|s| → ∞ then

c1k
2p/N(p−2) 6 bk 6 c2k

2p/N(p−2)

for some c1, c2 > 0 independent of k.

The second inequality is related to the asymptotic be-
havior of the eigenvalues of (−∆,H1

0 (Ω)) and follows
from the very definition of bk. As for the first inequal-
ity, it arises from a semiclassical inequality of Cwikel,
Lieb and Rosenbljum [16, 21, 28], which is used here in
the context of Morse index estimates.

If u is a solution of (2.3), its Morse index m(u) is defined
as the number of negative eigenvalues of the linearized
problem

−∆v = g′(u)v + λv, v ∈ H1
0 (Ω). (3.3)

In an equivalent way, m(u) is the supremum of
the dimensions of the subspaces Z of H1

0 (Ω) where
the quadratic form I ′′(u) is definite negative (i.e.
I ′′(u)(ϕ, ϕ) < 0 ∀ϕ ∈ Z, ϕ 6= 0).

Loosely speaking, for a general functional I, Morse
theory is concerned with relating the structure of the
critical point set of I in {a 6 I 6 b} (a, b ∈ R) with the
homology, homotopy, homeomorphism, and diffeomor-
phism type of the pair ({I 6 b}, {a 6 I 6 b}).

The pioneering work of M. Morse on compact mani-
folds goes back to the 30s, followed by later develop-
ments and extensions to the infinite dimensional case
by Palais, Rothe, Sard and Smale among others, in the
60s. As mentioned before, a decade later critical point
theory in the framework of PDEs was giving its first
steps. In the 80s these two methods were put aside; we
quote the following paragraph from [6]:

“The two main methods in critical point theory are
probably Morse theory (including Morse inequalities)
and minimax variational approaches (as initiated by
Ljusternik and Schnirelman). Morse theory usually
provides (in some cases) critical points with a local in-
formation (i.e., the Morse index) but requires nonde-
generate functionals and does not give precise indica-
tions on the energy levels. On the other hand, minimax
critical point theory usually yields critical values by ex-
plicit formulas but lacks real local understanding of the
structure of associated critical points. [...] More re-
cently, attempts to understand the local nature of min-
imax critical points have been made.”

This led to a huge literature on the subject, mostly in
the 90s (see e.g. [15, 19, 24]). This is the context which
relates the definition of the minimax levels bk with the
first estimate in Proposition 2. In our final section we
explain the relevance of such type of estimates for prob-
lem (2.3).

4. Perturbation from symmetry

As mentioned above, (2.3) admits an unbounded se-
quence of solutions in case g is (superlinear, subcriti-
cal and) odd symmetric. In the one-dimensional case
(N = 1, Ω = (−1, 1)), under these assumptions the
picture is rather clear. It is known ([12, 30]) that the
solution set of the corresponding ODE consists precisely
of a sequence u0,±u1,±u2, . . . where u0 = 0 and, up to
the sign of u′k(0), uk is completely determined by the
condition: uk possesses exactly k − 1 zeros in (−1, 1).
Moreover, going back to the numbers bk defined in
(3.2), we have that bk = I(uk) < I(uk+1) = bk+1 for
every k. Finally, each solution uk has Morse index
k and is non-degenerate, in the sense that 0 is not an
eigenvalue of the linearized (ordinary differential) equa-
tion in (3.3).

When the nonlinear term of the equation is no longer
odd symmetric but rather behaves asymptotically like
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one, there seems to be no reason why a great number
of solutions should cease to exist. Consider for example
the following basic perturbed problem

−∆u = |u|p−2u + f(x), u ∈ H1
0 (Ω), (4.1)

where 2 < p < 2∗ and, say, f ∈ L2(Ω). This problem
was first studied in [5, 6, 23, 29, 30]. In particular, the
following holds.

Theorem 3. [6, 30] If

p <
2N − 2
N − 2

(4.2)

then (4.1) admits an unbounded sequence of solutions.

We mention that in the case where non-homogeneous
Dirichlet boundary conditions are considered, a similar
conclusion holds provided p < 2N/(N − 1), cf. [13].

It remains an open and challenging problem to know if
the full range p < 2∗ = 2N/(N − 2) can be allowed in
Theorem 3. The following two results somehow suggest
that this is the case.

Theorem 4. [2] Given f ∈ L2(Ω) and k ∈ N there
exists ε0 = ε0(k) such that for |ε| < ε0 the problem

−∆u = |u|p−2u + εf(x), u ∈ H1
0 (Ω),

with p < 2∗ admits at least k solutions.

Theorem 5. [4] If p < 2∗ then the set of f ∈ H−1(Ω)
such that the problem (4.1) has infinitely many weak
solutions is a dense residual set in H−1(Ω).

Let us describe roughly the underlying idea in the proof
of Theorem 3. As in (3.1), let

I(u) =
1
2

∫
Ω

|∇u|2−1
p

∫
Ω

|u|p−
∫

Ω

f(x)u, u ∈ H1
0 (Ω).

We denote by S the unit sphere in H1
0 (Ω) and by J the

functional

J(u) := max
t>0

I(tu), u ∈ S.

It can be proved that there is a one-to-one correspon-
dence between critical points of I and critical points of
J . Moreover, the numbers bk constructed above can
also be defined as

bk = inf
γ∈Ak

sup
u∈Sk

J(γ(u)),

where Sk = S ∩ Ek and

Ak := {γ : Sk → S, γ continuous and odd}.

Since J is not an even functional, bk is not expected to
be a critical value of J . However, let

I∗(u) =
1
2

∫
Ω

|∇u|2 − 1
p

∫
Ω

|u|p, u ∈ H1
0 (Ω),

and consider the corresponding functional J∗ and min-
imax levels b∗k. Then b∗k is a critical value for J∗. More-
over it can be proved that given a > 0 then J has a
critical value c > a provided

{J∗ 6 b∗k+ε} ⊂ {J 6 a} ⊂ {J 6 a+ε} ⊂ {J∗ 6 b∗k+1−ε}

for some ε > 0.

So we see that the existence of infinitely many critical
values for J will be a consequence of proving that the
intervals (b∗k, b∗k+1) are large enough with respect to the
difference |J − J∗|. Here is where Proposition 2 and
the condition (4.2) come into play.

Going back to the symmetric problem (2.1), a further
natural question concerns the sign of these solutions.
The following theorem complements Theorem 1.

Theorem 6. [8, 11, 20] If p < 2∗ then (2.1) admits a
sequence of unbounded sign-changing solutions.

The proof of Theorem 6 uses an homological descrip-
tion of the minimax levels. In order to deal with the
perturbed symmetric problem, in [27] an elementary ap-
proach, based upon the ideas described in the previous
section, was proposed. Now we deal with perturbations
such as

−∆u = |u|p−2u + f(x, u), u ∈ H1
0 (Ω). (4.3)

Theorem 7. [27] If p < (2N −2q)/(N −2) and f(x, s)
is a continuous function such that f(x, s)/ → s → 0 as
s → 0 uniformly in x and 0 6 f(x, s)s 6 C(1 + |s|q),
0 < q < p, then (4.3) admits a sequence of unbounded
sign-changing solutions.

A related problem concerns the case where

−∆u = V (x)|u|p−2u + f(x), u ∈ H1
0 (Ω). (4.4)

and V ∈ C1(Ω) changes sign in Ω. This new feature of
the nonlinearity causes a lack of compactness (in fact if
we deal with the homogeneous function g(s) = |s|p−1s
this is not a serious problem, but it becomes a serious
one whenever, say, g(s) = |s|p−1s+ |s|r−1r with p 6= r).
The following was proved by means of a variational
technique which relates a priori bounds of the solutions
with a priori bounds of their Morse indices, an idea
which goes back to [7].

9



Theorem 8. Assume that V (x) has only nondegener-
ate zero points in Ω. Then problem (4.4) has an un-
bounded sequence of solutions in the following two sit-
uations:

(a) [26] f ≡ 0 and p < 2∗;

(b) [25] f ∈ C(Ω) and p < (2N − 2)/(N − 2).

Concerning the symmetry of the solutions, we state
the following deep result. A corresponding one for the
perturbed problem (with, say, f(x) radially symmetric)
is not known.

Theorem 9. [17] If Ω is a ball or an annulus and
p < 2∗ then problem (2.1) admits an unbounded se-
quence of radially symmetric solutions and a further
unbounded sequence of nonradially symmetric solutions.

We also mention that the above problems have a nat-
ural extension to systems of the form

−∆u = |v|q−2v+f1(x), −∆v = |u|p−2u+f2(x), (4.5)

with u, v ∈ H1
0 (Ω), p, q > 2 and, say, p 6 q (this re-

duces to (4.1) if p = q and f1 = f2).

Theorem 10. Problem (4.5) has an unbounded se-
quence of solutions u, v ∈ H1

0 (Ω) in the following two
situations:

(a) [1] f2 ≡ f2 ≡ 0 and 1
p + 1

q > N−2
N ;

(b) [14] f1, f2 ∈ L2(Ω) and N
2 (1− 1

p −
1
q ) < p−1

p ·

We observe that if p = q then case (a) reduces to the
assumption that p < 2∗, while (b) is precisely (4.2). No
“generic” results in the spirit of Theorems 4 and 5 are
known for (4.5).

Finally, we mention two directions of research on this
type of problems: the case where Ω is the entire space
RN (see [9] for sign-changing solutions in the symmet-
ric case; the non-symmetric case seems to be open); the
case where the problem is sublinear rather than super-
linear, i.e. g(s) = |s|p−2s with p < 2 in the model
equation (see [18] for the non-symmetric case).
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