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Hearing molecular drums. Science for February
8, 2008 ran a Report by a 6-member Stanford team
entitled “Quantum Phase Extraction in Isospectral
Electronic Nanostructures.” The team, led by Hari
Manoharan, took advantage of the discovery (Carolyn
Gordon, David Webb, Scott Wolpert, 1992) of pairs of
distinct polygonal shapes isospectral in the sense that
they had exactly the same vibrational profile: identical
responses at every frequency. This discovery was the
long-awaited answer to Mark Kac’s 1966 question “Can
you hear the shape of a drum?” The Science authors
use carbon monoxide molecules to draw a pair of differ-
ent but geometrically isospectral shapes on the surface
of a copper crystal. Each has area about 57 square
nanometers, and encloses about 30 of “the 2D Fermi
sea of electrons” that inhabit the surface; this pond of
electrons will function as a “vibrating medium.”

Three quantum nano-resonators assembled from carbon

monoxide molecules. a “Bilby,” b “Hawk,” c “Broken Hawk.”

Each is assembled on a copper crystal by placing 90 CO

molecules (black dots) around a polygonal contour. The polygon

is geometrically the union of seven identical 30-60-90-degree

triangles. In polygons a and b, any two adjacent triangles are

related by reflection across their common border; this does not

hold for c. The polygonal shapes a and b are known to be

mathematically isospectral (but different in this respect from c

even though c matches, for example, their area and perimeter);

the authors exploit this feature to directly access the phase of

the quantum-mechanical system formed by the surface electrons

trapped inside the CO walls. Image after Manoharan et al.

The authors remark that “the time-independent
Schrödinger equation is also a wave equation defined
by the Laplacian and boundary conditions,” i.e. the
same equation that governs the sound of a drum, and
that therefore the electronic resonances of the set of
captured electrons will be the same for the two struc-
tures. Their main result is showing that “the complete

phase information of wave functions in both structures
can be experimentally determined” by “harnessing the
topological property of isospectrality as the additional
degree of freedom.” This is physically significant be-
cause the spatial variation of the phase of the wave
functions is measured without the usual reliance on in-
terference phenomena. The supplementary information
for this report includes a movie with soundtrack where
the Schrödinger vibrations of the Bilby, Hawk and Bro-
ken Hawk nano-structures can be “heard” (at the rate
of 100 THz ∼ 1 KHz).

Markov Clusters in the tree of life. “Long-held
ideas regarding the evolutionary relationships among
animals have recently been upended by sometimes con-
troversial hypotheses based largely on insights from
molecular data.” So begins the abstract of a paper in
the April 10 2008 Nature. The authors, an 18-member
international team led by Casey Dunn (Brown), present
in “Broad phylogenomic sampling improves resolution
of the animal tree of life” a new method for selecting the
genes to analyze in order to more accurately understand
the relative position of species on the evolutionary tree.

The Markov Cluster Algorithm at work. Red represents

intensity. In Nieland’s words: “... flow between different dense

regions of nodes which are sparsely connected eventually

evaporates, showing cluster structure present in the original

input graph.” Image courtesy of Stijn van Dongen.
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“We present a new approach to identification of orthol-
ogous genes in animal phylogenomic studies that relies
on a Markov cluster algorithm to analyse the structure
of BLAST hits to a subset of the NCBI HomoloGene
Database.” BLAST (basic local alignment search tool)
is a powerful algorithm, invented in 1990, for locating
occurrences of a piece of genetic code in the NCBI (Na-
tional Center for Biotechnology Information) database.
The Markov Cluster Algorithm was devised in 2000 by
Stijn van Dongen. It uses a stochastic, dynamic proce-
dure to pinpoint the most significant part of a graph. In
Henk Nieland’s words: “Simulate many random walks
(or flow) within the whole graph, and strengthen flow
where it is already strong, and weaken it where it is
weak. By repeating the process an underlying clus-
ter structure will gradually become visible.” (animated
MCL algorithm simulation available in the main MCL
website at http://micans.org/mcl).

The path to algebra: fractions. “News of the
Week” in Science (March 21, 2008) was a story by
Jeffrey Mervis about the National Mathematics Ad-
visory Panel’s release the week before of “a 120-
page report on the importance of preparing stu-
dents for algebra ... and its role as a gateway
course for later success in high school, college,
and the workplace.” The report is available
online (www.ed.gov/about/bdscomm/list/mathpanel).
Mervis spoke with Larry Faulkner, the chair of the
panel, and reports that the panel “avoided taking sides
in a debilitating 2-decade-long debate on the appropri-
ate balance between drilling students on the material
and making sure they understand what they are doing.”
The recommendations are that “students should mem-
orize basic arithmetic facts and spend more time on
fractions and their meaning.” But, as Mervis explains,
“how teachers achieve those goals is up to them.”

• Why do so many students have trouble with frac-
tions? Faulkner: “Fractions have been down-
played.” He mentions the perception that deci-
mals and spreadsheets have eliminated the need
for fractions. “But it’s important to have an in-
stinctual sense of what a third of a pie is, or what
20% of something is, to understand the ratio of
numbers involved and what happens as you ma-
nipulate it.”

• Q: Was the panel disappointed by the overall
quality of existing education research? A: “ ...
We found a serious lack of studies with adequate
scale and design for us to reach conclusions about
their applicability for implementation.”

• Q: Should the government be spending more
money on this research? A:“ ... If you want to
get the value, you probably need to pay for it.”

• Professional development programs? A: “There’s
tremendous variation in in-service programs. And
the evidence is that many are not very effective.”

• Calculators? “We feel strongly that they should
not get in the way of acquiring automaticity
[memorization of basic facts]. But the larger is-
sue is the effectiveness of pedagogical software. At
this stage, there’s no evidence of substantial ben-
efit or damage, but we wouldn’t rule out products
that could show a benefit.”

The hole truth?

The Schwarz-Christoffel formula (top) gives a conformal map

from an arbitrary polygon to the unit disc. The generalization

published in March 2007 by Darren Crowdy (below) applies to

polygonally bounded domains of arbitrary topology. Image after

Crowdy.

The Riemann mapping theorem guarantees a conformal
map between any proper simply-connected planar do-
main and the open unit disc. In general, the map is
constructed as the limit of an infinite process; but in
case the domain is a polygon, an explicit, finite formula
was found in the 1860s by Schwarz and Christoffel. An
item by Adrian Cho, published March 6, 2008 on Sci-
ence’s “Science Now” website, covers the publication a
year ago (Math. Proc. Camb. Phil. Soc. 142 (2007)
319) of a generalization of the Schwarz-Christoffel for-
mula to multiply-connected polygonal domains. The
author was Darren Crowdy (Imperial College London);
Cho quotes him: “If you give me any polygon with
any number of polygonal holes, I can map it to a cir-
cle with the same number of circular holes.” Crowdy’s
discovery “has been creating a buzz this week with cov-
erage in several newspapers in the United Kingdom.”
For example, “140 Year-Old Schwarz-Christoffel Math
Problem Solved” on scientificblogging.com. The
point of Cho’s piece, however, is not the mathemat-
ics but a priority controversy. Thomas DeLillo and
Alan Elcrat (Wichita State), together with John Pfaltz-
graff (Chapel Hill) published “Schwarz-Christoffel Map-
ping of Multiply Connected Domains” in the Journal
d’Analyse (94 (2004) 17-47), and claim their share of
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the glory. According to Cho, “The Americans’ for-
mula ... involves the multiplication of an infinite num-
ber of terms, which goes haywire if the holes are too
close together.” Crowdy asserts that his method, which
“replaces that product with an obscure beast known
as Schottky-Klein prime function” (in Cho’s words) is
more reliable. Pfalzgraff is “very skeptical.” Cho ends
on a conciliatory note by quoting Michael Siegel (NJIT
Newark) “It’s a breakthrough, and all these people con-
tributed.” Cho’s title: “Mathematicians Debate the
Hole Truth.”

Midge dynamics in Lake Myvatn.

50 generations of midge population in Lake Myvatn. The solid

line represents observations, the dashed line output from the

mathematical model with nine tuned parameters. Image

courtesy of Anthony Ives.

“Mathematics Explains Mysterious Midge Behavior” is
the title of an article by Kenneth Chang in the March 7
2008 New York Times. At Myrvatn (“Midge Lake”) in
northern Iceland, during mating season, the air can be
thick with male midges (Tanytarsus gracilentus), bil-
lions of them. Chang quotes Anthony Ives (Wisconsin)
“It’s like a fog, a brown dense fog that just rises around
the lake.” And yet in other years, at the same time,
there are almost none. Ives was the lead author on a
report in Nature (March 6 2008) that gave an expla-
nation for this boom-and-bust behavior in which, as
Chang describes it, “the density of midges can rise or
fall by a factor of a million within a few years.” In the
Nature report (“High-amplitude fluctuations and alter-
native dynamical states of midges in Lake Myvatn”),
Ives and his co-authors characterize the midge ecology
as one “driven by consumer-resource interactions, with
midges being the consumers and algae/detritus the re-
sources” and they set up a system of three coupled non-
linear difference equations, one each for midges, algae
and detritus, to model it. The dynamics of this system
include a stable state as well as a stable high-amplitude
cycle; small variations in parameters can drive the sys-
tem from one of those attractors to the other.

Alternative stable states of the midge-algae-detritus model. In

the panel on the left, the plane is tangent to the manifold

containing the cyclic component of the dynamics around the

stationary point. The white region in the plane shows the

domain of attraction to the invariant closed set, whereas the

region in grey gives the domain of attraction to the outer stable

cycle. The red lines give two examples of trajectories that

converge to the outer stable cycle. The panel on the right shows

the plane in more detail to illustrate the fine structure of the

domain of attraction to the invariant closed set. The blue

pentagon shows the unstable period 5 cycle that makes up part

of the boundary between domains of attraction to the inner

invariant closed set and the outer stable cycle. Image courtesy

of Anthony Ives.

Parallel transport for qubits. Science for Decem-
ber 21, 2007 ran “Observation of Berry’s Phase in a
Solid-State Qubit.” The authors are a team of ten from
ETH, Sherbrooke and Yale, headed by Peter Leek and
Andreas Wallraff. Their work falls under the rubric of
what Seth Loyd called “holonomic quantum computa-
tion” (Science 292 5222): they use Berry phase changes
produced by motion along paths (here the paths are
in parameter space) to systematically manipulate the
state of a qubit.

Fig. 1. Parallel transport of a vector around a geodesic triangle

on the unit sphere, beginning (initial state vi) and ending (final

state vf) at the North Pole. Image courtesy of Peter Leek and

Andreas Wallraff.
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Fig. 1 could come from a differential geometry text:
it shows the parallel translation of a tangent vector
around a (φ, π/2, π/2) geodesic triangle on the unit
sphere. The final state vf is rotated with respect to
the initial state vi by an angle which, when measured
in radians, is exactly equal to the area enclosed by the
path of the transport: in this case, φ. “The analogy of
the quantum geometric phase with the above classical
picture is particularly clear in the case of a two-level
system (a qubit) in the presence of a bias field that
changes in time,” the authors write. In fact the set of
states of a qubit may be represented as a sphere: an
arbitrary superposition z0 < 0|+z1 < 1| of its two base
states corresponds to the point [z0 : z1] in complex pro-
jective 1-space, which can be identified with the Rie-
mann sphere by [z0 : z1] → z0/z1 and stereographic
projection.

Fig. 2. The state space of a qubit can be represented as a

sphere, with pure state < 1| at the North Pole and < 0| at the

South Pole. Here the state s precesses at fixed speed about a

vector R, and R itself is moving, at much slower speed, along a

path of its own. Image courtesy of Peter Leek and Andreas

Wallraff.

Suppose that as in Fig. 2, “the qubit state s continually
precesses about the vector R, acquiring dynamic phase
δ(t) at a rate R = |R|.” “When the direction of R is now
changed adiabatically in time (i.e., at a rate slower than
R), the qubit additionally acquires Berry’s phase while
remaining in the same superposition of eigenstates with
respect to the quantization axis R.” When the axis R
has been brought back to its original position after tra-
versing a path C in its parameter space (via a two-stage
maneuver that results in zero dynamic phase accumu-
lation), “the geometric phase acquired by an eigenstate
is ±θC/2, where θC is the solid angle of the cone sub-
tended by C at the origin.” In the example illustrated,
that cone is geometrically the same cone traced out by
R in Fig. 2. As the authors remind us, its solid angle
(i.e. the enclosed area intercepted on the unit sphere)
“is given by θC = 2n(1− cos θ), depending only on the
cone angle θ.” [Note that the phase change is only 1/2
of the solid angle, in contrast with the purely geometric

example. So a 360◦ planar rotation – enclosed area 2n
– reverses the sign of the qubit.]

The article goes on to describe the experimental setup
for implementing this phenomenon in real life. The
qubit is a Cooper-pair box, the R-motions are driven by
pulse-modulated microwave frequency signals, and the
result is measured using quantum-state tomography.

An 80-vertex polytope in Physical Review. Eric
Altschuler and Antonio Pérez-Garrido published an ar-
ticle in Physical Review last year (E 76 016705 (2007))
in which they described “a four-dimensional polytope,
new to our knowledge, with a high degree of symmetry
in terms of the lengths of the sides.” They found the
configuration “by looking at the ... problem of find-
ing the minimum energy configuration of 80 charges on
the surface of the hypersphere S3 in four dimensions”
with the energy function Σ(1/rij) where rij is the dis-
tance between the i-th and j-th points, and the sum is
taken over all pairs of distinct points. (They remark
that they cannot prove this is actually a global min-
imum, but add that “even good local minima can be
interesting or important configurations.”) The other N
for which they found symmetric configurations are 5, 8,
24 and 120; corresponding to the 4-simplex, the dual of
the 4-cube, the 24-cell and the 600-cell. The authors
give a method for visualizing their 80-vertex polytope
in terms of the Hopf map S3 → S2. They triangu-
late S2 with 16 equal equilateral triangles: 4 abutting
the North Pole, 4 the South, and a band of 8 around
the Equator. This polyhedron has 10 vertices. Each of
these vertices corresponds to a circle of the Hopf fibra-
tion, along which they describe explicitly how to place
8 of the polytope’s vertices.

Two from a sequence of 20 projections of the 80-vertex polytope

from 4-space into the plane. Each of the 10 Hopf-fibration

circles has a different color, and appears as an octagon linking

its 8 polytope vertices. Entire sequence, each projection

composed with an additional rotation by 30◦ about a fixed

plane in 4-space, available in

www.ams.org/mathmedia/images/altschuler-complete.jpg.

Images courtesy of Eric Altschuler.

Another description of the 80-vertex polytope was pub-
lished by Johannes Roth later in the same journal (E
76 047702 (2007)).
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Physical Chemistry in 4D.

The structure of an alkane-urea channel-inclusion compound.

Chost = 1.102 nm at room temperature. The “host” urea

subsystem (spirals) and the “guest” alkane have irrationally

related periodicity, which leads to the material presenting phase

transitions that can only be explained in a 4-dimensional

“superspace.” Image courtesy of Bertrand Toudic.

“Hidden Degrees of Freedom in Aperiodic Materials” is
a report in the January 4 2008 Science. The first author
is Bertrand Toudic (Rennes); of the other nine, seven
are based in France, one at Kansas State and one in Bil-
bao. The geometric structure of a crystal is described
by listing its planes of reflection symmetry, labelled by
triples (h, k, l) of integers (Miller indices) that describe
their slopes in coordinates (a, b, c) adapted to the crys-
tal. These planes give rise to characteristic patterns
of peaks of intensity in photographic (or other) records
of how the crystal scatters radiation. Toudic and his
team investigate “aperiodic” materials like the alkane-
urea compound illustrated above. This compound con-
sists of a framework of nanotubes (“urea molecules are
connected by hydrogen bonds to form helical ribbons,
which are woven together to form a honeycomb array
of linear, nonintersecting, hexagonal tunnels”) inside
which “Guests such as nonadecane pack end to end
within van der Waals contact of each other.” In case
the repeat length Chost of the helical structure of the
tunnels and the packing distance Cguest of the alkane
guests are not rationally related [presumably, on an ap-
propriate scale], we need an additional Miller index to
explain the diffraction patterns. The sets of Miller in-
dices are now vectors (h, k, l,m) in a “superspace” of
which the first three dimensions are the familiar ones.

The authors bring this extra dimension into salience by
exhibiting a phase transition that cannot exist without
it. As Philip Coppens explains it, in a “Perspectives”
piece in the same issue of Science, when the c axis is
pointing along the tube, “ the average structure of the
urea ... is described by the hkl0 reflections, and the
average structure of the alkane ... by the hk0m reflec-
tions, whereas the remaining hklm reflections are due
exclusively to the mutual interaction between the two
lattices. This implies that [the urea lattice] imposes a
distortion on [the alkane lattice], and vice versa.” “At
temperatures above 149 K, all nonadecane columns in

the crystal distort in an identical way. However, be-
low this temperature, the extra hklm reflections that
appear in the diffraction pattern show that the rela-
tive modulation of the host and guest lattices alter-
nates from channel to channel in the a-axis direction ...
even though the periodicity of the average structures
of the host and the guest in this direction does not
change, as indicated by the absence of additional hkl0
and hk0m reflections.” He concludes “Such a transi-
tion, which only affects the mutual interaction, can only
be described properly in super-space, even though the
physical reality is obviously three-dimensional.”

Physical insight into a hard combinatorial prob-
lem.

The hitting-set problem. Here the job is to find a minimal-size

set of students (discs) representing all five sports. The red discs

are a “hitting set.” Image after Selman.

Since work of Mitchell, Selman and Levesque in 1992
it has been understood that some hard computational
problems can undergo phase transitions at critical val-
ues of their parameters. Recently this statistical me-
chanical behavior has been harnessed to yield informa-
tion about the solutions of some hitherto intractable
problems. The work, by Marc Mézard and Marco
Tarzia, appeared (Phys Rev E76 041124) last year, and
was picked up by Bart Selman in a “News and Views”
piece for Nature, February 7, 2008. Selman tells us that
the authors “demonstrate an innovative approach to
solving one well-known NP-complete problem, known
as the hitting-set problem.” A hitting set picks out
from the union of a collection of sets a subset that con-
tains at least one element of each; the problem is to
find a hitting set with the smallest number of elements.
Mézard and Tarzia, realizing “that tools from statis-
tical physics developed to study physical phase transi-
tions might help in developing more efficient algorithms
for solving combinatorial problems,” adapted the calcu-
lation of ground-state properties of certain condensed-
matter systems to give the survey-propagation method.
“Mézard and Tarzia use the survey-propagation method
to compute statistical properties of the solutions of in-
stances of the hitting-set problem.” This is considered
even harder than finding a single solution, but survey
propagation, working near a phase boundary, can get
the information “... by iteratively solving a large set of
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coupled equations, modelling the local interactions be-
tween variables probabilistically. This solution process
can be performed in a parallel, distributed fashion us-
ing many different processors, and generally converges
to an answer extremely quickly –in seconds for equa-
tions with thousands of variables.”

“The computational realization of gesture”.

Thomas Briggs Veils # 73. A larger image is available in

www.salientimages.com/Veils73.htm but, as Briggs explains:

“In order to represent these images on a web site they must be

reduced in resolution by 99%. The works are a minimum of 3

feet square. The actual line weight is equivalent to that of a 0.2

- 0.3 millimeter pen nib, yet the large scale structure holds up

when seen from a distance. This disparity of scale is an essential

element of the experience of the works.” Image used with

permission.

On Thomas Briggs’ website (www.salientimages.com)
the artist details his methods, and the way mathemat-
ics enters into them: “The computational realization of
gesture in my practice entails the construction of a spa-
tial field of action. In this space various mathematical
functions which represent small aspects of movement
are distributed. The sum of the various functions is
recorded for millions of points in space. These data are
collated and translated into thousands of drawing prim-
itives which are written into an image file for printing
and archiving.”

Numeral cognition and language. What is the re-
lation between our concepts of number and the words
we have in our language to express them? The old ques-
tion was recently thrown into relief by Peter Gordon’s
report in Science (October 15, 2004) on the Pirahã, an
extremely inscrutable Amazonian tribe whose language
seems almost completely devoid of number-words. Gor-
don (Biobehavioral Sciences, Columbia) was categor-
ical: “... the Pirahã’s impoverished counting system

limits their ability to enumerate exact quantities when
set sizes exceed two or three items.” Gordon was taken
to task by Daniel Casasanto (Brain and Cognitive Sci-
ences, MIT) who argues (Letters, Science, March 18,
2005) that “[the] results are no less consistent with the
opposite claim [i.e., that they lack number words be-
cause they lack number concepts], which is arguably
more plausible.” The Pirahã controversy is the back-
ground for “The Limits of Counting: Numerical Cogni-
tion Between Evolution and Culture” (Science, January
11, 2008). The authors, Sieghard Beller and Andrea
Bender (Psychology, Freiburg), focus on the evolution
of numbering systems, for which they distinguish two
properties: extent and degree of abstractness. They
take their examples from Austronesian languages; Adz-
era is one of them. “Its number words for 1 to 5 are
composed of numerals for 1 and 2 only: bits, iru?, iru?

da bits (= 2 + 1), iru? da iru? (= 2 + 2), and iru? da
iru? da bits (= 2 + 2 + 1).” This is a system with small
extent. The authors contrast Adzera with Mangare-
van, where besides a general counting sequence there
is another one used for tools, sugar cane, pandanus (a
fruit) and breadfruit, while ripe breadfruit and octo-
pus are counted with a different sequence, and the first
breadfruit and octopus of a season are counted with yet
another. This system lacks abstractness. The point the
authors emphasize is that both these languages “belong
to the same linguistic cluster ... and inherited a regu-
lar and abstract decimal numeration system with (at
least) two powers of base 10 from their common ances-
tor, Proto-Oceanic.” As they state in their conclusion,
“Numeration systems do not always evolve from simple
to more complex and from specific to abstract systems.”

The mathematics of choosiness. “The coevolution
of choosiness and cooperation,” a Letter in the January
10 2008 Nature, describes a mechanism for the evolution
of cooperative behavior. The Bristol-Debrecen team
of John McNamara, Zoltan Barta, Lutz Fromhage and
Alasdair Houston ran simulations of the “continuous
snowdrift game,” where in each round an individual,
playing against one other, incurs a cost C(x) depend-
ing on its own cooperativeness x, and receives a benefit
B(x + x′) depending on the summed cooperativeness
of both players. [The “snowdrift game” gets its name
from an example where two drivers are stuck on oppo-
site sides of a snowdrift, and have to choose between
waiting in the car and shovelling]. Here are some de-
tails of the simulations: Along with cooperativeness (x),
each player has a trait y called choosiness. Choosiness
specifies the minimum degree of cooperativeness that
the player will accept from its co-player.

• After each round, a player earns the payoff
B(x, x′) − C(x) + A − S, where B and C are as
above, A is a fixed component and S is the startup
cost for an individual in a newly formed pair.
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• At the same time, the players learn their partner’s
cooperativeness, and choose whether to look for
new partners (if x < y′ or y < x′) or to play again
(otherwise).

• After each round an individual also produces
offspring (clones except for “occasional small
changes caused by mutation”) proportionally to
the size of the payoff;

• Between rounds the players “incur some risk of
mortality.” “Individuals that die are replaced by
individuals selected at random from all offspring
produced in the previous round.”

Among the main conclusions of the experiments: “in
a situation where individuals have the opportunity to
engage in repeated pairwise interactions, the equilib-
rium degree of cooperativeness depends critically on the
amount of behavioural variation that is being main-
tained in the population by processes such as muta-
tion.” Additionally, “The results suggest an important
role of lifespan in the evolution of cooperation.” The
authors give heuristic arguments to interpret these re-
sults: in a uniform population nothing can be gained
by being choosy, and therefore there is no incentive for
individuals to be cooperative. “This situation changes
profoundly if significant variation is maintained in the
population by processes such as mutation.” Moreover,
high mortality counteracts the evolution of cooperation:
“If the cooperative associations ... are soon disrupted
by mortality, then establishing them is not worth the
associated costs.”

“A Mathematical Gem”. is how Constance Holden
(Random Samples, Science, January 18, 2008) describes
this image, gleaned from the February 2008 issue of the
AMS Notices.

The K-4 crystal is the maximal abelian covering of the

tetrahedron, with the inherited geometry. For a larger and

higher-resolution image, visit the February 2008 Notices. Image

credit Hisashi Naito.

There it illustrates an article by Toshikazu Sunada, who
shows that this crystalline structure shares with the di-
amond the “strong isotropy property,” and that these
are the only two such structures in three dimensions.
(The strong isotropy property states that for any two
vertices V and W of the crystal, any ordering of the
edges adjacent to V and any ordering of the edges ad-
jacent to W , there is a lattice-preserving congruence
taking V to W and each V -edge to the similarly ordered
W -edge). Sunada states that the K-4 crystal, beautiful
as it is, is purely a mathematical object. Holden begs
to differ: “In fact, it shows up in inorganic compounds,
lipid networks, and liquid crystals and has been known
for decades by other names.”

Holographic algorithms. The January-February
2008 American Scientist features a report by Brian
Hayes on holographic (or “accidental”) algorithms,
a recent phenomenon in computational mathematics.
“Their computational power comes from the mutual
cancellation of many contributions to a sum, as in the
optical interference pattern that creates a hologram,”
according to their inventor, Leslie Valiant (Harvard);
hence the name. The primordial “holographic” algo-
rithm is the determinant of an n by n matrix: in prin-
ciple it is a sum of n! terms, but in practice, using
row-reduction, it can be computed with only about n3

operations. In fact, determinants turn out to be at the
heart of all the examples Hayes presents. For example,
the “perfect matching” problem: on a given graph, is
there a set of edges linking each vertex to exactly one
other vertex? And the associated counting problem: if
so, how many such matchings are there?

A graph with one of its perfect matchings. After Hayes,

American Scientist 96, No. 1.

This question seems to require looking at all possible
choices of edges (a number growing factorially with the
number of vertices) to see which ones work, but for
a planar graph the Fisher-Kasteleyn-Temperley (FKT)
algorithm, dating back to the early 1960s, equates the
calculation of the number of perfect matchings on a pla-
nar graph with n vertices to the calculation of the deter-
minant of a certain n by n matrix. Valiant’s new holo-
graphic algorithms go one step further, and relate calcu-
lations in one context to the perfect matching problem
in an associated graph. One such context, the “Three-
ice problem,” is illustrated below. Hayes explains: “The
strategy is to build a new planar graph called a match-
grid, which encodes both the structure of the ice graph
and the not-all-equal constraints that have to be sat-
isfied at each vertex. Then we calculate a weighted
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sum of the perfect matchings in the matchgrid, using
the efficient FKT algorithm. Although there may be
no one-to-one mapping between individual matchings
in the matchgrid and valid assignments of bond direc-
tions in the ice graph, the weighted sum of the perfect
matchings is equal to the number of valid assignments.”

The “Three-ice problem.” For a planar graph where each vertex

abuts 1, 2 or 3 edges, how many ways can the edges be oriented

(blue arrows) with no in-in-in or out-out-out configurations?

The image shows one admissible assignment of orientations.

After Hayes.

“Everything in our world is purely mathemati-
cal - including you”. This startling quotation occurs
about halfway through Dennis Overbye’s “Laws of Na-
ture, Source Unknown” in the December 18 2007 New
York Times. Overbye attributes it to Max Tegmark, a
cosmologist at MIT, whom he considers “The ultimate
Platonist ... In talks and papers recently he has specu-
lated that mathematics does not describe the universe
- it is the universe. Dr. Tegmark maintains that we are
part of a mathematical structure, albeit one gorgeously
more complicated than a hexagon, a multiplication ta-
ble or even the multidimensional symmetries that de-
scribe modern particle physics. Other mathematical
structures, he predicts, exist as their own universes in
a sort of cosmic Pythagorean democracy, although not
all of them would necessarily prove to be as rich as our
own.”

Tegmark’s thesis is expounded in “Mathematical cos-
mos: why numbers rule” (New Scientist, September 15,
2007). The main argument is this: “If we assume that
reality exists independently of humans, then for a de-
scription to be complete, it must also be well defined
according to non-human entities – aliens or supercom-
puters, say – that lack any understanding of human
concepts. ... This is where mathematics comes in. To a
modern logician, a mathematical structure is precisely
this: a set of abstract entities with relations between
them. ... So ... If you believe in an external reality
independent of humans, then you must also believe in
what I call the mathematical universe hypothesis: that
our physical reality is a mathematical structure.”

But just as you were thinking that this would make life
simpler, you read on. “The hypothesis also makes a
much more dramatic prediction: the existence of paral-
lel universes.” The explanation: “Most physicists hope

for a theory of everything that ... can be specified in few
enough bits to fit in a book, if not on a T-shirt. The
mathematical universe hypothesis implies that such a
simple theory must predict a multiverse. Why? Be-
cause this theory is by definition a complete description
of reality: if it lacks enough bits to completely specify
our universe, then ... the extra bits that describe our
universe simply encode which universe we are in, like a
multiversal phone number.”

If you are scratching your head in stunned disbelief,
that’s perfectly OK: “Evolution endowed us with in-
tuition only for those aspects of physics that had sur-
vival value for our distant ancestors, such as the par-
abolic trajectories of flying rocks. Darwin’s theory thus
makes the testable prediction that whenever we look
beyond the human scale, our evolved intuition should
break down. ... To me, an electron colliding with a
positron and turning into a Z-boson feels about as in-
tuitive as two colliding cars turning into a cruise ship.
The point is that if we dismiss seemingly weird theories
out of hand, we risk dismissing the correct theory of
everything, whatever it may be.”

The Gömböc.

The Gömböc looks something like this. It has back-front

symmetry as well as symmetry in the plane shown. The

prototype given to Arnol’d was about 4 inches wide.

“The Self-Righting Object” was among the items cho-
sen for the New York Times Magazine’s 7th An-
nual Year in Ideas (December 9, 2007). Named “the
Gömböc” by its inventors – Gábor Domokos and Péter
Várkonyi of Budapest – it is the result, according to
the Magazine, of “a long mathematical quest,” starting
with a problem posed to Domokos in 1995 by the cel-
ebrated Russian mathematician V. I. Arnol’d: to con-
struct a “mono-monostatic” object. This would be a
convex, homogeneous object with such a geometry that
it would have exactly one stable position when placed
on a flat surface. “Homogeneous” rules out toys of the
“Comeback Kid” class which rely on a weighted bot-
tom to keep them coming back up. The Gömböc also
got play in a piece by Julie Rehmeyer in Science News
Outline for April 7, 2007. Neither of these accounts
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gives any hint of the mathematics involved in Domokos
and Várkonyi’s solution, although Rehmeyer reminds
us that “flat toys cut from a piece of plywood” always
have at least two stable positions (see the Gömböc web-
site for details). And she’s funnier. It turns out that
the Gömböc looks a bit like a turtle, and the ques-
tion arises whether turtles might have evolved mono-
monostaticity to avoid getting stranded on their backs.
“So far, they’ve tested 30 turtles and found quite a
few that are nearly self-righting. Várkonyi admits that
most biology experiments study many more animals
than that but, he says, ‘it’s much work, measuring tur-
tles.’ ”

Math and macromolecular architecture. “The
Molecular Architecture of the Nuclear Pore Complex”
was the cover story in the November 29 2007 Nature
and highlighted there (“News and Views,” “Making the
Paper”) as a substantial achievement by its authors,
a Rockefeller-UCSF team led by Michael Rout, Brian
Chait and Andrej Sali. A striking feature of the re-
search was the essential involvement of mathematical
methods developed by physicists for handling problems
with a very high number of degrees of freedom. The Nu-
clear Pore Complex is a large (molecular mass around
50 million) assembly of 456 proteins (in yeast) that
spans the nuclear envelope and controls movement of
material into and out of the nucleus. It was known that
about 30 different proteins are involved, and the general
shape was understood: “a doughnut-shaped structure,
consisting of eight spokes arranged radially around a
central channel.” But the exact way the pieces fit to-
gether was a mystery. The article spells it out com-
pletely. An accompanying article, “Determining the
architectures of macromolecular assemblies,” explains
how the puzzle was solved. The phrase the authors
use to describe their method is “integrating spatial re-
straints.” The spatial restraints are all the available
data about the shapes and affinities of the constituent
proteins, encoded into a set of functions that give 0
when “the restraint is satisfied” and higher values if it
is violated. “In essence, restraints can be thought of as

generating a ’force’ on each component in the assem-
bly, to mould them into a configuration that satisfies
the data used to define the restraints.” This “force”
is essentially (minus) the gradient of a scoring func-
tion cooked up from the restraints. The “integration”
is an optimization process: “The optimization starts
with a random configuration of the constituent proteins’
beads, and then iteratively moves them so as to mini-
mize violations of the restraints.” (The beads are points
representing the location of each protein). The config-
uration is periodically shaken up by “simulated anneal-
ing” to “minimize the likelihood of getting caught in
local scoring function minima.”

Representative configurations at various stages of the

optimization process from top (very large scores) to lower right

(with a score of 0). Adapted from Nature 450 690; used with

permission.

Approximately 200,000 different initial configurations
were tested, and used to yield “an ensemble of 1000
structures satisfying the input restraints.” Then the
structures from the ensemble were superposed, and used
to generate a single structure for the entire pore. From
the end of the abstract: “The present approach should
be applicable to many other macromolecular assem-
blies.”
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